时间:2022-07-02 08:13:56
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇大学生数学建模竞赛,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:建模竞赛;参赛队员;培训;奖励
数学建模竞赛最早是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。竞赛的宗旨是创新意识、团队精神、重在参与、公平竞争。自1992年在中国创办以来,呈现出迅速发展的势头,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2011年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。可以说,数学建模竞赛已经成为全国高校规模最大课外科技活动。
参加数学竞赛的大学生,按照规定以队为单位参赛,每队3人,专业不限,竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。参加过建模竞赛的学生都感觉受益匪浅,数学建模活动对于培养学生的创造性思维意识和能力、提高学生的综合素质具有重要作用,应该让更多的人参与到数学建模竞赛中来。如何能让更多的人参与到数学建模竞赛中来?如何更有效地指导学生参与数学建模竞赛呢?
二、如何有效指导学生参与数学建模竞赛
1.选拔数学建模竞赛的参赛队员
组建大学生数学建模协会,每学年开学初,协会组织纳新活动,面向1~2年级学生广泛宣传数学建模,让学生知道建模是怎么回事,让学生知道数学有用、如何用,激发学生学习数学的兴趣,增强求知欲。
每年的4月份开始,面向全校的大学生,开展“校内数学建模竞赛”,建议组成参赛小组的3人来自不同院系、不同专业,分别对数学模型、计算机编程和写作有一定特长。聘请专家组评阅,评选出一等、二等奖若干队,设定获奖比例不超过参赛队伍的25%,并对获得一等奖的参赛队组织答辩,确有较高水平的可评出一个特等奖。竞赛成绩将作为选拔参加“全国大学生数学建模竞赛”和“国际大学生数学建模竞赛”的参考。
2.组织数学建模竞赛的赛前培训
每年的暑假期间,组织指导教师、“校内数学建模竞赛”的获奖学生和部分建模活动的优秀学生进行赛前培训。由于每年的数学建模竞赛题材相当宽泛,涉及的专业领域也都不同,各个专业领域主要用到的数学方法也不一样,学生在学的时候压力非常大。建议培训过程中可以考虑按专业将学生分成几个班,每个班重点讲与这个专业联系比较紧的数学理论与建模方法。这样学习内容大大减少,没有太大的负担,目标也明确,学习起来不会太累。
数学建模竞赛所需要的知识除了必要的专业知识外,还需要诸如微分方程、数理统计、数学规划、最优化理论、图论、数值方法、计算机应用软件等知识的支撑,知识面很广,教师在收集资料的时候比较困难,学生在学的过程中也感觉比较乱。没有一本合适的教材是达不到好的学习效果的。建议由校内部分建模骨干教师,按专业领域编写不同的建模培训教材。每本教材涉及到这个领域的简单专业名词介绍、所涉及的数学理论简单介绍以及与这些理论相关的数学软件介绍。由于专业领域固定,所以即使有内容更新,依然比较容易修订,这样可以使学生的知识系统化,可以从系统的学习开始,并能接触最前沿的知识。
3.建立数学建模竞赛获奖的奖励政策
3.1对获奖学生的奖励
(1)对于参赛学生在各等级数学建模竞赛中获奖,可以获得相应的学分奖励。
(2)适当的奖金奖励。
(3)每年表彰在各类学科竞赛中表现突出的学生。
(4)学生参加学科竞赛获得省级一等奖或国家级二等奖以上奖项可以推荐免试攻读硕士学位研究生。
3.2指导教师的奖励
(1)为指导教师计算适当的工作量。数学建模竞赛的指导教师指导一个队的工作量计30学时。
(2)指导教师指导学科竞赛的成绩与职称评聘相结合,获奖指导教师在同等条件下优先晋升职称,优先评选本科教学质量优秀奖。
(3)每年评选学科竞赛优秀指导教师,给予相应的奖励。
论文摘要: 本文从我校数学建模竞赛推进数学建模课程开设的成功经验,浅淡了数学建模促进大学生能力的培养。
随着科学技术的迅速发展和计算机的日益普及,数学的应用越来越广泛和深入,数学科学的地位发生了巨大的变化,它正在从国民经济和科技的后台走到了前沿。
把数学与客观问题联系起来的纽带,首先是数学建模。应用数学去解决各类实际问题,首先是建立数学模型。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一。
一、 以竞赛推进数学建模课程化
数学建模作为一门崭新的课程在20世纪80年代进入我国高校,萧树铁先生1983年在清华大学首次为本科生讲授数学模型课程,他是我国高校开设数学模型课程的创始人,1987年由姜启源教授编写了我国第一本数学建模教材。在八十年代后期开设数学建模选修课或必修课只是少数老牌大学。但自1992年由中国工业与应用数学学会举办全国大学生数学建模竞赛( 94年起由国家教委高教司和中国工业与应用数学学会共同举办)以来,随着参加竞赛高校的学生增加,各高校相继开设了数学建模课程。2008 年全国有31个省/市/自治区(包括香港)1023所院校、12846个队(其中甲组10384队、乙组2462队)、3万8千多名来自各个专业的大学生参加竞赛。目前,在本科院校根据自己学校特点基本上开设数学课程。
我校从95年开始开设数学建模选修课,到97年学校决定在原有的基础上,从97级学生开始,在部分专业开设数学建模必修课,并同时对其他专业开设数学建模选修课。最初开设选修课是因为参加数学建模竞赛的需要,选修的学生数较少,而且必须是往年成绩较优的学生才允许选修。我们通过以竞赛为平台, 加强引导与指导, 充分激发学生的学习兴趣和热情。而且通过数学建模竞赛,促进了我校教学内容、教学方法、教学手段的创新,参加过训练和竞赛的学生们普遍感到,以往学多门课程的知识不如参加一次竞赛集训学得全面和扎实。因为数学建模竞赛需要全面掌握本领域相关知识, 在深入理解、领会前人智能精髓的基础上, 敢于提出自己的想法和观点。只有善于进行创造性地学习和运用知识, 善于对已知知识进行融会贯通, 注意知识积累的同时更注重对知识的处理和运用, 才能取得成功。随着数学建模竞赛在我校影响的增加,同时参加竞赛过的学生能力的提高,要求选修数学建模课程的学生逐年增加?,使得开设数学建模必修课有了一定的群众基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。目前,已在自动化、信息管理、统计、电子信息科学与技术、计算机、软件、通信等专业的学生开设不同层次的数学建模必修课与限选课,同时仍然在全校开设不同层次的数学建模选修课。对于不同层次,理论教学学时分别为34、50、66学时,并辅以上机实践训练,每年从当初几十名学生到目前每年近2000名学生修读此课。为了进一步提高实践动手能力,在软件工程、网络工程、信息与计算科学、应用数学专业开设数学建模课程设计,取得了比较明显的效果。
为了让信息与计算科学、应用数学专业的学生能更好的应用计算机工具和数学软件来解决各种实际问题,从2001年开始我们开设了数学实验课作为数学建模课程的补充和完善,并且目前面向全校开设数学实验选修课。为了进一步推广和普及数学建模,让更多的学生了解和参与数学建模,在原开设多种课程基础上,在学校以及教务部门的支持下,课程组于2000年起结合课程教学安排,在每年五月底举办全校大学生数学建模竞赛。该项活动得到了全校学生的积极响应,2009年有152个组,456人参赛。我校数学建模教学已经形成了多个品种、多种层次、多种方式的教学格局。
二、数学建模促进大学生能力的培养
数学建模活动包括数学建模课程、数学建模竞赛和数学实验课程等方面。建模活动本身就是一项创造性的思维活动,它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性。著名数学家丁石孙副委员长对数学建模活动给予了很高的评价,他说:“我们教了几十年的数学,曾经花了很多力气想使大家能够认识到数学的重要性,但是我们没有找到一个合适的方法,数学建模活动是一个很好的方法,使很多的学生包括他们的朋友都能够认识到数学的真正用处”。李大潜院士也曾说过:“数学建模活动具有强大的生命力,并必将不断发展、日臻完善”。很多高校从当初为了竞赛的需要,但随着对数学建模对学生能力培养的认识,数学教学改革的深入发展,许多普通高校都在积极思考,大胆探索,取得了许多可喜的成果。特别是对数学教学改革以数学建模为突破口,在教学体系、方法和内容上都进行了实质性的改革,已取得了突破性的成果。如改革教学内容,教学与计算机结合,实行研讨式教学等,这也为数学建模网络教学奠定了很好的基础。我校从1997年开始,我校将数学建模的教育从面向少数优秀学生转变为面向更多的普遍学生。越来越多的学生从数学建模的学习中获得了进步,使数学建模教学在大学生素质培养中日益发挥着巨大的作用。
1.促进大学生逻辑思维能力与抽象思维能力的提高。建模是从实际问题到数学问题,从数学问题到数学解,从数学解到实际问题的解决,这一过程提高了大学生逻辑思维能力与抽象思维能力。
2. 促进大学生的适应能力增强的。通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对于不同的实际问题,如何进行分析、推理、概括以及利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论到什么行业,都能很快适应需要。
3. 促进学生自学能力。由于数学模型实际问题的广泛性,大学生在建模实践中要用到的很多知识是学生以前没有学过的,而且也没有时间再由老师作详细讲解来补课,只能由教师讲一讲主要的思想方法,同学们通过自学及相互讨论来进一步掌握。这就培养了学生的自学能力和分析综合能力。他们走上工作岗位之后正是靠这种能力来不断扩充和更新自己的知识。
4. 促进大学生相互协作能力。在数学建模学习过程中,有大量的数学模型不是单靠数学知识就能解决的,它需要跨学科、跨专业的知识综合在一起才能解决,当今科学的发展也使得一个人再也没有足够精力去通晓每一门学科,这就需要具有不同知识结构的人经常在一起相互讨论,从中受到启发。数学建模集训、竞赛提供了这一场所。三位同学在学习、集训、竞赛过程是彼此磋商、团结合作、互相交流思想、共同解决问题,使得知识结构互为补充,取长补短。这种能力、素质的培养对他们的科学研究打下了良好的基础。
5. 促进大学生分析、综合和解决实际问题能力的培养。这是由数学建模的任务,目的所决定的。建模过程大体都要经过分析与综合、抽象与概括、比较与类比、系统化与具体化的阶段,其中分析与综合是基础,抽象与概括是关键。而从数学解答与模型检验而言,要求大学生所学的数学知识与计算机知识还有其它方面知识综合起来,动手去解决, 根据计算结果作出合理的解释。通过实践,明白学以致用,提高了分析、综合与解决实际问题的能力。
6. 促进大学生的创造能力的提高。在数学建模实践中,大多问题没有现成的答案、没有现成的模式,要靠充分发挥自己(和队友)的创造性去解决。而面对一大堆资料、计算机软件等,如何用于解决问题,也要充分发挥自己的创造性。数学建模对大学生的创造性的培养是很有好处的。
三、开设数学建模课程取得的效应
数学建模活动十分有利于达到培养高素质创新人才的育人目标。我校开设的数学建模课程,在师资水平、普及程度、特色内容建设、校内竞赛以及全国竞赛等几个方面,在国内同类院校中处于领先地位,特别是每年全国大学生数学建模竞赛中,我校都取得了良好的成绩,而且在全国也有一定的影响,得到全国竞赛组委会专家的充分肯定。
在教学团队建设方面取得明显成效。从最初的4名教师,逐步扩大到涉及运筹与优化、微分方程、概率论与数理统计、计算科学、最优控制、计算机应用等在数学建模中常用的学科方向的十多名教师,不仅解决了课程教学的需要,也促进了教师教学科研水平的提高。
在课程设置研究方面。根据我们这样一类学校的实际情况,我们在不同专业的学生中开设了多种不同课时不同程度要求的数学建模课,满足了各种不同程度不同水平的学生的需要。并在个别专业开设数学实验必修课,同时面向全体开设了数学实验选修课,把数学理论教学与数学软件以及计算机实现进行了很好的结合,进一步丰富了数学建模教学的内涵。以及在几个不同专业中开设了数学建模课程设计环节,有效地解决了大量一般学生如何加强数学实践动手能力培养的问题。
在加强教学内容与方法的研究与实践方面,并取得明显成效。除了选用合适的优秀教材作为参考资料,更是投入精力编写了适合我校的教学用书(即将在高教出版社出版)以及学生自主学习材料。数学建模教学的目的是能够让学生知道到什么地方找什么工具来解决什么样的问题,我们坚持努力把研究式讨论式的教学方法应用到数学建模教学中去。2000年开始,每年结合春季的数学建模教学工作,在五月底进行校内大学生数学建模竞赛。该项活动推广普及了数学建模教学,使更多学生的研究能力和实践动手能力得到了锻炼,同时也有力促进了数学建模竞赛活动在地方性普通院校中的开展,促进了竞赛水平的提高。
在教学改革方面。将数学建模思想融入到其他工科数学课程中去,并且在教学中注意强调讨论式教学以及学生的自主学习。
在同类院校树范性方面。2003年,该课程被确定为浙江省首批省级精品课程。通过几年的建设,已初步建成较有特色的课程资源。充分提升了网络工具的辐射作用,一方面加强了我校数学建模教学和竞赛工作,以及数学建模课外活动的开展,另一方面对其他同类高校能起到较好辐射作用。另外,我校数学建模课程教师曾多次作为讲课教师参加浙江省数学建模教练培训工作,多次应邀到兄弟院校讲课,也曾有多所院校到我校参观调研。
通过几年努力,完成数学建模教改研究项目《数学建模提高大学生综合知识能力的探索与实践》、《在工科院校中开设数学建模必修课和选修课的实践》与《以学科竞赛促进学生创新能力培养的“四维互动”模式研究与实践》,三项成果皆获得浙江省教学成果二等奖。组织学生数学建模课外活动的开展,申报“新苗人才计划”、“创新杯”并取得成功。自1995 年组织学生参加全国大学生建模竞赛以来,共获全国一等奖25项,全国二等奖41项,浙江省奖一等奖42项,二等奖48项,三等奖41项。2006年至今共获国际一等奖8项,国际二等奖14项。取得了省参赛高校与全国高校中的优异成绩。
通过参加数学建模活动,很多学生的自主学习和科研能力得到了显著提高,在毕业设计、实习和研究生阶段的学习中表现出了明显的优势,得到用人单位和研究生导师的普遍认可。从2001年至今获得“计算机世界奖学金”十几位学生中,清一色在数学建模竞赛中取得优异成绩。而且随着数学建模活动的不断深入开展,各级领导和各行业的用人单位逐渐对数学建模在实际中的应用和人才培养中的地位和作用都有了新的认识。目前,数学建模活动在我校的开展,得到了越来越多同学的欢迎。数学建模活动不断走向深入,由阶段性转向日常教学活动。在教学方面,由初期的只在优秀学生与部分专业学生开设选修课,发展形成了多个品种、多种层次、教学格局;在竞赛方面,由初期的只参加全国竞赛,发展到既参加全国竞赛,又将参加国际竞赛,同时每年举办校内竞赛;在撰写论文方面,由初期的只研究如何撰写竞赛论文,发展到现在与教师做课题与一般学术论文写作,参加新苗人才计划与创新杯等。
参考文献
关键词学生管理教师管理建模实验室管理
中图分类号:G640文献标识码:A
0引言
大学生数学建模竞赛起源于美国,1985年,数学建模竞赛走向国际化。我国于1989年开始开展大学生数学建模竞赛。1994年起由我国教育部高教司和中国工业与应用数学学会共同主办我国自己的全国大学生数学建模竞赛(CUMCM),每年一次,并成为国家教育部规定的面向全国所有高校的四大学科竞赛之一。
大学生数学建模竞赛的目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。”
我校(陕西服装工程学院)于2014年起组队参加全国大学生数学建模竞赛,两年间获得陕西赛区一等奖两项,二等奖三项。回顾过去几年的工作,我校虽然在数学建模竞赛中积累了一些经验和体会,取得了一些成绩,但总体上来说,我校的数学建模竞赛的整体水平与国内一些高校的建模水平还相差甚远。本项目结合我校近三年来数学建模竞赛的管理模式,通过借鉴区内外其他高校一些好的做法,提出一套大学生数学建模团队的管理模式。
1建模学生的管理
建模学生的管理主要包括学生思想认识和能力培养两方面的管理。
1.1学生思想的管理
学生思想的管理主要包括以下三个方面:
(1)对每年参加全国大学生数学建模竞赛以及获奖的学生,在校报上提出表扬,并在全校师生大会上为获奖学生颁发证书以及物质奖励。这样便可提升数学建模在学生思想上的地位。
(2)组织专题讲座,请学有专长的教师普及数学建模知识,让学生从思想上初步了解数学建模和数学建模竞赛,激发学生兴趣。
(3)在暑期举办建模培训班前,与学生签订培训协议。从思想上约束学生,从而保证培训质量。
1.2学生能力培养的管理
学生能力的管理主要包括以下两个方面:
(1)在全校理工科学生中开设数学建模及相关选修课程,学习基础知识。
(2)在学校建立建模实验室,成立校级建模团队,借助实验室这一平台让老师和学生平时在一起探讨相关问题,并可以将好的成果公开发表,提高学生的自学能力和应用能力。
暑期开设校级建模培训班,为九月份的全国大学生数学建模竞赛做准备,从基础知识、相关软件、典型例题的讲解,到写作方面的指导,最后以模拟数学竞赛的形式,让学生组队完成模拟竞赛题。通过这三个层次的培养管理,提升学生个人与团队协作能力。
2建模教师的管理
教师的管理主要包括心理和能力两个方面:
(1)通过教师座谈会或集体奖励机制,让建模指导教师意识到指导教师之间不应该是完全独立的,不仅仅是为教师个人的荣誉,更是为学生和学校的荣誉。
(2)定期参加数学建模的指导教师培训会或研讨会,提高自身水平。借助学校自己的建模实验室这一平台,通过指导学生,和学生一起探讨并发表有价值的科研论文。
(3)建模竞赛结束后,指导组的几位老师举行座谈会,探讨本次竞赛题是否有可以延伸或推广的可能性,如果可以,将指导的论进一步研究,并进行发表。
3建模实验室的管理
对建模实验室的管理主要包括两个方面:
(1)借助校内建模实验室,在学校建立自己的建模团队(类似于大学社团),由教师和学生共同管理实验室的设施。
(2)实验室经费可分为两部分,一部分来直接源于学校资助,另一部分通过学生和老师参加建模竞赛获奖或而获得,并且经费由建模负责人管理。
4结论
本文提出一套大学生数学建模的管理模式,主要通过结合陕西服装工程学院数学建模的现状以及参加陕西省建模指导教师培训班,与同行的学习、交流,从学生、教师以及建模实验室三方面的管理进行了研究。希望能为各位同行提供参考。
基金项目:本文受陕西服装工程学院教学管理研究基金项目(2016G001),陕西省教学改革项目(15BY132)资助。
参考文献
[1] 李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,2001.
[2] 李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.
【关键词】民办高职 大学生 数学建模比赛 培训指导
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2015)06C-0029-02
近年来,大学生数学建模比赛已经在我国大部分的本科院校中取得了良好的发展,然而,在大部分的民办高职院校中,数学建模才刚刚有所起步,并且还存在一些影响民办高职院校参赛的因素。民办高职院校数学建模竞赛的开展,不仅能够实现学生能力的培养,也能进一步提高教师的教学质量,为学校教学水平的提高与整体发展都能起到一定的推动作用。因此,本文试基于数学建模的基本概念、主要应用及重要作用,分析影响民办高职院校全国大学生数学建模比赛的因素,提出民办高职院校参加全国大学生数学建模比赛的方法指导。
一、数学建模的基本概述
(一)数学建模的基本概念
数学建模通常是指运用数学语言来对实际现象进行抽象的描述,是一种特殊的数学思考方法,也是一种能够有效利用数学语言与数学计算,对具体的失误进行抽象化处理的数学手段。数学模型是对具体事物的抽象模拟,其主要通过运用数学因式以及数学符号和图形程序等,来对实际课题的本质属性进行更加简洁而又抽象的刻画,其既能够有效地对某些客观现象进行充分的解释,也能对书屋的未来发展规律进行有效的预测,并进一步为控制某一现象的发生提供合理化的建议与策略。数学模型的建立过程,并不只是对现实的问题进行直接翻版,而是需要人们对其进行深入的观察与了解,充分掌握事物的细节发展,并进一步灵活运用各种数学知识,将实际的课题内容抽象提炼出相应的数学模型,该过程就是数学建模的具体过程。
(二)数学建模的主要应用
数学是一种用于研究现实世界的空间形式的数量关系科学,数学的发展往往和各种应用问题紧密相关。数学不仅具有明显的抽象性特征,同时也具有一定的逻辑严密性、体系完整性和结论明确性,在人们日常生活中的应用非常广泛。随着计算机技术的不断发展,人们对于事物的精确度要求也越来越高,这就使得数学建模活动广泛地应用到了人们的日常生活中。随着数学方法的不断扩充,努力培养学生的数学应用能力与意识已经成为数学教育中的一个重要组成部分。
(三)数学建模的重要作用
通常情况下,数学建模指的就是将实际的事物进行数字简化,它既是一种数学思考方法,同时也是一种数学语言的运用方法。数学建模能够有效地将实际现象通过数学语言来进行充分合理的描述,是联系数学与实际问题的重要桥梁,同时也是促使数学能够广泛应用到各个领域中的重要媒介。数学建模在我国科学技术的发展过程中起着越来越重要的推动作用,其能够有效地将复杂的实际问题进行简单的抽象,从而促使人们能够更加准确地抓住问题的主要矛盾,并及时发现事物的内在规律,使其有效地建立起反映实际问题的数量关系,并进一步促使人们充分利用数学理论来解决实际生活中所面对的困难与问题,进而有效地提高分析问题与解决问题的能力。
二、影响民办高职院校参加全国大学生数学建模比赛的因素
(一)院系领导重视不够
对于民办高职院校全国大学生数学建模比赛来说,院系领导的重视是实现建模竞赛的有效开展的重要保证。通过院系主任的支持与鼓励,以及辅导员和教师在班级里的进一步宣传,来提高学生的积极性,能够使更多的学生参与其中。同时,在进行大学生数学建模比赛的培训过程中,需要为学生准备充分的参赛用品,只有提高院系领导之间的相互配合,才能为数学建模竞赛提供相应的保障。然而,在部分的民办高职院校中,学校领导对建模比赛的重视度不够,往往使得建模比赛不能得到有效开展。
(二)学生学习基础差
在进行数学建模竞赛时,不仅需要运用到大量的数学知识和一定的计算机理论,同时还会跟化学、生物和物理等各个学科领域相联系,知识面要求十分广泛。这就要求参赛者在掌握大量综合知识的同时,还需要具备一定的知识转换能力,使其能够运用所学的理论来解决生活中的实际难题。但是在一般的民办高职院校中,因为其高考的录取分数线较低,学生群体普遍存在基础差的问题,且文科学生的比例比较大,造成整体的数学水平比较低。学生的学习基础差等现象,影响到民办高职中大学生数学建模比赛的有效开展实施。
(三)教师教育水平低
在进行民办高职院校全国大学生数学建模比赛中,教师的引导对建模比赛的成效起着关键作用。要想更好地参加大学生数学建模比赛,就需要教师认真组织与开展教学培训工作,教师自身的教学能力能够对建模竞赛的有效开展产生不小的影响。然而,目前我国各大民办高职院校普遍师资力量匮乏,许多教师都是刚刚毕业就登上了讲台,教学经验和教学理念不丰富、不成熟,学生教育管理力度也不够,这就进一步影响到民办高职院校全国大学生数学建模比赛活动的开展。
三、民办高职院校参加全国大学生数学建模比赛的方法指导
(一)提高对数学建模比赛的宣传力度
要想更好地开展数学建模比赛活动,为最终参赛选拔出更多优秀的参赛队员,就必须做好比赛的宣传工作,提高数学建模比赛的宣传力度,构建良好的竞赛氛围。通过挂横幅和张贴海报的方法,在教室、操场、宿舍、食堂等多个地方进行多角度的宣传工作,来为数学建模的比赛活动构建出一个更好的竞赛氛围,提高学生的参赛积极性。同时,为了更好地进行建模比赛的宣传工作,必须加大教室的宣传力度,将数学建模思想有效地融入到实际教学过程中,做好课堂宣传工作,并有计划地将建模思想和方法融入到教学活动中。
(二)加强对学生的赛前培训工作
为了能够更好地开展民办高职大学生参加数学建模比赛的相关工作,学校在加强参赛队员选拔工作的同时,应进一步提高对赛前培训的重视,使学生能够对建模比赛有一个更加充分的认知。学校可以通过开设相关的培训课程,向学生讲述和强化数学基础知识,并要求教师在讲授过程中,采用正确的方法,更加注重学生对数学知识的广泛性理解。而对深入理解则不做硬性要求,重点让学生充分了解这些知识并加以转换,从而实现对实际问题的有效解决即可。此外,学校还要提高学生对数学软件的熟悉程度,并通过赛前模拟训练使学生进一步了解竞赛的基本流程,提前发现问题,从而避免在比赛过程中发生类似的错误,进一步增强学生的参赛信心,提高其数学建模水平。
(三)加强对参赛过程的引导
教师的正确引导是建模比赛能够顺利完成的重要保证。为了使学生能够更好地参与到比赛过程中,教师应做好学生的心理辅导工作,因为在比赛时学生通常需要连续作战72个小时,这对于学生来说将会是一个极大的心理上的挑战。良好的心理辅导能够激发学生的无限动力,使其顺利完成比赛活动。同时,对于初次参与比赛的学生,因其对比赛内容的了解不全面,赛前容易紧张,这就要求教师做好对学生知识与技术的指导工作,使其能够对数学建模比赛有一个更加充分的掌握,从而更好地参与到竞赛过程中。
(四)提高对赛后总结工作的重视
对于学校的竞赛组织者和学校的教师来说,大学生数学建模竞赛的结束并不代表学校建模工作的结束,这就需要学校领导以及相关的教师对其进行有效的经验总结,并找出比赛过程中所存在的缺陷不足,对比赛内容与比赛过程进行不断的优化完善,从而为下一次的数学建模竞赛提供更多的借鉴经验。而对于残余竞赛活动中的学生而言,进行有效的赛后经验总结,能够更好地发现自己在比赛过程中的优缺点,在自我完善过程中进一步实现更好的自我发展。
总之,民办高职院校应积极组织参与数学建模竞赛,以加强学生能力的培养,进一步提高教师的教学质量,继而推动学校教学水平提高与整体发展。
【参考文献】
[1]杨太文,苏晨.数学建模竞赛与大学数学课程间的效用――以山东大学(威海)数学与统计学院学生为例[J].成功(教育版),2012(10)
[2]刘秀梅.数学建模比赛的意义及我校参赛的情况[J].科教导刊-电子版(中旬),2014(12)
[3]华颖.MATLAB软件在数学建模中的应用[J].价值工程,2013(26)
Abstract: Taking the mathematical modeling contest for the effective carrier, by optimizing the personnel training programs, and improving operating mechanism of discipline competition, by means of construction of innovation education base to develop students practical and creative abilities, and improve creativity and overall quality of students.
关键词:数学建模竞赛;载体;培养;创新能力
Key words: mathematical contest in modeling;carrier;culture;ability
中图分类号:G642 文献标识码:A文章编号:1006-4311(2010)11-0016-01
0引言
随着社会发展,数学的应用在各个领域发挥越来越重要作用,社会对于数学的需求除了一些数学家和一些研究数学的人员外,更需要的是那些能在日常工作中熟练的使用数学思维去发现问题并解决问题的人才,他们能够运用数学知识熟练的解决在实际生活中遇到的问题,带来经济和社会效益。应运而生的数学建模恰好符合了这一历史需求。数学建模就是从复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,建立数学模型的过程。对数学建模竞赛与创新能力的培养,已有不少学校的老师对其进行了研究并应用于教学[1-4]。
1数学建模竞赛的特点
我国自1992 年举办全国大学生数学建模竞赛,已有十七年的历史,现在它已经成为了我国高校最重要的学科竞赛之一。数学建模竞赛是以用数学技术解决实际问题为主题的,竞赛题目涉及到社会的各种行业,具有很高的实用性。竞赛题目并没有唯一的答案,而是需要参赛人员在短时间内,通过对题目的研究思考迅速的得出自己的结论并形成论文。在这一过程中,需要学生综合运用想象,直觉思维、猜测、转换、构造等能力。而这些能力的综合运用正是高校应用型人才培养目标所要具备的基本特征,能培养学生的创新能力。
2数学建模竞赛与大学生创新能力培养的关系
创新以人的创造性劳动为载体,外显为人的某些行为特征和能力,通过人的创造性劳动而从内在的意识存在状态物化为外在的物质存在状态。创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力,创新也是网络时代的根本要求和本质特征,培养学生的创新精神,不是对基础知识的否定,更不是不要基础知识的教学;创新不是异想天开,新知识的发现是在扎实的基础上,运用创造思维能力,通过艰苦的探索和努力才能获得。所以,创新精神的培养是全面素质教育的一个重要部分,高校举办数学建模竞赛的初衷是为了提高学生综合素质,培养学生创新能力,构建解决实际问题的思维意识,从人才培养的角度,数学建模竞赛主要侧重于考察参赛者利用所学知识解决实际问题的能力,强调创新意识和思维亮点,是一条培养高素质和创新能力人才的重要途径。
3数学建模竞赛在创新人才培养中的意义
数学建模活动包括数学建模课程、数学建模竞赛和数学建模试验课程等方面。建模活动本身就是一项创造性的思维活动,它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性。
4通过数学建模教学与竞赛培养学生创新能力的措施
4.1 从低年级的数学课程教学中就渗透建模思想,培养学生的建模兴趣讲课时尽量从问题出发,注重数学思想的体现,这样逐渐给学生渗透一种数学来源于生产实践,再应用于生产实践的概念,学习数学是为了解决问题的。这样也自然地将数学建模活动和数学教学有机地结合起来,并在教学中更好地体现了素质教育的思想。
4.2 在专业设置中体现应用能力的培养目标我们将数学建模与数学实验课作为数学类专业的必修课和理工农经管等专业的公共任选课进行开设。使用模块化教学,数学建模教学团队的老师各自负责一块对学生进行教学,提高课堂教学的效果,为学生打好数学基础能利用数学软件解决一些实际问题。
4.3 抓好数学建模课程教学的两个阶段第一个阶段是开设数学建模课,学习一些数学建模的基础性的知识,接触一些简单的实际问题和数学模型,体会数学模型课程的基本内容、基本方法和基本要求。第二阶段数模竞赛暑期的强化培训,它的广度和深度都要高于第一个阶段,主要是提高学生利用数学知识解决实际问题的能力,当然这要在教师的指导下进行。
4.4 设立了校数学建模协会与数学建模研究小组校数学建模协会每年举办校内数学建模竞赛,请专家进行建模讲座,这些贴近学生的具体活动,宣传了数学建模和思想,培养学生兴趣,并为选拔优秀学生奠定了良好基础。通过数学建模协会的宣传与发动成立数学模型研究小组对往届的真题进行研究,对一些实际问题进行研究,从而培养学生的创新能力。
4.5 结合数学建模与挑战杯大学生课外学术科技作品竞赛每年我们组织数学建模研究小组,每一个小组研究一个实际问题,然后把研究成果成文参加挑战杯大学生课外学术科技作品竞赛,收到很好的效果,能培养学生利用数学解决实际问题,从而提升他们的创新能力。
4.6 结合数学建模与大学生研究性学习与创新性实验计划立项 通过数学建模研究小组的研究,指导教师的参与,对某一课题进行研究,根据研究的深度进行讨论,如果能继续研究,我们鼓励学生申报大学生研究性学习与创新性实验计划立项,争取资金进行进一步研究,达到培养学生创新能力的培养。借助于数学建摸竞赛、教师课题以及学生创新活动,以辅导、讲座、讨论会、课外实践为载体,将数学建模的教学推到更高层次。该层次主要任务是教师设立研究方向,学生自觉探索资料和实际勘测,并由教师把关,完成对地方经济有价值的学术成果。
4.7 通过数学建模赛后的总结与反思提升学生创新能力数学建模是一种综合训练,可以培养学生综合应用数学进行分析、推理、证明、计算的能力,组织、协调、管理的能力,交流表达的能力、写作的能力, 当然最关键的还是丰富的想象力和敏锐的洞察力。
参考文献:
[1] 李苏北,以学科竞赛为载体 推动课程建设与学生创新能力培养,大学数学,2009,25(5):8-10.
关键词:数学建模;课程;素质教育
中图分类号:G64文献标识码:A
一、引言
数学方法在现代经济学发展中起着越来越重要的作用,而数学模型是经济学研究必需的工具,运用所学的数学知识通过建立模型来解决经济问题是经济类专业学生在参加工作后经常要做的工作。大学教育,对于大部分学生来说是他们走向工作岗位前最后的以学习为主的阶段,也是他们各项单科知识得以融会贯通,综合素质积淀最快、最关键的时期。因此,在经济类专业学生的数学基础课上,应该重视培养学生在这方面的能力。数学建模选修课的开设和数学建模竞赛的开展,为培养学生的知识应用能力和创造性思维提供了良好的环境和机会。
数学建模是运用数学的语言和方法,去描述或模拟实际问题中的数量关系,并解决实际问题的一种强有力的数学手段。这门课程作为高等数学、线性代数、概率论与数理统计的后继课程,学生已经初步掌握高等数学的相关基础理论知识和思维方法,具备开设这门课的基础。数学建模的一般步骤可概括为以下几点:
1、建模准备。了解问题的实际背景,明确建模目的,收集掌握必要的数据资料。分析问题,弄清其对象的本质特征。
2、模型假设。根据实际问题的特征和建模的目的,对问题进行必要的简化,提出若干符合客观实际的假设。
3、建立模型。根据模型假设,利用适当的数学工具,建立各个量之间的定量或定性关系,采用尽量简单的数学工具,建立数学模型。
4、模型求解。为了得到结果解决实际问题,要对模型进行求解,在难以得出解析解时,应当借助计算机求出数值解。
5、模型分析。对模型求解得到的结果进行数学上的分析,有时是根据问题的性质,分析各变量之间的依赖关系或稳定性态,有时则根据所得的结果给出数学上的预测,有时则是给出数学上的最优决策或控制。不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等。
6、模型检验。分析所得结果的实际意义,用实际问题的数据和现象等来检验模型的真实性、合理性和适用性。模型只有在被检验、评价、确认基本符合要求后,才能被接受,否则需要修改模型。要得到一个符合现实的数学模型,一个真正适用的数学模型,其实是需要不断改进、不断完善的。
大学生数学建模竞赛最早是1985年在美国出现的。1989年在几位从事数学建模教育教师的组织和推动下,我国几所大学的大学生开始参加美国的竞赛。1994年起教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届,这项活动被教育部列为全国大学生四大竞赛之一。20世纪八十年代以来,我国各高等院校相继开设数学建模课程。数学建模课程是在高等数学、线性代数、概率与数理统计之后,为实现理论和实践一体化、进一步提高运用数学知识和计算机技术解决实际问题,培养创新能力所开设的一门广泛的公共基础课。教育必须反映社会的实际需要,数学建模课程进入大学课堂,既顺应时展的潮流,也符合教育改革的要求。
二、强化数学建模教学的意义
数学教育是基础教育的提高阶段,应着眼于未来,为培养高素质的人才打好基础。数学建模课程的教学以掌握概念、强化应用、培养技能为教学重点,在教学环节中,充分注意引导学生通过对各种实际问题建立数学模型、求解及检验,掌握数学概念、方法的应用,逐步培养学生综合应用所学知识解决实际问题的能力,并且结合教学内容特点培养学生独立学习的习惯。充分重视习题课的安排和课外作业的选择,使学生有足够的复习和练习时间,及时、正确地独立完成作业。根据数学建模教学的特点,不难看出,在对经济类专业学生的数学教学中,渗透建模思想,开展建模活动,具有深远意义。
1、培养学生的应用意识。数学具有极其广泛的应用性。在我们的日常生活中,运用到数学知识的例子随处可见。在社会生活的各个领域里,数学的概念,法则和结论更是被广泛地应用着,很多看似与数学无关的问题都可以运用数学工具加以解决。数学模型是沟通实际问题与数学工具之间的桥梁,通过对学生进行数学建模教学,能够促进理论与实践相结合,并且逐渐培养学生的应用意识。
2、培养学生的能力。通过数学建模课程的教学与参加数学建模竞赛的实践,使我们深刻感受到数学建模过程,不仅是对大学生知识和方法的培养,更是对当代大学生各种能力的培养。
(1)抽象概括能力。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化,抽象、概括为合理的数学结构的过程。数学建模过程使学生对复杂的事物,有意识地区分主要因素与次要因素,本质与表面现象,从而抓住本质解决问题。它有利于提高学生思维的深刻性和抽象概括能力。
(2)自学能力。数学建模竞赛是以3人一队为单位参加的,要求大学生在3天内以论文形式完成所选题目。同时,在比赛的短短3天时间里,要查阅大量的资料,取其精华,从中寻找到所需要的资料,收集必要的信息,这也必须要求大学生掌握科学的方法。这种能力必将使大学生在未来的工作和科研中受益匪浅。
(3)洞察力和想象力。数学建模的模型假设过程就是根据对实际问题的观察分析、类比、想象,用数理建模或系统辨识建模方法作假设,通过形象思维对问题进行简单化、模型化,做出合乎逻辑的想象,形成实际问题数理化的设想。
(4)利用计算机解决问题的能力。我们倡导大学生尽量利用计算机程序或某些专用的数学应用软件如Mathematica,Matlab,Lingo,Mapple等,以及当代高新科技成果,将数学、计算机有机地结合起来去解决实际问题。数学建模教学中结合实验室上机实践,计算机的应用不仅仅表现在数学建模中模型的简化与求解,而且给大学生提供了一种评价模型的“试验场所”,这就有助于培养大学生利用数学软件和计算机解决实际问题的能力。
(5)创新能力。我们在教学中应给学生留有充分的余地,鼓励学生开阔视野、大胆怀疑、勇于进取、勇于创新,让学生充分发挥想象力,不拘泥于用一种方法解决问题,从而培养学生的创新能力。在数学建模竞赛中,对给出的具体实际问题,一般不会有现成的模型,这就要求大学生在原有模型的基础上进行大胆尝试与创新。
(6)论文写作和表达能力。数学建模成绩的好坏、获奖级别的高低与论文的撰写有着密切的关系,数学建模的答卷,是评价的唯一依据。写好论文的训练,是科技写作的一种基本训练。通过数学建模竞赛,学生能够学会如何更加准确地阐述自己的观点、想法。
(7)合作交流能力,团队合作精神。大学生数学建模竞赛过程中,必须学会如何清楚地表达自己的思想,实现知识的交流与互补;必须学会如何倾听别人的意见以发挥整体的作用;必须学会如何与别人合作,从不同的观点中总结出最优的方案以谋求最大成功。
3、体现学生的主体性。数学建模发挥了学生的参与意识,体现了学生的主体性。教师的主导作用体现在创设好问题情境,激发学生自主地探索解决问题的途径,而学生的主体作用体现在始终明确自身是竞赛的主体。学生必须在全过程集中自己的思想系统去接受教师发出的教学信息,与原有知识体系融合、内化为新的体系。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。我们通过数学建模的教与学为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、自主解决问题的机会,数学建模教学与其他教学方式相比,具有更强的问题性、实践性、参与性与开放性,教师与学生处于平等的地位,通过学生对学习的内容进行报告、答辩、讨论等形式极大地调动了学生自觉学习的积极性。
三、强化数学建模教学的对策
1、激发学生的学习兴趣。兴趣是学习的动力,如何激发高校学生学习数学的兴趣,如何把所学的数学知识真正地应用到经济专业课中去,已经是高校数学教师探讨的热门话题。把数学建模的思想融入到平时的数学教学过程中可以激发学生学习数学的兴趣。由于数学建模的研究对象通常是一些实际问题,所以数学建模教学为学生建立了一个由数学知识通向实际问题、专业知识的桥梁,是使学生的数学知识和应用能力共同提高的最佳结合方式。学生参与数学建模及竞赛活动,能切身体会到学习数学的实用价值和数学对自己各方面能力的促进,这是传统教学无法达到的效果,并且激发了学生学习数学的浓厚兴趣。从这点上看,数学建模教学是符合现代教育学、心理学理论,顺应时代潮流,有助于素质教育和创新教育的全面实施。
2、通过组建数学建模协会,推进数学建模教学。通过组建数学建模协会,组织一些基础性的活动,开展一些讲座,讲授数学建模的基本原理、基本方法,内容以初等数学模型、微分方程模型、差分方程模型、优化模型为主,丰富和完善了数学教学的内容。并且通过数学建模协会举办基础知识比赛,宣传数学建模的意义,激发学生学习数学建模的兴趣,提高学生的数学应用意识和参加数学建模的积极性。
3、不断提高教师自身的水平。首先要求教师本身具有数学建模能力,否则无法组织学生的数学建模活动。因此,应该对数学教师进行数学建模培训,帮助他们树立数学建模的意识,掌握数学建模的知识、方法和教学形式,使他们能够最大限度地利用学校资源开展数学建模活动。
四、结束语
综上所述,对经济类专业学生开设数学建模课程,对学生的发展有着非常重要的意义。通过组织数学建模活动和竞赛,不仅能够提高师生对数学的认识水平,而且能够培养一批既具有创新意识、创新精神和实践应用能力,又具有竞争意识和团队意识、团结协作和拼搏精神的优秀大学生,从而促进学生综合素质的全面发展。全国大学生数学建模竞赛组委会李大潜院士曾经说过:“数学教育本质上就是一种素质教育,数学建模的教学及竞赛是实施素质教育的有效途径。”因此,我们对经济类专业学生开设数学建模课程,将数学建模活动和数学教学有机地结合起来,就能够在教学实践中更好地体现和完成素质教育。
(作者单位:1.河北金融学院;2.保定供电公司)
主要参考文献:
[1]姜启源,谢金星,叶俊.数学模型[M].第三版.高等教育出版社,2004.
通常情况下,数学技术是指将实际的数学问题用数学语言进行表达,进而构造一个数学模型,对这个数学模型利用定量分析或定性分析,或者二者相结合的方式进行求解。在教学过程中,对学生进行数学技术方面的培养与教育,教学工作者利用这种方式对高职学生应用教学的能力进行了培养。
2培养创新意识
随着经济的不断发展,社会已经进入知识经济时代,传统的教学模式难以适应知识经济时代的需要,这时教学工作者需要培养学生的数学创新意识,一方面需要学生自身的努力,另一方面教学工作者在教学实践过程中要有创新意识。例如,高职院校通过数学建模竞赛,一方面让学生领悟数学知识,发现并掌握新的数学知识,另一方面要不断提高学生应用数学知识的能力和水平。
3开设实践课程
学生的自学能力通过开展课外实践课程可以得到提升。在我国高等教育中,高等职业技术教育作为重要的组成部分,一方面满足了经济建设和社会发展的需要,另一方面也满足了国民素质和创新能力的需要。随着高等职业技术教育的发展,全面推进素质教育,逐渐成为实施高等职业技术教育的重点所在。在教学实践工作中,教学工作者需要重点把握教学目标,不断提高学生应用数学的能力,进而在一定程度上更好地培养学生的数学素养。
4数学建模课程的标准化
数学建模通常情况下连接数学理论和现实,在2009年我校以选修课的形式开设了数学建模,它是为了满足数学建模竞赛的需要而开设的。通过组织数学建模竞赛,在一定程度上在学生当中起到宣传作用,同时激发了学生的学习兴趣、进而调动了学生学习的热情,尤其是今年来,在全国竞赛中,我校取得了优异的成绩,为此增加了我校数学建模竞赛的影响力,进而选修该课程的人数也在不断增加,形成了良好的循环,最终这种现象在一定程度上为数学建模课的开设奠定了坚实的基础。为此,我校数学建模也在悄然发生改变,逐渐向着竞赛与普及相结合的方向发展,高职学生的综合素质和实践能力在一定程度上得以有效地提高。
5培养大学生建模能力
对于高职大学生来讲,数学建模是一项综合性的活动,通过参加这项活动,高职学生需要把理论知识和实践进行有机的结合。我校开展的数学建模活动包括三个方面:数学建模课程、数学建模竞赛、数学实验。通过调查我校组织开展的数学建模活动,结果显示,学生的综合能力通过参加数学建模竞赛在一定程度上得到提升和加强,主要表现在:所谓建模是对实际问题进行抽象,进而形成数学问题,然后解决数学方面的问题,最后在实际问题当中应用数学结论。通过求解得出的数学结论通常情况下都具有通用性,这样通过建模,对实际问题进行求解,在一定程度上培养并锻炼了学生的逻辑思维推理能力和抽象思维能力。衡量成功的标准很多,其中坚韧的态度就是一项重要的指标。成功的取得通常情况下没有固定的环境。对于高职学生来讲,通过学习数学建模和参与竞赛,一方面学习到数学知识,掌握根本的学习方法,另一方面教会学生使用工具对实际问题进行求解,真正领悟坚韧不拔的重要性。在进行数学建模时,涉及到的内容和问题比较多,而且比较复杂,在课堂中没有学习过的知识可能在建模活动中会用到,因此,要求大学生能够通过自学和探讨的方式对新知识进行学习,并且应用,在一定程度上不断培养大学生更新知识的能力。随着市场竞争的不断加剧,个人能力早已难以应对激烈的竞争,这时就需要团队进行协作,学生的这种团队意识和合作能力可以通过参与数学建模竞赛得到良好的锻炼。建模活动需要具备不同专业背景的人员进行组合,实现了优势互补,让具有不同知识结构的人进行讨论,让若干名学生集结在一组,通过学习、集训、竞赛等进行分工与合作,通过彼此之间的沟通与交流,最后达成共识,这就需要具备团队意识和合作精神。数学建模活动是进行分析与综合的过程,其中关键是抽象与概括。因此,要求大学生将自身所学的知识进行综合,给予计算结果科学合理的解释。通过数学建模活动,让学生提高分析、综合与解决问题的能力。在建模过程中,问题根本没有现成的答案和现成的模式,需要学生通过创新解决现实中的问题。
6数学建模课程取得的效应
关键词:数学建模;教学改革;实践; 科学素质; 创新能力
数学思想已成为现代科技发展的原动力,微观的机理性研究离不开数学,宏观的决策也离不开数学,人们已逐渐习惯了用数学的思维去思考问题、用数学的语言去表述客观的现象、用数学的方法去分析和了解事物发展的客观规律。而架起各门科学与数学的桥梁,正是数学建模!大学生是未来的工程技术人员、科技工作者、工矿企业和政府机关管理人员,理应具备扎实的数学基础和良好的数学素质,数学建模教育也就成为培养大学生综合科学素质和创新能力的必经和有效途径。
一、数学建模对学生能力的培养
数模竞赛是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好地培养。通过数学建模的教学和训练,应对大学生从以下七个方面进行培养和引导[1,2]。
1.将实际问题抽象和简化成数学问题。引导学生在遇到实际问题时反复理解问题的本质,我们已有哪些条件?需要哪些相关的知识?与数学的哪些概念可能有关联?通过阅读题目,仔细推敲每一句话、每一个概念,客观正确地理解问题,根据研究对象的具体情况,抓住问题的核心和关键,进行必要的合理假设,然后根据自己已掌握或通过查阅而及时了解的相关知识,建立起相应的数学模型。同时,培养学生对其运用数学手段处理的研究结果做出通俗合理的解释,使读者较为容易地理解自己的思想。
2. 数学方法和思想的综合应用能力。随着数学向经济、人口、生态、地质等领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展的基础。在国民经济和社会活动的诸多方面,数学建模都有着非常具体的应用,如通过药物浓度在人体内的变化以分析药物的疗效;数值模拟设计新飞机的机翼;预报与决策方法对产品质量指标的预报、气象预报、经济增长预报、经济收益最大的价格决策、费用最小的维修决策;控制与优化方法用于生产过程的最优控制、零件设计的参数优化;规划与管理模型用于生产计划、运输网络规划、排队策略、物资管理等[3]。这些都依赖于平时的积累,一方面要求学生有博览群书的习惯,更重要的是任课教师的知识扩展。例如,讲授微积分学课程的教师,不能仅仅介绍数学符号的运算,在讲到微分、级数等内容时应让学生知道它可用来做近似计算等。
3. 观察力,洞察力,想象力和创造性。学生面对的建模问题是一个没有现成答案和模式的问题,只能依靠充分发挥自己的创造性去解决。这就需要学生具有丰富的想象能力,从大量的文献资料中摄取有用的思想和方法,从貌似不同的问题中窥视出其本质的东西,加工处理,创造出新的形象;同时要具有把握问题内在本质的能力,即洞察力。例如,当你遇见诸如速度、变化率、衰减、增长、边际、弹性等字眼的时候,你是否想到了导数和微分?进而可建立一个微分方程模型来分析运动的机理?当你遇见诸如使什么最大(极大或尽可能大)、最小(极小或尽可能小)、最佳、最省等字眼的时候,你是否会想到要建立一个目标函数呢?进而去建立一个优化决策的数学模型?
4. 熟练使用计算技术手段。即运用计算机编程解决模型的数值解。学生在学习计算机课程时,教材所提供的问题只是为了熟悉掌握一些编程的命令和语句,计算机编程能力相对较差。数学建模教学的开展,给学生提供了综合运用各种命令和语言编写程序的机会,学生针对教师所精选出的不同模型编写出许多较大的程序,并通过运用程序求出模型问题的数值解,使学生编程能力和解模能力大大提高,为以后从事科研工作奠定必要的基础。
5.学生的自学能力和善于使用文献资料的能力。学生仅靠课堂上学习的知识远远不能满足建模工作的需要,一方面,通过集中的培训和讲授,可补充一些知识;另一方面,通过让学生实际做一些建模题目,给学生布置一些没有学过的数学内容和没有接触过的建模问题,有意识地培养其自学能力和善于使用文献资料的能力。并让学生尝试完成在网站上搜索他们感兴趣或认为比较重要的建模题目,以此提高其自我评价意识、自觉性、积极性和主动性。
6. 交流和表达能力,团结合作精神。竞赛是集体项目,现代的科技开发也越来越需要多人多方面的合作。应在平时就开始注重培养学生密切合作、集思广益、取长补短的团队精神,使其善于倾听别人的意见,并能从不同观点的讨论中综合出最优的方案。这种相互协作的集体主义精神,是学生在未来的工作和生活中非常需要的。
7. 科技论文写作能力。学生在参加数学建模学习之前,科技论文写作的能力普遍较弱,有的甚至是一片空白,对如何写摘要、提取关键词、使用数学公式编辑器等,都需要教师指导。不少学生初次写出的建模论文根本无法阅读。教师应手把手地教,一字一句地改,让学生知道为什么要这样写?这样写的目的和意义是什么?这样才能使学生的写作水平得到提高和稳定地发挥。
二、数学建模课程教学改革的实践探索
有了正确的认识和理念,才会有明确的行动方案和实效。我校的数学建模工作起步于1994年,通过数学建模工作者的不断探索,开辟了现在的良好局面。
1.好的政策和稳定的教师队伍是数学建模教改成功的保障。在我校的数学学科中有一批稳定而热情的数学建模教师队伍。他们团结、协作,从过去的三人发展到现在的十多人,并有主教练负责。学校出台了对学生和指导教师具有相当吸引力的鼓励和奖励政策,建立了校级数学建模实验室,指导学生成立了全校的数学建模协会,为数学建模工作在本校的深入开展提供了有力的保障。
2.教学内容的选取是提高学生参与度的核心环节。教学内容是培养目标和教学目的的直接反映,在提高教学质量和培养学生创新实践能力中具有决定性作用,教学内容的先进性和科学性,是直接关系到学生参与度的核心环节。
起步时期的建模教学内容,是以数学相关知识介绍为主。大致介绍数学建模的思想和一些简单的建模案例,让学生初步了解数学建模的意义、基本方法和步骤,了解数学建模的特点、分类和作用。内容较为平淡,其收效不大,当学生遇到真正的数学建模问题时,就难以下手解决,学与用存在脱节的现象,特别是学生参加全国大学生数学建模竞赛成绩不理想。
在数学建模教练小组的努力下,成功申报了一个省级教改项目“加强数学建模课程建设,提高大学生综合素质”,深入开展教学改革研究。首先,组织编写了数学建模竞赛培训资料,并作为该课程使用教材,这也有利于让该课程与大学生数学建模竞赛接轨;其次,教材依据数学建模中常用的一些方法,如数据分析方法、线性规划和非线性规划、概率统计、微分方程、方差分析、聚类和分类、图论、综合评价、预测方法、满意度评价以及科技论文的写作等,并有机地结合相关的一些典型建模案例的分析和求解。这样,使教材变得生动,大大提升了学生的学习兴趣。
3.好的教学方法和手段是提高教学质量的保证。培养学生的综合实践能力,是开展数学建模教育的根本目的。科学有效的教学方法,可以提高学生的效率和创新实践能力。因此,在教学活动中,注重理论教学的同时更应加强实践环节。
数学建模的整个过程是学生能力的综合体现。在教学过程中,按照数学建模竞赛的模式进行专题教学和训练,我们的具体作法是:(1)按照全国大学生参赛办法,将三个学生组成一个队,以队为单位和教师一起参与经常性的讨论,讨论地点放在数学建模实验室。(2)免费开放数学建模实验室,方便学生查阅资料和建模训练。(3)通过多媒体教学课件,介绍数学建模方法,让学生随时都可以反复学习和查阅。(4)精选训练题目,按竞赛要求,让学生在一定时间内完成并提交论文。(5)对完成较好的论文,让学生自己讲解所完成题目的思想、方法,提出解题中的优点和不足,达到互相学习的目的。(6)指导教师和学生一起讨论所写论文中存在的问题并进行修改。通过这种训练式的教学方式,学生无论是在分析问题处理问题方面,还是在论文写作方面,都有了很大提高。
4.数学建模课程的考评应不同于传统的考核模式。由于数学建模注重的是综合能力的培养,因此,在该课程考评方面,应不同于传统的考核模式,我们的具体作法是:(1)由老师提供若干论文题目。
这些题目尽可能没有现存的论文。(2)学生事先组好队,依据所学专业的性质,每队完成2~3篇论文。(3)为尽可能避免相互抄袭,每个题目最多不超过5个队做,如果出现雷同,则返工重做。(4)根据教师制定的评分标准,按质量高低给分,并对每篇论文写出评语,指出论文中的优缺点。(5)期末不再进行考试,该门课程的期末成绩由几次论文质量决定,每次论文在期末成绩中所占权重基本相同。
通过对数学建模教学改革的努力探索,我校在全国大学生数学建模竞赛中成绩发生了根本性变化。2006年以来共获得了国家一、二等奖13队,省级奖45项,平均获奖率达86%。
参考文献:
[1] 李凝. 数学建模竞赛缘何受大学生青睐[N]. 科学日报. 2007-01-18.
关键词:数学建模 调研 海南高校 精品课程
一、调研的基本情况
在海南省建设国际旅游岛的过程中遇到的如环境监测、能源优化和景点规划等一系列实际问题如何建模解决成为了海南省内外人士关注的问题,同时在全国大学生数学建模竞赛以及美赛的推动下,海南省各高校逐步开始建设具有自己特色的数学建模工作,致力于为建设国际旅游岛奉献一份力量。本文将对此进行一系列调研分析。
1.数学建模是什么。
数学建模是用数学语言描述实际现象的过程,运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
2.对学校和学生的影响。
全国大学生数学建模竞赛在与“挑战杯”创业大赛和“外研杯”英语演讲比赛组成大学生的三大项国赛中,其是要求学生知识全面、大脑灵活、开拓创新和坚持不懈并且最容易获得奖项的国赛。对学校而言:①数学建模可以提高高校教师的素质;②可以提升学校的综合实力;③为学校优秀毕业生争取更多的保研资格等。对学生而言:①数学建模过程中的信息收集处理、分析解决问题和语言文字表达能力的培养对日后的毕业设计具有很大影响;②数学建模过程中的思考与团结互助对学术的创新研究具有促进作用;③数学建模还可以让学生深切感受、理解知识产生和发展的过程等。
为了直观展示调研结果,我们将所得数据整合如表1所示。
由表1,海南省各高校数学建模指导率为56.25%,其中本科指导率为100%,专科为30%,可知专科院校指导力度不够;另外,对于多数综合性大学,其在数学建模的参与获奖方面均远远高于文科或医科等,得知多数非综合性大学的学生综合素质相对欠缺。我们了解了海南省各高校数学建模的现状:各自发展,本科优势很大,专科较为落后。
5、案例分析。
为了更为清晰的展现海南省各高校数学建模的现状,以我比较熟悉也是自己亲身参加了培训的海南大学为例,简要研究其近十年来的发展。相关数据如图2。
从图2中可以明显的看出海南大学数学建模仅仅竞赛方面逐年提升,无论是参赛规模还是获奖数量,都有了很大的进步。
二、调研中发现的问题及相关思考
根据“数学中国论坛”不完全统计,以2012年全国大学生数学建模竞赛数据为例进行分析,如表2所示。
综上:海南赛区参赛规模上低于全国平均水平,我们猜测是海南高校少、学生少的原因;另外在全国奖获奖比率中海南赛区高于全国平均水平,说明参赛队员的综合能力较强。对于此,我们不得不产生以下的思考。
1.海南各高校是否有正式的数学建模实验室?
由于调查问卷回收不完整,所以统计不全面。目前知道海南大学、海口经济学院和三亚学院等在内的多数高校具有该实验室,预计海南省各高校数学建模实验室拥有率约为70%,主要集中在本科院校。
2.本科与专科间的差距最主要原因是不是因为指导老师能力问题?
数据显示本科高校在数学建模方面建设工作做的较为完善,远远优于专科院校,我们考虑可能是因为多数本科教师综合能力强于专科教师,且本科学生的基础知识掌握由于专本科学生也是一个重要原因。
3.各高校对数学建模建设工作中所投入的人力物力是否合理?
本文曾试这收集关于各高校人力物力投入的相关信息,但是所获不多,就海南大学而言,个人感觉在人力上从培训到指导都有多名专业的指导老师,物力上优秀组别有学校免费报名,这极大地激发了学生们参赛的热情,大大的推动了海南大学数学建模建设工作的进行。
三、调研的结论与相关建议
综合以上分析,我们得出:①海南省各高校近年来参加全国大学生数学建模竞赛的学校在逐步增加,其中本科尤为明显;②海南省参与全国大学生数学建模时获得全国奖的比率高于全国平均水平;③海南省各高校自身的数学建模指导或是课程开设覆盖率50%,不利于学生对数学建模兴趣的培养,思维的启发和数学建模知识体系的完善。
针对以上结论和对数学建模的自身了解,并结合现阶段海南各高校数学建模水平提出以下建议:①创建专业的数学建模实验室,增加数学建模专业指导老师,对学校热爱数学建模的学生进行正确的引导,对其完成的任务进行指导,以提升学生对数学建模的热爱;②开设数学建模精品课程。数学建模作为21世纪最广泛的学术研究,是解决实际问题的有效数学方法,也是高校各科综合体现的最佳手段,我们应将其增加为我们的精品课程,以培养学生自主创新、思维活跃的综合能力,从而为祖国培养栋梁、为海南建设国际旅游岛培养人才增添一份动力。
参考文献:
[1]李绍波,朱宁.地方高校数学建模教学团队建设探讨[J].广西.广西教育2012.31
[2]林李.“数学建模”课程建设的几点思考[J].广西.广西财经学院学报.2006.10.
【关键词】概率论与数理统计;数学建模思想;教学改革
0.引言
概率论与数理统计已经作为一门基础学科,为很多专业课的学习奠定了基础。如西方经济学等等。数学建模就是通过数学知识解决实际问题。将数学建模思想融入到概率论与数理统计课程的教学中,一方面能激励学生学习概率论与数理统计这门课的兴趣,另一方面能更好的联系实际,解决实际问题。对于民办院校来说,这样大大提高了我们的教学水平,增强了的学生的学习能力和竞争能力,为民办院校的长远发展做出了贡献。
1.将数学建模思想融入概率论与数理统计课程教学
1.1课前导入时引入数学建模思想
概率论与数理统计比高等数学、线性代数的难度更深一些,对于学生来说更难以接受,在每一节课前采用启发式,由浅入深,由直观到抽象,使学生真正掌握概率论与数理统计的概念,以便提高学生学习的乐趣。
1.2讲授过程中引入数学建模思想
讲授虽然是主要的教学方式,也可以采用讨论式,适当对一些问题进行讨论,这样可以活跃课堂气氛,激活学生思维,使授课效果更好。
1.3课后作业中引入数学建模思想
布置课外作业为了考察学生对课堂内容的掌握程度,对问题有更深刻的理解,只有把数学方法应用到实践中去,解决几个实际问题,才能达到理解、巩固和提高的效果。
2.将数学建模思想融入概率论与数理统计课程教学的意义
2.1激发学生学习概率论与数理统计的兴趣
现在在学生中存在着这样一个普遍的问题,大多数学生认为学习数学没有任何用处,而且特别枯燥。特别是更抽象的概率论与数理统计,我校目前为止只有信息与工程学院、商学院与国际经济学院开设了概率论与数理统计,而且学时比较少,学生普遍认为学习这门课没有多大的意义,通过数学建模思想的融入,让学生自己去体会他的重要性,激发了学生学习概率论与数理统计的兴趣。
2.2通过数学理论知识解决实际问题
问题一:目前我校有1万多名学生,每天傍晚打开水的人较多,开水房经常出现排长队的现象,应增加多少个水龙头才能解决这种现象?问题二:每天中午吃饭的人较多,饭厅经常出现排队的现象,应增加多少个卖饭窗口才能解决这种现象?以上两个问题大多数学校都存在这种现状,到底如何解决呢,通过将数学建模思想融入概率论与数理统计,就可以解决类似这些问题。
2.3为参加全国大学生数学建模竞赛做准备
在平时的课程中使学生对数学建模有了初步的认识,为每年一次的全国大学生数学建模竞赛做好准备工作,使学生更好的将数学知识应用于实际问题中。去年我校首次参加了全国大学生数学建模竞赛,对于首次参加竞赛的民办院校来说,我们取得了优异的成绩,通过参加全国大学生数学建模竞赛,所有指导老师以及参赛学生受益匪浅,有的人这样来形容自己的感受:一次参赛,终身受益。今年计划继续参赛,并且加大力度,尽量使全校各二级学院的学生都能参与到这项竞赛中来,通过平时课程中引入数学建模思想,为今年的参赛取得更优异的成绩增加筹码。
2.4为毕业论文、毕业设计做好铺垫
将数学建模思想融入概率论与数理统计课程教学,通过课前、课中、课后三部分的引入,已经使学生能解决简单的实际问题,给出自己的解答过程,而数学建模的答卷不是普通意义上的考试,而是以论文的形式阐述自己的观点和解答过程。某种意义上说一份数学建模答卷就是一份毕业论文、毕业设计。这样大大的锻炼了学生查阅资料的能力,写作能力,表达能力。参加过数学建模竞赛的学生,在后续的专业课学习、毕业设计(论文)等方面有良好表现,无论是继续深造还是走上社会工作岗位都有更强的竞争力。
2.5培养学生的创新能力
创新是21世纪的主旋律,培养具有创新精神的人才是实现科教兴国的关键。作为一所民办高校,创新至关重要。而传统的数学教学非常的枯燥无味,学生缺乏主动性,缺乏应用数学知识去解决实际问题的能力。而数学建模思想可以培养学生的创造能力、联想能力、洞察力、数学语言的表达能力等。
3.对于民办院校将数学建模思想融入概率论与数理统计课程教学面临的问题以及对应措施
我校作为一所民办院校,各个体系还不够完善,学生的整体水平相对比较低,把数学建模思想融入到概率论与数理统计课程的教学中,培养学生的创新能力,团队合作能力,还是需要一段时间的。为了更好的把数学建模思想融入到概率论与数理统计课程的教学中,我们还需做以下的努力:首先学校领导要大力支持这项工作的开展,加大与其它学校在这方面的交流,多向其它兄弟院校学习。其次教师要提高自己的教学水平,拓展自己的知识领域,并在以后的教学中,把数学建模思想融入到更多课程的教学中,例如高等数学,线性代数课程等等。而民办院校的学生底子稍微差一些,老师在讲授的过程中要有足够的耐心,要对自己的学生有信心。最后学生要从思想上对数学有一个正确的认识,做到不卑不亢,对于那些对数学感兴趣的学生,学校可以开设数学实验,数学建模等选修课供学生选择。
4.结束语
通过大家持之以恒的努力,不仅将数学建模思想融入到概率论与数理统计课程的教学,还要继续将数学建模思想融入到高等数学课程的教学以及线性代数课程的教学。通过数学教学的改革,不仅可以提高学生的数学素养,为学习其它专业课打下良好的数学基础,还可以参加全国大学生数学建模竞赛并取得优异的成绩。 [科]
【参考文献】
[1]姜启源.数学模型(第三版)[M].北京:高等教育出版社,2003:273.
[2]盛骤,等.概率论与数理统计[M].北京:高等教育出版社,2002.
[3]洪永成,李晓彬.搞好数学建模教学提高学生素质[J].上海金融学院学报,2004,3.
近年来,全国大学生数学建模竞赛迅速发展,为国家培养了大批应用型人才。但由于各地区教育水平不同、相关部门对竞赛的重视程度不同,导致各地区组织学生参加大学数学建模竞赛的规模不同,在该项赛事中取得的成绩差异比较显著。2013年全国大学生数学建模竞赛评选出的奖项有:赛区优秀组织工作奖9个,本科组高教社杯奖1个,专科高教社杯奖1个,本科组MATLAB创新奖1个,专科组MATLAB创新奖1个,本科组IBMSPSS创新奖1个,专科组IBMSPSS创新奖1个,本科组一等奖共273名,本科组二等奖共1292名,专科组一等奖共44名,专科组二等奖共211名[1],但成绩相对于参赛区分布不太均匀。分析各地区在2013年全国大学生数学建模竞赛中取得的成绩,明确各地区数学建模发展状况的差异和特点,将有利于相关部门从宏观上了解我国大学生数学建模竞赛的整体发展现状,分类制定相关政策[2-3],从而充分发挥数学建模的重要作用。
1建立综合评价指标体系
全国大学生数学建模竞赛现状的一个重要方面就是全国大学生数学建模竞赛获奖情况。依据全国大学生数学建模竞赛设置的奖项,遵循可比性原则,参考文献[4-5],选取x1-x7共七项评价指标,具体如下:x1:本科组高教社杯、MATLAB创新奖和IBMSPSS创新奖获奖情况;x2:本科组一等奖获奖数;x3:本科组二等奖获奖数;x4:专科组高教社杯、MATLAB创新奖和IBMSPSS创新奖获奖情况;x5:专科组一等奖获奖数;x6:专科组二等奖获奖数;x7:年度竞赛优秀组织工作奖获得情况。说明:鉴于本科组与专科组的高教社杯、MAT-LAB创新奖和IBMSPSS创新奖三类奖项每年只有一个队获奖,且基本不可重复获得(参见历年大学生数学建模竞赛获奖名单)故将其合并作为一类。
2数据资料依据
2013年全国大学生数学建模竞赛获奖名单,按指标对各个赛区的获奖情况统计如表1所示。
3R型聚类分析定性分析
七项指标之间的相关性。编写MAT-LAB程序如下:>>clc,clear>>symxy;>>x=xlsread(‘shuju.xls’);%将上表中的数据保存到MATLAB中WORK文件夹excel文件shu-ju.xls中,并将其赋于x>>y=corr(x)%输出七项指标间的相关系数矩阵(如表2所示)>>d=pdist(y,’correlation’);%计算相关系数导出的距离>>z=linkage(d,’average’);%按类平均法聚类>>h=dendrogram(z);%画聚类图(如图1所示)>>T=cluster(z,’maxclust',5);%把变量划分为5类>>fori=1:5tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有4;第2类的有56;第3类的有7;第4类的有23;第5类的有1。即:若将指标分为5类,则指标1、4、7各为一类,指标2、3为一类,指标4、5为一类。
4Q型聚类分析
4.1选取5个指标的分类从R型聚类分析分出的5类指标中各选一个,即选取5个指标体系,对33个参赛地区进行聚类分析。首先对变量数据进行标准化处理,采用欧氏距离度量样本间相似性,选用类平均法计算类间距离。在MATLAB命令窗口输入下列程序:>>symsxy;>>x=xlsread(’shuju.xls’);%将上表中的数据保存到MATLAB中WORK文件夹excel文件shu-ju.xls中,并将其赋于x>>x(:,[3,5])=[];%删除数据矩阵的3,5两列,即使用变量1,2,4,6,7>>x=zscore(x);%将数据标准化>>s=pdist(x);%每一行是一个对象,求对象间的欧式距离>>z=linkage(s,’average’);%按类平均法聚类>>h=dendrogram(z);%画聚类图(如图2所示)>>T=cluster(z,’maxclust’,3);%把样本点划分成3类>>fori=1:3;tm=find(T==i);%求i类的对象tm=reshape(tm,1,length(tm));%变成行向量>>fprintf(’第%d类的有%s\n’,i,int2str(tm));%现实分类结果>>end程序输出:第1类的有11318第2类的有2345678910111216171920212224252627282930313233第3类的有141523即:第一类:北京,福建,湖南;第三类:江西,山东,四川;第二类:其它地区。
4.2选取7个指标的分类考虑到指标2与指标3,指标5与指标6具有一定的独立性,若七个指标体系全部取用,将33个地区分为4类,程序输入如下:>>symsxy;>>x=xlsread(’shuju.xls’);>>s=pdist(x);>>z=linkage(s,’average’);>>h=dendrogram(z);%画聚类图(如图3所示)>>T=cluster(z,’maxclust’,4);>>fori=1:4tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有116第2类的有6710151927第3类的有23489111213141718202223242528第4类的有521262930313233即:第一类:北京,河南;第二类:辽宁,吉林,江苏,山东,广东,陕西;第四类:内蒙古,海南,,青海,宁夏,新疆,香港,澳门。4.3选取本科层次指标的分类只考虑本科层次取得的成绩,即选用指标1,2,3,对33个参赛地区进行聚类分析,从而明确掌握其本科阶段的差异,则有:输入程序:>>symsxy;>>x=xlsread(’shuju.xls’);>>x(:,[4,5,6,7])=[];>>x=zscore(x);>>s=pdist(x);>>z=linkage(s,’average’);>>h=dendrogram(z);%画聚类图(如图4所示)>>T=cluster(z,’maxclust’,3);>>fori=1:3;tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有11318第2类的有101115161719222327第3类的有2345678912142021242526282930313233即:第一类:北京,福建,湖南;第二类:江苏,浙江,山东,河南,湖北,广东,重庆,四川,陕西;第三类:其它地区。4.4选取专科层次指标的分类只考虑专科层次取得的成绩,即选用指标4,5,6,对33个参赛地区进行聚类分析,从而明确掌握其专科阶段的差异,则有:输入程序:>>symsxy;>>x=xlsread(’shuju.xls’);>>x(:,[1:3,7])=[];>>x=zscore(x);>>s=pdist(x);>>z=linkage(s,’average’);%画聚类图(如图5所示)>>h=dendrogram(z);>>T=cluster(z,’maxclust',4);>>fori=1:4;tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有14第2类的有1523第3类的有41927第4类的有1235678910111213161718202122242526282930313233即:第一类:江西;第二类:山东,四川;第三类:山西,广东,陕西;第四类:其余各地区。
5结束语
1.1学生数学、计算机基础薄弱,参赛学生人数少
以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.
1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后
数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.
1.3学校重视程度不够,相关配套措施还有待完善
任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.
2针对存在问题所采取的相应措施
2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班
最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.
2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法
近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.
2.3学校逐渐重视,加大了相关投入,完善了激励措施
最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.
3结束语