HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 边坡工程论文

边坡工程论文

时间:2022-10-06 16:18:18

边坡工程论文

第1篇

1.1边坡稳定性的影响因素①地质构造。地质构造因素主要是指边坡地段的褶皱形态、岩层产状、断层和节理裂隙的发育程度以及新构造运动的特点等。通常在区域构造复杂、褶皱强烈、断层众多、岩体裂隙发育、新构造运动比较活跃的地区,往往岩体破碎、沟谷深切,较大规模的崩塌、滑坡极易发生。②岩体结构。不同结构的岩体,物理力学性质差别很大,边坡变形破坏的性质也不同。③风化作用。边坡岩体,长期暴露在地表,受到水文、气象变化的影响,逐渐产生物理和化学风化作用,出现各种不良现象。当边坡岩体遭受风化作用后,边坡的稳定性大大降低。④地下水。处于水下的透水边坡将承受水的浮托力的作用,使坡体的有效重力减轻;水流冲刷岩坡,可使坡脚出现临空面,上部岩体失去支撑,导致边坡失稳。⑤边坡形态。边坡形态通常指边坡的高度、坡度、平面形状及周边的临空条件等。一般来说,坡高越大,坡度越陡,对稳定性越不利。⑥其他作用。此外,人类的工程作用、气象条件、植被生长状况等因素也会影响边坡的稳定性。

1.2边坡工程稳定性分析方法

1.2.1边坡极限平衡法。极限平衡法是根据边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)分析边坡各种破坏模式下的受力状态,以及利用边坡滑体上的抗滑力和下滑力之间的关系来评价边坡的稳定性。极限平衡法是边坡稳定分析计算的主要方法,也是工程实践中应用最多的一种方法。

1.2.2边坡可靠性分析法。边坡工程是以岩土体为工程材料,以岩土体天然结构为工程结构,或以堆置物为工程材料,以人工控制结构为工程结构的特殊构筑物。这些构筑物都程度不同地存在组成和结构上的不均匀性,天然边坡尤为突出,因为构成边坡的地质体经受长期的多循环的地质作用,而且作用强度不一,且又错综复杂,致使它们的工程地质性质差异很大。现阶段边坡可靠度分析的常用方法有蒙特卡洛模拟法,可靠指标法,统计矩法以及随机有限元法。

2边坡工程处治技术

2.1抗滑桩技术边坡处置工程中的抗滑桩是通过桩身将上部承受的坡体推力传给桩下部的侧向土体或岩体,依靠桩下部的侧向阻力来承担边坡的下推力,从而使得边坡保持平衡或稳定。抗滑桩与一般桩基类似,但主要承受的是水平荷载。钢筋混凝土桩是目前边坡处治工程广泛采用的桩材,桩断面刚度大,抗弯能力高,施工方式多样,其缺点是混凝土抗拉能力有限。抗滑桩施工最常用的方法是就地灌注桩,机械钻孔速度快,桩径可大可小,适用于各种地质条件;但对地形较陡的边坡工程,机械进入和架设困难较大。钻孔时的水对边坡的稳定也有影响。人工成孔的特点是方便、简单、经济,但速度慢,劳动强度高,遇不良地层(如流沙)时处理相当困难。另外,桩径较小时人工作业面困难。

2.2注浆加固技术注浆加固技术是用液压或气压把能凝固的浆液注入物体的裂缝或孔隙,以改变注浆对象的物理力学性质,从而满足各类土木建筑工程的需要;注浆加固技术的成败与工程问题、地质问题、注浆材料和压浆技术等直接相关,如果忽略其中的任何一个环节,都可能造成注浆工程的失败。工程问题、地质特征是灌浆取得成功的前提,注浆材料和压浆技术是注浆加固技术的关键。

2.3加筋边坡和加筋挡土墙技术加筋土是一种在土中加入加筋材料而形成的复合土。在土中加入加筋材料可以提高土的强度,增强土体的稳定性。因此,凡在土中加入加筋材料而使整个土工系统的力学性能得到改善和提高的土工加固方法均称为土工加筋技术,形成的结构亦称为加筋土结构。和传统支挡结构相比,加筋边坡和加筋挡土墙的特点有:结构新颖、造型美观、技术简单、施工方便、要求较低、节省材料、施工速度快、工期短、造价低廉、效益明显、适应性强、应用广泛等。由于加筋边坡和加筋挡土墙的这些优点,目前其已从公路路堤、路肩发展到应用于其他各种支挡结构和边坡防护。目前已用于处理公路边坡、市政建设、护岸工程、铁道工程路基边坡、工民建配套的支挡及边坡工程、防洪堤、林区工程、工业尾矿坝、渣场、料场、货场等;甚至还用于危险品或危险建筑的围堰设施等。

2.4锚固技术岩土锚固技术是把一种受拉杆件埋入地层中,以提高岩土自身的强度和自稳能力的一门工程技术。由于这种技术大大减轻结构物的自重,节约了工程材料并确保工程的安全和稳定,具有显著的社会效益和经济效益,因而目前在工程中得到极其广泛的应用。锚杆在边坡加固中通常与其他只当结构联合使用,例如以下几种情况:①锚杆与钢筋混凝土桩联合使用,构成钢筋混凝土排桩式锚杆挡墙。排桩可以是钻孔桩、挖孔桩或预置桩;锚杆可以是预应力或非预应力锚杆,预应力锚杆材料多采用钢绞线(预应力锚索)、四级精轧螺纹钢(预应力锚杆)。锚杆的数量根据边坡的高度及推力荷载可采用桩顶单锚点作法和桩身多锚点作法。②锚杆与钢筋混凝土格架联合使用形成钢筋混凝土格架式锚杆挡墙。锚杆锚点设在格架节点上,锚杆可以是预应力锚杆(索)或非预应力锚杆(索)。这种支挡结构主要用于高陡岩石边坡或直立岩石切坡,以阻止岩石边坡因卸荷而失稳。③锚杆与钢筋混凝土板肋联合使用形成钢筋混凝土板肋式锚杆挡墙,这种结构主要用于直立开挖的Ⅲ,Ⅳ类岩石边坡或土质边坡支护,一般采用自上而下的逆作法施工。④锚杆与钢筋混凝土板肋、锚定板联合使用形成锚定板挡墙。这种结构主要用于填方形成的直立土质边坡。

2.5预应力锚索加固技术用高强度、低松驰型钢绞线预应力锚索对滑坡体或崩落体施加一定的预应力,提高它们的刚度,使预应力锚索作用范围的岩石相应挤压,滑动面或岩石裂隙面上摩擦力增大,加强它们的自承能力,可有效地限制岩体的部份变形和位移。

2.6排水工程的设计地表排水工程的设计要求:①填平坑洼、夯实裂缝。坡面产生坑洼和裂缝,往往是滑坡的先兆,也是导致严重滑坡的主要原因。大气降雨、地表水就会汇集在坑洼处或沿着裂缝渗入土层,使土的抗剪强度降低,造成坡体滑动。因此,对坑洼和裂缝应仔细查找,认真夯填。②合理确定截水沟的平面位置。截水沟的平面布置,应尽量顺直,并垂直于径流方向。如遇到山坡有凹地或小沟时,应将凹地填平或与外侧挡土墙相连,内侧与水沟联结,避免水沟内的水流越出或渗入截水沟沟底,导致水沟破坏。应该结合边坡的区域地貌、地形特点,充分利用自然沟谷,在边坡体内外修筑截水沟、平台截水沟、集水沟、排水沟、边沟、急流槽等,形成树杈状、网状排水系统,以迅速引走坡面雨水。

3结语

论文对常用边坡工程的处治措施进行了初步探讨,指出了常用边坡工程处治措施的适用性,然而随着工程建设规模的不断增大,边坡高度增高,复杂性增大,对边坡处治技术的要求也越来越高。可以预见,随着科学技术的发展,边坡处治技术将得到进一步的发展,并逐步趋于完善。

参考文献:

[1]彭小云,张婷,秦龙.高陡边坡稳定性的影响因素分析[J].高陡边坡稳定性的影响因素分析.2002.

[2]赵明阶,何光春等.边坡工程处治技术[M].北京:人民交通出版社.2003.

[3]郭长庆,梁勇旗等.公路边坡处治技术.北京:中国建筑出版社.2007.5.

第2篇

某土木工程项目基坑平面尺寸116.47m×117.3m,基坑施工整平地面标高为19.0m,地下室底板垫层底绝对标高5.95m,基坑开挖深度约13.05m,核心筒范围局部加深7.05m,加深段平面尺寸26.5m×23.184m。该土木工程基坑支护原设计为“预应力锚索+排桩抗侧向土压力支护结构体系”+“高压旋喷桩止水帷幕”。然而综合考虑现场实际情况、试桩取芯效果、施工工期安排、对周边地块影响等方面的因素,将“预应力锚索+排桩抗侧向土压力支护结构体系”优化为“钢筋混凝土内支撑+排桩抗侧向土压力支护结构体系”,将“高压旋喷桩止水帷幕”优化为“三轴水泥土搅拌桩止水帷幕+支护桩间高压旋喷桩”。

2边坡内支撑支护类型比选

目前现场排桩已基本施工完成。由于基坑四周均为待开发地块,尤其是东侧为地铁已确定开发用地,南侧为工商银行用地,使用锚索将对周边地块的开发造成严重障碍,所以建议本基坑支护结构下部采用排桩+内支撑体系。根据基坑的平面形状和目前施工现状,对以下3种内支撑体系的布置进行了比选。

2.1对撑+角撑布置体系

(1)优点:在环境保护要求较高的情况下,利于控制墙移。(2)缺点:①支撑混凝土用量较多。②核心筒范围内的立柱桩与工程桩冲突严重,影响核心筒施工效率和施工质量。③由于十字交叉桁架与核心筒平面位置重合,核心筒地下三层以上部分的结构必须等到整个地下室地下三层施工完成,混凝土支撑拆除后方可施工,对整个工期有制约作用。

2.2圆形环梁布置体系

(1)优点:①方便挖土和主体结构施工。②支撑混凝土用量较小。(2)缺点:①由于基坑南侧和东侧地势较高,北侧和西侧地势较低,虽采取了基坑上部放坡的措施,但仍存在一定的坑周荷载不均匀的情况,对支撑体系整体稳定不利。②须等到基坑的整个环梁体系施工完成后,方可进行大面积土方开挖。③对中间环梁的施工要求较高。(3)角撑布置体系:①优点:方便挖土和主体结构施工、施工方便。②缺点:与圆形环梁布置体系相比,混凝土用量较多。由于本项目工程进度和基坑安全都必须确保,而对撑+角撑布置体系对塔楼施工进度制约太大,因此不采用;圆形环梁布置体系不仅对土方开挖进度有一定制约,而且现场地势情况不利于该体系的整体稳定,因此亦不采用。综上分析,最终选择采取角撑布置体系。

3边坡支护技术优化

3.1支撑竖向布置

原设计排桩标高为13.0m,改为内支撑后,为避免混凝土支撑与主体结构下二层板冲突,将原设计排桩标高调高0.3m,即13.3m,经初步计算分析,基坑上部采用放坡,下部排桩+一道混凝土支撑。

3.2基坑止水帷幕

根据高压旋喷桩试桩取芯效果显示,砂砾层与岩层交界面芯样不是很理想,为了保证深基坑的止水效果,确保深基坑开挖的安全性,将外排高压旋喷桩改为三轴深层水泥搅拌桩,内排高压旋喷桩保留。

3.3坑中坑支护结构

坑中坑局部加深7.05m,加深段平面尺寸26.5mx23.184m。根据地层条件,并结合核心筒桩基承台的施工统一考虑,采用放坡开挖的方式。施工顺序要求:(1)放坡后,先施工深坑结构底板及侧墙。(2)然后在深坑侧墙外侧回填土,至桩基承台底。(3)最后施工桩基承台和大基坑底板。

4结语

第3篇

[关键词] 边坡工程,影响因素,分析方法,加固边坡

[中图分类号] U418.5 [文献标识码] A

我国的高速公路发展迅速,交通、水利、矿山等相关部门都会涉及很多边坡问题,特别是山区的边坡,由于各种地质环境的影响,处于山区地段的边坡稳定性直接影响着山区老百姓的人身安全,滑坡灾害严重危及到国家基础建设,所以对边坡的稳定性研究十分必要。

在各种外在环境作用下,不同岩质边坡在发生变形破坏时其变形破坏机理和破坏模式各异,当进行工程建设时,如果对于填料的工程特性、工程边坡的变形规律及施工工艺、现场堆载等认识不足,极易导致发生滑坡等事故。

1 边坡的破坏类型及影响因素

边坡分为人工边坡和自然边坡。由于受设计和施工以及其他因素的影响,边坡土体会出现失稳破坏现象,具体可分为:

1.1 边坡崩塌。崩塌往往发生在地形陡峭的山坡或高陡的路堑边坡上。

1.2 边坡滑坡。滑坡一般是缓慢地、长期地往下滑动,位移速度在突变阶段显著增大,滑动过程可以是几年、几十年甚至更长。

1.3 边坡流动。流动往往缓慢地沿坡面或地面沟谷方向呈流体移动。

边坡的稳定性受很多因素的影响,根据各种因素影响的大小和特点,可分为内部因素和外部因素两类:内部因素――边坡土体的材料构成和物理力学指标,以及边坡的地形地貌和岩石的矿物组成,边坡岩土体中的地质结构面和边坡的形状等。外部因素――边坡外在所受的雨水、地震、构造应力、植被和风化作用的影响和人为因素等。

2 边坡的稳定性分析方法

2.1 极限平衡分析法。极限平衡分析法主要是对边坡稳定性进行定量评价,不考虑土体自身的变形,只对滑动面上的受力情况进行研究分析,对于滑坡体内部的应力状态不进行研究。目前常用的极限平衡分析法有:瑞典法、毕肖普法和简布法等。

2.2 数值分析法。数值模拟方法在稳定性评价得到了广泛应用,这种方法可以求解黏弹性、黏塑性等问题,且计算较快速,准确性较高。

随着数值分析方法的不断发展,采用离散单元法就能反映接触面的滑移、倾翻等大位移,且能计算土体的内部变形与应力分布情况,而且这种方法应该范围很广,任何岩体都适合。

2.3 极限分析法。该法建立在土体材料为理想刚塑性体、微小变形及材料遵守相关联流动法则的3个基本假定上,利用连续介质中的虚功原理可证明两个极限分析定理即下限定理和上限定理。

3 有限元强度折减法边坡稳定性分析

用有限元强度折减法进行稳定性分析是指将材料的强度参数除以一个折减系数,然后将新的参数作为材料参数进行计算,通过不断增大或减小折减系数来反复计算其稳定性,当计算收敛时则坡体发生失稳破坏,与此同时此折减系数就是稳定性安全系数,分析方程为:

c =c/F(1)

tanφ =tanφ/F (2)

式中:c,φ为材料的强度参数;c ,φ 为新的强度参数;F为折减系数。

在本质上强度折减法与传统的计算方法是一致的,坡体进入塑性临界状态。如下图,在参数折减前土体的实际强度包线与摩尔应力圆相离,坡体不会发生剪切破坏。当调大折减系数后,强度包线逐渐向摩尔应力圆靠拢,增大系数到强度包线将与摩尔应力圆相切,此时相应的折减系数为边坡的安全系数。因此,通过不断的折减强度参数,分析边坡从稳定到破坏的演变过程,这样便可找出边坡的薄弱部位,为边坡加固提供了依据。

4 边坡的监测防护问题

4.1 边坡受雨水入浸后,安全系数小于1,已处于不稳定状态,为确保边坡的安全稳定,必须采取有效的治理措施;受雨水浸泡的边坡坡脚,土体黏聚力急剧下降,土体失稳,易形成崩塌体;边坡坡角失稳后,引起其上部土体的沉降。边坡受影响程度不同沉降量也不同,受浸泡边坡上部的沉降量最大,向另一侧逐渐减小;边坡最大不均匀沉降发生在受雨水浸泡的中间区域,此处将受拉伸而产生裂缝。

4.2 边坡的稳定性与变形问题是一个复杂的工程问题,单纯的理论不能满足计算分析与评价的要求,应该采用计算理论结合现场观测数据的综合评价方法,清楚认识边坡填筑体的变形破坏过程、稳定程度和破坏发展情况。

5 总结

本文在对边坡进行稳定性分析和讨论的基础上,介绍了边坡的破坏形式和影响因素,概述了边坡的稳定性分析方法、分析了降雨对边坡稳定性的影响,最后对边坡的防护加固问题进行了探讨。

参考文献

[1]谢磊.边坡稳定性分析若干问题的研究[D].合肥工业大学硕士学位论文,2009.

[2]李广信.高等土力学[M].清华大学出版社,2004.

第4篇

【关键词】边坡;稳定性;分析方法

Slope Stability Analysis Methods Research Status Analyses

Wang Jin-tao1, Yang Deng-feng1,2

(1.School of Civil Engineering,Qingdao Technological University Qingdao Shandong 266033;

2.China University of Mining &Technology Beijing 100083)

【Abstract】In view of all kinds of serious landslide disaster in our country,the history and the present situation of research on the slope. Described the major domestic value of theoretical research and its application, slope stability analysis method and its development were analyzed and summarized in this paper. Application should be based on the characteristics of slope engineering, taking rational analysis methods to obtain a more objective, reliable and reasonable evaluation results.

【Key words】Slop;Stability;Analysis method

1. 引言

随着我国经济的蓬勃发展,大量高层建筑、水利水电设施、矿山、港口、高速公路、铁路等工程项目开工建设。在这些工程建设过程中或建成运营期间,不可避免地形成了各种边坡工程。边坡失稳产生的滑坡灾害已经与地震、火山并列成为全球三大地质灾害之一 [1],在我国每年各类滑坡造成的经济损失高达200亿元,死亡数百人。因此,深入开展边坡失稳机制及监测预警研究,对于减少滑坡地质灾害、推动边坡治理技术发展、保障国家财产和人民安全有十分重要的意义。论文重点对国内外近年来边坡稳定性分析方法及其进展做简要介绍。

2. 边坡稳定性分析方法研究现状

人们对边坡稳定性分析的研究已逾百年,它涉及包含工程数学、力学、工程地质学、工程结构、现代计算技术等多个学科。随着科学的发展,人们对边坡稳定性的研究经历了从经验方法到理论研究、从定性研究到定量研究、从单一评价到综合评价、从传统理论方法到新理论新方法的过程 [2]。

2.1 工程地质分析法。

工程地质分析法是一种以工程地质类比方法、地质成因演化理论和岩体结构控制理论为理论基础的定性分析方法。通过工程地质勘察,首先对工程地质条件进行综合调查,分析已有的边坡破坏现象的成因、影响因素、发展规律等,然后分析所研究边坡与已发生破坏边坡在地质条件上的相似性和差异性,对比得出该边坡的稳定性分析与其发展趋势。该方法综合考虑了各种影响边坡稳定的因素,可对边坡稳定性及发展趋势迅速地做出预测,在确定复杂地质条件下岩质边坡的失稳模式和破坏机制方面独具价值 [3]。但地质条件因地而异,使用此方法主观性较强,对研究者的实践经验要求较高。

2.2 极限平衡分析法。

极限平衡分析法又称条分法,是出现较早并已纳入行业规范的定量分析方法。该方法通过假设潜在的滑动面,将滑坡体人为划分为若干刚性条块,然后建立条块间的静力平衡方程,求解边坡的安全系数,锁定最危险滑动面。研究者们对极限平衡分析法的改进主要着重两方面:一是研究最危险滑动面位置的规律,减少滑动面假设次数,以期减少计算量;二是对极限平衡分析法中的假定进行改进或补充,使之更符合实际。随着研究的不断深入,人们对极限平衡方法的研究逐渐由二维转向三维,并取得了一些列成果。

2.3 数值分析法。

随着计算机技术的飞速发展,高精度、多因素耦合作用下的边坡稳定性数值模拟得以实现。常见的数值计算方法有:有限单元法、有限差分法、边界元法、离散元法、快速拉格朗日分析法等。适于边坡稳定性分析的数值分析方法很多,基于各种数值分析方法的程序也层出不穷,以下主要介绍了应用比较广泛的三种数值分析方法。

2.3.1 有限元法。

(1)有限元法是一种比较成熟的数值分析方法,它将无限自由度的结构体系转化为有限自由度的等价体系,可以给出岩土体中应力、应变的大小和分布,避免了极限平衡法中过于简化滑体的缺陷。还可以进一步研究边坡体的流变效应、渗流问题、塑性区的形成过程等复杂问题。

(2)有限元强度折减法是在边坡稳定性分析中常用的一种有限元方法。它的原理是在有限元计算中,将边坡岩土体强度参数逐渐降低直至达到其破坏状态为止,程序可以自动根据计算结果得到破坏滑动面,同时求得强度储备安全系数。唐春安 [4,5]将强度折减法引入到岩石破裂过程分析RFPA方法中,形成了针对岩土结构稳定性分析的RFPA-SRM强度折减法,该方法可充分考虑材料细观、宏观非均匀性、地下水渗流对边坡的稳定性影响,为边坡稳定分析提供了一种新方法,李连崇 [6]等人采用RFPA-SRM强度折减法对边坡安全系数、含节理岩坡稳定性进行了深入的研究和探讨。

2.3.2 离散元法。

离散单元法的基本原理是:将所研究的区域划分为一个个任意形状的块体单元,这些单元可以是刚性的也可以是非刚性的,单元之间通过接触关系,建立位移和力的相互作用规律。计算时按照时步迭代并遍历整个块体组合,直到每个块体达到平衡状态,不再出现不平衡力和不平衡力矩为止。这种方法适用于解决非连续介质大变形问题,尤其是在分析被结构面分割的岩质边坡的变形破坏过程时是非常实用的。近年来我国学者胥良 [7]、朱永生 [8]、曹琰波 [9]等人在离散单元法方法的实际应用方面做了大量的工作。在数值分析和理论研究方面都取得了显著的成果。

2.3.3 快速拉格朗日法。

(1)快速拉格朗日法考虑到材料的非线性和几何学的非线性,采用了离散模型方法、动态松弛方法和有限差分方法三种技术,将连续介质的动态演化过程转化为离散节点的运动过程,可以准确地模拟材料的屈服、塑性流动、软化直至大变形。同时,该方法还可以考虑锚杆、挡土墙等支护结构与围岩的相互作用,被广泛地应用于边坡、土石坝、隧道围岩等的稳定性评价与支护设计中。基于快速拉格朗日法开发的FLAC [10]程序在国际上得到了广泛的应用。虽然快速拉格朗日法处理岩土工程问题具有极大的优越性,但也有不足之处。例如,对线性问题快速拉格朗日法要比相应的有限元法耗时更多,它只是在模拟非线性、大变形或动态问题时更具适用性。

(2)数值分析理论和相应的程序种类繁多且各具特色,因此在边坡稳定性研究中应针对实际情况合理选取相应的数值分析理论和程序。由于岩土体性质并非均质,地质构造错综复杂,加之各种外界因素(渗流、温度、地震力等)的影响,边坡实际破坏过程与数值模拟是存在一定差距的。

2.4 非确定性分析方法。

边坡稳定性分析过程中存在着大量不确定的因素,随着学科的发展,这些因素逐渐为人们所重视。在多学科交叉的学术背景下,边坡稳定性非确定分析方法逐渐发展起来并应用到实际工程中。

2.4.1 可靠性分析法。

边坡工程的可靠性分析方法借鉴了结构工程可靠性分析理论的方法,结合边坡工程自身特点,将边坡岩土体性质、外部荷载、地下水、计算模型等视作随机变量,采用概率分析方法和可靠度尺度描述边坡工程系统的质量。我国《岩土工程勘察规范》(GB50021-2009) [11]指出,大型边坡涉及除按边坡稳定系数值计算边坡稳定性外,尚宜进行边坡稳定的可靠性分析,并对影响边坡稳定性的因素进行敏感性分析。该方法计算所需的大量统计资料不易获取、各因素的概率模型及其数字特征的合理选取还存在问题,并且计算比通常的方法复杂,目前在边坡稳定性分析中还处于探索阶段,一般在实际工程中只作为一种辅助手段。

2.4.2 模糊数学分析法。

模糊数学分析法是把模糊理论应用到边坡稳定性分析中。应用该法时先分析影响边坡稳定的各种因素,赋予它们不同的权限,然后建立模糊关系矩阵并求出各个因素对稳定性的影响,最后用模糊评价方法的最大隶属原则进行选择,把边坡分为稳定、较稳定、较不稳定及不稳定等几个等级,为研究多因素、多变量对边坡稳定性的综合影响提供了行之有效的手段。李彰明 [12]对某一大型露天矿边坡工程地质条件进行调查并进行了物理力学性质测试,对模糊数学分析法在边坡稳定性分析中的应用做了研究。洪海春等 [13]将模糊数学应用于边坡问题,提出了确定模糊安全系数的方法。应用此法的困难之处在于相关因素及各因素边界值的确定,各种影响因素的权重多由经验确定,主观性稍强。

2.4.3 灰色系统预测法。

灰色系统理论认为,在决定事物的诸因素中,若既有已知的,又有未知的或不确定的,它们所在的系统则成为灰色系统。该法将边坡视为一个灰色系统,通过数据处理找出不完全信息的关联性,确定它们对边坡稳定性影响的主次关系,进而利用多因素叠加分析评估边坡的稳定性。此方法适合对含有不确定因素(如复杂的地质环境、节理裂隙发育情况不明)较多的边坡进行评价。

2.4.4 神经网络分析法。

神经网络法将神经网络理论引入到边坡稳定分析中来,把影响边坡稳定的因素视为变量,建立这些因素与边坡安全系数之间的非线性映射模型,利用神经网络的高度非线性映射能力预报边坡的稳定性。该法适于对知识背景不清楚、推理规则不明确、难以建模的边坡工程进行分析。赵胜利 [14]等采用SOM和BP复合神经网络模型,描述边坡稳定性程度及影响因素之间的复杂非线性映射,具有较高的分析准确率,有较强的工程应用价值。

3 结论

边坡稳定性分析与监测多年来取得了很多有价值的成果,传统方法不断得到完善,新理论新方法层出不穷,推进了我国滑坡灾害防治工作的发展。

(1)现行边坡稳定性分析方法种类繁多,极限平衡法因其方法简便可行,因而工程中比较常用。但其只考虑了条块间和滑面上下两部分之间的相互作用力,未考虑岩土体内部的应力作用,边界条件也过于简化,其结果往往误差较大。

(2)数值模拟在解决边坡工程问题时精度高,灵活性和适应性强,成为了边坡稳定性研究的有效手段,并将越来越多的运动到边坡工程问题中。但由于岩土工程问题的复杂性,边坡工程的数值分析还有很多工作要做。

(3)当前很多非确定性分析方法被引入到边坡稳定性分析中,极大地促进了边坡研究的发展。但是有些新理论处于研究的初期阶段,尚未普遍应用在边坡工程领域,还有待进一步研究、推广。

(4) 由于边坡工程的复杂性和影响因素的多样性,任何一种单一的理论和方法都不能较全面的解决具体工程问题,在实际应用中应根据边坡工程的具体特点,选用合理的理论分析方法,并与监测结果比对,得到更加客观、可靠、合理的评价结果。

参考文献

[1] 崔征求,李宁.边坡工程——理论与实践最新发展[M].北京:中国水利水电出版社.1999.

[2] 姜彤.边坡在地震力作用下的加卸载响应规律与非线性稳定分析[博士学位论文D]. 北京: 中国地震局地质研究所, 2004.

[3] 孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报,1983,2(1):67~76.

[4] 唐春安, 李连崇,马天辉.基于强度折减与离心加载原理的边坡稳定性分析方法[A]. 2006年第二届全国岩土与工程学术 大会论文集(下册),19(1):32~35.

[5] 唐春安,王述红,傅宇方等.岩石破裂过程数值试验[M].北京:科学出版社.2003.

[6] 李连崇,唐春安,梁正召等.RFPA边坡稳定性分析方法及其应用[J].应用基础与工程科学学报,2007,15(4):501~508.

[7] 胥良,石豫川,柴贺军等.K28边坡变形破坏机制的离散元模拟[J].水文地质工程地质,2003(3):51~54.

[8] 朱永生,朱焕春,石安池等.基于离散单元法的白鹤滩水电站复杂块体稳定性分析[J].岩石力学与工程学报,2011,30(10):2068~2075.

[9] 曹琰波,戴福初,许冲等.唐家山滑坡变形运动机制的离散元模拟[J].岩石力学与工程学报,2011,30(增1):2878~2887.

[10] 陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.

[11] 中华人民共和国建设部. GB50021-2009岩土工程勘察规范.北京:中国建筑工业出版,2009.

[12] 李彰明.模糊分析在边坡稳定性评价中的应用[J].岩土力学与工程学报,1997,16(5):490~495.

[13] 洪海春,徐卫亚,叶明亮.基于模糊综合评判的边坡稳定性分析[J].河海大学学报,2005,33(5):557~562.

[14] 赵胜利,吴雅琴.基于SOM-BP复合神经网络的边坡稳定性分析[J].河北农业大学学报,2007,30(3):105~108.

[基金项目]住房和城乡建设部科技项目(2012-K3-21)资助。

第5篇

关键词:山区公路、高边坡、病害防治

中图分类号:X734文献标识码:A 文章编号:

一、高边坡病害防治技术

一般将人工开挖形成的、高度大于30m的岩质边坡和高度大于20m的土质边坡称为高边坡。高边坡是将地质体的一部分改造成为人为工程,其稳定性受控于地质条件和人为改造的程度。高边坡病害防治设计具有预测性、风险性、动态性并对施工具有严格要求等特点。

高边坡病害的防治技术一般包括工程地质勘察的方法与内容、稳定性分析与评价的方法和理论、监测技术和治理工程设计原则和加固(支挡)工程结构设计。由于高边坡是对自然稳定的或者是不稳定山坡的人工改造,这种改造远远大于自然的改造速度,那么对于了解和确定拟开挖边坡的地质条件(地层岩性、地质构造和水文地质条件)、坡体结构和可能的变形规模与类型的工程地质勘察手段和内容尤为重要,此为高边坡稳定性分析和加固工程设计的基础。

1.1高边坡病害的空间预测理论与方法

1.1.1高边坡病害空间预测的基本途径

1)高边坡病害空间预测的涵义

高边坡病害的空间预测是指依据坡体结构,结合地下水分布规律和影响因素,确定其变形破坏的空间形态、规模和类型。高边坡稳定性是指不同坡体结构、岩体结构条件控制下高边坡的稳定性。坡体结构指山坡(斜坡)不同时期构造作用所形成的结构面的空间组合,主要由以下几个方面组成:

①不同成因、不同工程性质岩组的分布; ②结构面的空间组合,主要是软弱破碎带的分布;从边坡变形破坏来研究岩性、构造和坡体(岩体)结构。对于岩性主要是注意岩石的软硬,因为软的岩石,强度低,易变形,而硬的岩石,强度高,变形小。构造主要研究结构面的发育程度、相互切割关系、贯通程度,以及与临空面的关系。对于坡体(岩体)结构,主要注意那种结构易变形破坏,一般来说,前述的几种坡体结构组成的边坡易于变形失稳。

2)影响岩石高边坡稳定的因素

影响高边坡稳定的工程地质条件有岩性分布、构造格局、地下水补给条件和坡体(岩体)结构等。影响高边坡稳定的作用因素有: ①重力; ②地应力; ③由于岩体外形改变而造成作用力的改变; ④地震作用; ⑤水文地质条件的变化; ⑥洪水的冲刷; ⑦人为因素:切坡、堆填,人为爆破; ⑧软弱破碎带的风化。岩石高边坡的稳定性是研究在坡体(岩体)结构控制下受环境因素的影响,在一定年代内的变形和破坏。首先是调查了解山体和坡体的坡体(岩体)结构,其次是研究影响边坡变形的环境因素,需从观测、分析、对比等方法来掌握;最后利用岩石力学、土力学、以及数值分析、模型实验等来找出这些条件因素对各个高边坡变形的定量问题。此为高边坡病害空间预测和稳定性分析的基本途径。高边坡空间预测和稳定性的分析以岩石滑坡工程地质力学理论为指导,结合高边坡工程的特点,以宏观地质分析为主,首先确定高边坡变形破坏的空间形态和规模,在此基础上,应用岩体(石)力学理论和合理的数值分析方法确定不同坡体(岩体)结构控制下、各种工况下高边坡的松弛范围,两者相互验证,相互补充,以达到确定高边坡病害的类型和规模的目的。

1.1.2高边坡结构面地质力学调查分析方法

针对区域构造难以准确反映具体高边坡所处山体在地质历史时期所受到的局部构造应力场的期次、作用力的大小、方向和从节理统计有时定性不准这两个问题,选择从拟开挖山坡的地貌和结构面进行调查、配套分析研究,确定高边坡的坡体(岩体)结构,可能的变形规模、性质,使岩石高边坡稳定性研究建立在可靠的基础上。山坡中存在的构造面(结构面),是由于构造作用形成,它们符合构造应力作用下形成结构面体系,即通过对这些结构面的通查分析可确定斜坡所在山体受到构造作用力的次数和顺序,反过来指导研究岩石高边坡的坡体(岩体)结构,将两者结合并应用到高边坡病害的空间预测和稳定性分析称为“高边坡结构面地质力学调查分析方法”。

1.1.3坡体结构与高边坡病害的变形带之间的成生关系

高边坡病害的变形带是指病害体产生错、滑变形的底界,该底界是依附于坡体中发育贯通的、倾向临空的缓倾角结构面。无论高边坡是由较完整岩体,或是破碎岩体组成,其产生的边界中总是以变形破坏的底界(即变形带)的形成为控制核心。而后界及两侧界易于从高边坡中较陡的结构面组直接调查找出,而且它常随变形带范围的扩大而向后向两侧发展。为此,研究不同类型变形体的底界与倾向临空、缓倾结构面的成生关系是高边坡结构面地质力学调查分析方法的核心。

1.2高边坡病害防治的工作方法

高边坡是一种特殊的岩土工程,设计高边坡的坡高,坡形和坡率以及相应的加固和防护措施只有符合岩土体的性状才能保持稳定。总结近年来山区高速公路高边坡失稳破坏的大量事例,作者认为必须结合高边坡工程和高速公路建设特点进行地质勘察工作,总结如下:

1)在工程可行性研究阶段的高速公路选线时,由于地质条件复杂,应贯彻“地质选线”的原则,尽量避开不良地质地段。如大型老滑坡、崩塌、坍塌连续分布地段,以及岩层顺倾(顺层)地段,避免开挖后老滑坡复活和产生大量新滑坡。

2)应重视高边坡的工程地质勘察,尽量减少高边坡数量,降低高边坡高度,改变路线勘察中重桥隧轻路基的状况。据统计,施工后发生问题的大多是路基病害,特别是高边坡失稳破坏,其主要原因是前期地质勘察资料不足,设计的坡形、坡高和坡率不符合坡体岩土的实际情况。若能在勘察期间查清高边坡的地质情况及可能的变形类型,就可以与隧道和桥梁方案或移线方案作比较,减少高边坡的数量,降低高边坡的高度,设计符合实际的坡形,减少高边坡发生变形的可能。

3)高边坡设计是一种特殊设计,必须在尽可能详细了解边坡地段的地形地貌、地层岩性、风化破碎程度、构造、坡体结构和地下水分布以及自然斜坡的稳定状况等基础上,预测边坡失稳破坏类型和规模,从而设计出不出现大规模的坡体变形的坡形、坡率和坡高及相应的加固、排水和防护措施,并对施工方法提出严格而详细的要求。

4)高边坡的勘察设计必须贯彻“动态设计、信息化施工”原则,由于种种原因不可能全面掌握高边坡的全部地质资料,根据边坡开挖揭露的地质情况,修改和完善已有的边坡设计,特别是一些局部、小规模的边坡塌滑加固措施。

5)高边坡的开挖施工阶段,一方面应讲究科学的施工方法,适应于不同的地质条件,对可能发生变形的边坡,必须严格施工季节、工序和方法(防止雨水渗入、逐级开挖逐级加固、控制爆破等);另一方面加强监测手段,根据监测资料调整施工工序、进度和方法。

1.3高边坡病害预加固技术与方法

高边坡的开挖是对坡体应力状态的巨大改变,必然造成坡体应力的调整和坡体的松弛,“预加固”即控制变形在一定范围内,不使其发生破坏。加固(支挡)工程结构的设计,除了要保证结构的稳定外,还要考虑该结构如何施工,也就是如何把设计在图纸上的结构放到现实中去。在地质研究的基础上,基于新的理论、计算方法和大型模型试验,人们对高边坡变形失稳机理的认识不断深入,对坡体开挖与松弛变形关系的研究逐渐趋于量化,提出了高边坡病害防治工程的“变形控制”设计理念。即工程设计时充分考虑坡体在开挖以后可能出现的变形形式,针对可能的变形形式采取支护工程措施,并结合一定的施工方法预先对坡体的变形松弛进行控制,达到以最低的造价、最优的设计、最佳的施工方法治理边坡的目的。预加固技术是高边坡病害治理工程的一种全新的、合理的设计思路,其具体的形式与具体病害工点的具体情况有关,所做的预加固设计应建立在对具体病害工点病害成因的分析上针对边坡工程特点,加固(支挡)工程结构的设计,除了要保证结构的稳定外,还要考虑该结构如何施工。加固(支挡)工程结构设计要根据工程地质特性、施工条件来选择加固(支挡)工程结构的形式。根据不同的地质条件和边坡高度,目前经常采用的较有效预加固施工方法及工艺有以下几种:

1)分级稳定、坡脚锚固桩预加固如图1(a)所示;

2)分级开挖、分级锚固如图1(b)所示;

3)分级开挖、分级稳定、坡脚预加固如图1(c)所示。

(a)分级稳定坡脚抗滑桩预加固 (b)分级开挖分级锚索预加固 (c)边开挖边加固坡脚抗滑桩预加固

图1 预加固施工方法示意图

边坡采用上述施工工艺和施工方法后,适应了目前机械化大拉槽的施工要求,提高了施工工效;减小了开挖影响区范围,控制了边坡的开挖大变形,确保了路堑边坡在施工过程中的安全和边坡的长期稳定。

第6篇

关键词隧道洞口;边坡稳定性;研究进展

中图分类号TU19文献标识码A文章编号1673-9671-(2010)041-0070-01

随着我国社会和经济的发展,越来越多的公路工程修建于黄土地区。由于工程地质条件、水文地质条件及人为等因素影响,隧道施工过程中易出现各种各样的地质灾害,其中隧道洞口边坡失稳便是隧道施工中常见的地质灾害之一。由于隧道洞口的安全关系到隧道能否顺利进洞并进行安全施工,是隧道施工中的重中之重,因此,隧道洞口的边仰坡安全一直来都受到了隧道工程师们的极大关注,并采用了各种方法对隧道洞口的边仰坡进行安全评价,并作出合理的设计与施工方案。由于修筑在黄土地区的隧道有其特殊性,不象岩石那样具有较好的完整性,且易受地表水或地下水的影响,因此,洞口的坡体在隧道施工中易出现失稳等地质灾害问题,一旦发生,轻则使工期延长,造成经济上的损失,重则造成人身安全等事故。因此,在施工过程中,对洞口的仰坡和边坡,特别是高陡坡体进行专门的稳定性分析、评价、预报等具有重要的意义。这些工作有利于业主及施工单位及时采取相应措施进行处理,并对处理效果进行检验,从而保证隧道的施工安全和运营安全。

1国内外研究现状

世界各国都很重视对隧道洞口段边坡稳定性的研究,各国规范中都有针对隧道洞口段设计、施工的专项条文,对边坡稳定的分析已有比较成熟的理论和方法。概括起来,可分为定量的理论计算方法和定性的分析评价方法两大类。

早在十九世纪中叶,西方国家就开始了对边坡稳定性的研究,形成了极限平衡理论体系。随着现代数学、岩体力学、土力学等的发展,边坡稳定性的理论计算方法也进一步完善。张悼元、王士天等对斜边坡稳定性分析的理论计算方法进行了汇总,认为主要包括刚度极限平衡计算法、弹塑性理论计算法、破坏概率计算法、变形破坏判据计算法等五大类定量的方法。近年来,随着计算机技术的发展及相关软件的开发,有限元法(FEM)、有限差分法(FDM)等数值计算分析方法得到了进一步的改进和完善,分析评价的结果也更加切合工程实践。

定性分析法是一种以稳定性地质判别标志为基础的地质分析法,工程地质类比法,又称地质比拟法就是其中最常用到的定性分析方法。它在对天然边坡的稳定性及以建工程边坡的稳定性进行统计研究的基础上,与待建工程边坡的各种条件进行对比,从而确定其稳定性的方法。其主要内容有自然成因历史分析法、因素类比法、类型比较法等。

1.1隧道洞口段边坡稳定性研究

隧道洞口段一般处于受地表水侵蚀严重、风化裂隙发育的斜坡面上,加上在洞口段隧道埋深往往较浅,结构上部岩土体难以形成承载拱,所以洞口仰坡地表坡面容易受拉开裂、经地表水侵入,其稳定性就很难得到保证。隧道洞口段经常是引起坍塌、构筑物开裂破坏的地段之一。因此,洞口段边坡的稳定性是隧道设计和施工时必须认真对待的问题。

隧道洞口段边坡稳定性的研究方法主要还是沿用工程地质中边坡稳定的研究方法。长期以来,在隧道设计和施工中多采用极限平衡理论计算分析洞门边坡的稳定性。如《日本土木工程手册?隧道》(1974)规定:覆盖土浅时用库仑土压公式;深则用科默累尔(kommerell)公式。我国铁路隧道自上世纪50年代开始编制标准设计起,就将洞门结构视作挡土结构,采用条分法设计。如《铁路隧道设计规范》(2001)规定洞门可视作挡土墙,检算强度、稳定性及基底应力。

20世纪70年代以来,随着计算机技术的发展及应用,数值模拟法越来越多的应用于隧道结构设计,尤其是在断面较大、地质条件复杂的情况下。邹启新等(2001),林正伟等(2003)隧道洞口边坡进行了二维有限元分析,得出了边坡变形和应力的变化规律,对加固效果进行了评价;沈春勇等(2001)对江西拓林水电站进水口边坡建立了三维有限元模型,将计算结果与现场监测的变形量对比,数值基本一致;朱合华等(2005),陈敏林等(2002)应用有限元软件法对洞口段隧道施工进行全过程三维弹塑性有限元模拟,分析了施工对隧道围岩变形的影响和施工中洞口边坡的稳定情况。从目前的发展趋势来看,三维模型、非线形并考虑动态施工工艺、地震荷载等的数值模拟法将是今后用于隧道洞口边坡稳定性研究的主要手段。

目前,对于隧道洞口段边坡的稳定性研究己有了很多方法和成果,但针对于黄土边坡,最合理的洞门位置及其对洞口边坡稳定的影响程度大小的研究还很不够充分,这是亟须解决的关键性问题之一。

1.2地震条件下边坡稳定性研究

地震荷载是一种典型的动荷载,其性状和静荷载有较大不同,因此其研究方法和静荷载的研究方法有较大不同,从工程应用的角度,可以通过一定的近似关系将地震荷载视为动荷载,这就是拟静力法。

自Terzaghi首次将拟静力法应用于边坡地震稳定性分析中以来,拟静力法因应用简便而得到大量应用,至今仍备受工程技术人员的青睐。拟静力法实质上是将地震动的作用简化为水平、竖直方向的恒定加速度作用,并施加在潜在不稳定的滑体重心上,加速度的作用方向取为最不利于边坡稳定的方向,将所产生的地震动作用作为水平和竖直方向的拟静荷载因子,其大小通常用地震系数 和 来表示,数值上等于水平或竖直加速度与重力加速度之比。将地震所产生的惯性力作为静力作用在边坡潜在不稳定滑体上,根据极限平衡理论,便可求出边坡的抗震安全系数。这个分析实质上与静力稳定性分析完全相同,所采用的方法是由静力稳定分析方法拓展而来的,只是添加了一个反映地震作用的地震系数,因而十分简便。抗滑安全系数与边坡抗剪强度指标(c、Φ)及密度、最危险滑动面的形状及位置、地下水位和地震系数等密切相关。在拟静力分析时,边坡抗剪强度指标可通过现场或试验室相应试验测定,亦可结合试验反算而定;而破坏面形状和位置常根据边坡地质条件用经验、工程类比等方法来确定,亦可用优化算法来确定。

自20世纪60年代有限元法用于土坝地震反应分析以来,特别是20世纪90年代中后期,伴随着计算机技术和计算力学的高速发展,有限元法及其它数值模拟法在边坡地震稳定性分析中获得了深入的研究和广泛的应用。目前,对边坡地震稳定性分析常采用的数值方法有有限元法、离散元法和快速拉格朗日元法;对于边坡的稳定性评价所采用的判定指标有安全系数和永久位移两种,从查阅的国内外文献来看,国内以安全系数为主,国外以永久位移为主。下面以边坡地震稳定性评价指标来分别论述:

就安全系数而言,结合极限平衡原理,国内取得了一些有价值的研究成果。钱胜国等选择三峡三号船闸作为研究对象,用反应谱法对开挖完工期间尚未浇筑混凝土时的闸首及闸室断面进行了二维有限元动力计算分析,提出了三号船闸高边坡在七度地震作用下的应力分布、变位、动力放大系数沿高程分布以及局部区域二维动力稳定安全系数。张建海等提出了采用刚体弹簧元计算边坡、坝基、坝肩等结构物在地震波作用下的动力安全系数,该方法给出的安全系数是随地震波的作用而发生波动,从而更深刻地反映了动力现象本质,并将该方法应用于工程实际。薄景山等将土边坡动应力作用下的应力状态概化为自重应力和附加动应力的叠加,采用时域集中质量的显式波动有限元法,结合多次透射公式,来分析地震过程中的动位移场、动应力场及稳定性系数的波动时程。刘汉龙等考虑到在地震过程中,边坡的稳定安全系数最小值出现在某一瞬间,用这个值评价边坡在地震荷载作用下的抗滑稳定性不太合适,提出了用最小安全平均安全系数作为评价指标,并给出了相应的计算方法,即利用安全系数最大振幅的0.65倍作为平均振幅来反映安全系数随地震波动变化的过程。陈玲玲等建立了评价岩质陡高边坡的稳定性计算公式,用反应谱法和时程分析法进行了计算,获得了动态特性、地震动力响应,并给出了可能滑裂面的抗剪强度储备比值,其结果可用于评价其稳定性。

全面比较各支护方式下高边坡的地震稳定性、提出提高边坡地震稳定性的措施是亟须解决的问题。

2问题与展望

以往对边坡稳定性的研究主要集中在各种岩石上,如风化岩等,针对黄土地区隧道洞口边坡稳定的研究甚少;以往对边坡的研究主要是集中在稳定性分析上,从边坡失稳机制分析、稳定性评价、施工关键技术等系统、综合考虑洞口边坡的稳定性研究成果较少。应具有针对性地研究黄土地区隧道洞口的边坡稳定性,并系统地通过现场实体工程,采用室内外试验和数值仿真相结合的方法,系统研究洞口段边坡失稳机制分析、评价其稳定性,并提出相应的施工关键技术,为工程实践提供理论依据。

以后研究的重点方向和总体思路可概括为以下几点:

1)在对黄土地区公路边坡稳定性研究现状调研的基础上,结合工程实体,通过传感技术(在工程实体埋设应力、应变传感器),辅以数值方法,采用定性与定量分析相结合的方法。

2)对黄土地区公路边坡,特别是隧道洞口边坡失稳机制和稳定性进行认真分析和评价后,

3)提出黄土地区隧道洞门位置的选择原则和洞口施工工艺的控制措施,为提高施工安全性和降低工程造价提供理论依据。

4)通过编制可操作性强的施工指南,为黄土地区公路设计和施工提供理论依据和参考。

参考文献

第7篇

关键词:防治原则;工况分析;抗滑桩;有限元

Abstract: in view of the slope instability problem in the process of highway excavation, the landslide thrust calculation using transfer coefficient method, the analysis of excavation are not taken to support and excavation and USES the anti-slide pile supporting two remaining in force, in the cases of anti-slide pile effectively prevent the slope deformation and failure, and to achieve stable, finally USES the ansys finite element simulation analysis, show that highway slope excavation process in the strong effect of the anti-slide pile supporting.

Key words: control principle; Operating mode analysis; Anti-slide pile; The finite element

中图分类号:X734文献标识码:A文章编号:2095-2104(2013)

1公路开挖中存在的问题

公路路堑边坡工程设计数量集中、种类多、性质杂等特点,但又存在场区及区域规律;和重点复杂的边坡工程设计有所差别;但又没有勘察设计工作程序和细则;另外由于各种条件的限制,边坡施工时却又不能严格按照“分级开挖,逐级支护”原则施工。目前,大部分公路路基边坡施工主要采用全坡面开挖后暴露很长时间再进行防护和加固,导致人为诱导的边坡变形,严重时更会导致多次(处)边坡失稳破坏的工程事故,对工程施工和营运安全带来直接危害,更会对工程造价和施工进度带来影响。

2边坡主要的防治原则及整治技术

在公路边坡防护工程设计中,根本问题是在边坡的稳定与经济之间选择一种合理的平衡。对于已发生病害或稳定性不足的边坡,需采用一定的防治措施使其在运营期间的保持稳定性或安全性。然而,针对不同边坡的具体情况采取不同的工程措施[1]。

公路边坡失稳的主要原因,一般认为是由于岩体下滑力增加,或岩体抗滑力降低所致。因此,正对边坡失稳的防治措施主要针对上述两方面进行处置,从而改善边坡稳定性能,增加边坡安全系数。

公路边坡整治技术主要分为两种,一种是针对边坡存在的隐患或可能发生的病害采取的预防性措施;另一种则是针对病害采取的治理工程措施。第一种处治技术是防止病害的发生或制止边坡变形,第二种整治的目的则为使边坡满足设计的安全性能。

3抗滑桩支挡工程特点

为支挡失稳坡体的下滑力,通常采用抗滑桩加固边坡的方法。在这类加固工程中,在浅层及中厚层滑体的前缘,或厚度不大且有地质条件的滑体的中部,常常采用钢筋混凝土桩或钢轨混凝土挖孔桩。而在大多数情况下,常采用桩墙结合的措施,采用分级支撑滑体,减轻对下部挡墙的推力[2]。此外,还可分排间隔设桩,这样不但工作面多,不会相互干扰,而且能够加快施工进度。

采用支挡(挡墙、抗滑桩等)措施是边坡处治的基本方法,对于不稳定的边坡岩土体,使用支挡结构,通过设置抗滑桩的形式增大滑体抗滑能力,提高滑体的稳定性能。该方法的优点是可以基本解决边坡的稳定问题,但是其缺点则是支挡位置的设置灵活性较小。

4有限元软件及破坏准则

土是由固体、液体和气体组成的三相体,三相物质的质量、密度、成因类型、形成历史等因素,都会使土表现出不同的性质。形成岩土体介质的力学性质非常复杂,影响其应力和变形的因素很多。鉴于实际工程中计算需要,可采用商用软件对其进行分析,本文采用的软件为ANSYS,对边坡开挖抗滑桩稳定性进行计算分析。ANSYS可以很好的模拟岩土的力学性能,对岩土的应力—变形与稳定性进行分析。

采用的Drucker-prager准则,通过分析自重应力及开挖对土体的影响,采用双参数准则,可以表示为:

式(1)

其中,k和是由试验确定的材料常数。根据应力不变量和,Drucker-prager准则可以表示为:

式(2)

5工程概况

某高速公路 K03+148~K13+220段,该路堑边坡于2010年8月开始开挖施工,在开挖过程中,边坡出现了大的滑移变形,山顶部分出现明显位移,通过勘察认为,该开挖过程可能引发滑坡,滑体范围较大,深度较深,一般厚度4~9m,最大厚度12m,滑坡的体积(80~140)×46m3,为一中型滑坡。设计施工方案为:坡顶及中部削坡减载,并采用格子护坡,在坡脚设24根抗滑桩(K13+248~K13+344),两端用抗滑挡墙加固,修排水沟、前缘施工泄水孔,边坡的变形得到遏制,边坡整体处于稳定状态。

5.1滑坡推力

利用规范中的传递系数法[3],计算滑坡推力及抗滑桩内力,根据勘察报告以及现场的岩土体物理性质实验及相应的技术规范。

下滑力:

(3)

抗滑力:

(4)

安全系数:

(5)

由式(3),(4),可得[4]:

(6)

(7)

采用传递系数法对该路堑坡边坡进行推力计算和稳定性分析,分两种工况。工况一:自然状态下开挖边坡后推力计算和稳定性分析;工况二:抗滑桩治理后稳定性分析。

推力计算结果,根据计算结果可以得出以下结论:在未支护前稳定系数0.98,最后条块剩余下滑力为567.4 KN/m,表明边坡处于欠稳定状态。在抗滑桩处置后,该边坡的稳定性系数为 1.15,最后条块剩余下滑力为0,表明抗滑桩支护取得明显效果,推力计算如表1、2所示,抗滑桩支护后,剪力和弯矩随桩身变化如图1、2所示。

表1 工况一推力结果

表2工况二推力结果

图1剪力随桩深变化图2弯矩随桩深变化

为了对以上计算结果进行对比,采用有限元软件ansys模拟该公路边坡开挖过程及抗桩的支挡, 计算参数选取如表3所示,采用Plane42平面单元来模拟岩土体,钢筋混凝土抗滑桩采用Beam3单元。材料本构模型时采用DP模型。抗滑桩桩截面尺寸为 3.5m×2m,受荷段和锚固段长分别为12m和6m,激活梁单元beam3,其边坡开挖支挡后坡体剪应力分布如图3所示,依据坡体破坏准则,支挡后边坡处于稳定状态,抗滑桩的弯矩分布如图4所示,正负弯矩的改变处即是该公路边坡开挖过程中潜在的滑动面。

表3模型参数

图3岩体的剪应力图4抗滑桩的弯矩

4结论

针对公路开挖中的边坡破坏和失稳问题,本文提出了防治原则和整治技术相结合的方法,对抗滑桩的支护特点进行了重点说明。借助具体的工程实例,采用传递系数法,分析和计算边坡下滑力,通过抗滑桩支护前后的边坡剩余下滑力对比和有限元的模拟,说明抗滑桩可以很好的提高公路边坡稳定性。

参考文献

[1]沈珠江.桩的抗滑阻力和抗滑桩的极限设计]JI.岩土工程学报,1992,14()l:41~43

[2]王恭先.高边坡设计与加固问题的讨论.甘肃科学学报,2003.21-25

第8篇

关键词:边坡稳定性;施工建设;研究分析;不同地质

引言

在边坡稳定性的分析和研究过程中,不仅要掌握相关工作的性质和特征,还应当以安全性为基础对象,实现对内部各种复杂因素的分析。总的来讲,在工程的开展过程中,出现各种相关的不良地质现象基本是由于前期对边坡稳定性的分析不到位所致,所以在实践中还应当通过各种技术方式,诸如极限平衡技术、随即搜索技术以及可靠性分析技术等方式,强化边坡稳定性分析。

一、边坡稳定性分析概述

针对边坡稳定性的特征和概念加以分析,是加强治理的核心环节。在边坡稳定性分析中,边坡失稳是最为常见的现象之一,由于各方面条件的限制,导致不同地质地区的边坡内部结构和地质情况各不相同,所以,相对应的,边坡失稳的情况也相当常见,在进行分析的过程中,应当重点的对地质灾害加以分析,边坡稳定性的分析方式可以分为不明确分析方式和明确分析法等两种类型,通过对条件因素和各项数据进行分析,通过对数据的研究和计算,才能够得出最为恰当、最为正确的治理措施,针对这一点应当在实践施工操作中加以明确。

当前研究者通过建立相对应的施工现场地质动力学模型,通过对现场进行实地的勘察与分析,使得研究工作的准确性和可靠性得到很大程度的提升,但是,由于在地质分析的过程中条件因素较多,并且地质的特征可谓是丰富多样,所以,整个分析过程是一项相当复杂且系统化的工作,仅仅依靠单一的稳定性评级分析明显不够。在今后对地质的边坡稳定性过程之中,还应当加入更多的新型技术手段,诸如现代化的电子技术和数据库技术等等,形成一个科学化的、一体化的、高度集成化的智能的评价系统,以此为基础,建立起相对应的工程模型,对其进行准确分析,综合性的结合多个方面的影响因素,使得整个分析工作的准确性和科学性可以得到极大程度的改进。

二、边坡稳定性的分析方式

1、边坡稳定性分析中极限平衡法的应用

极限平衡分析方法的基本思路是:假定岩土体的破坏是由于滑体的滑动面发生滑动造成的,而滑体的滑动面可以是规则的平面、圆弧面或者其它一些不规则的面。在分析过程中,可以通过分析滑动面滑动时造成的隔离体的静力平衡。再确定负载时,可以把隔离体进行分割成若干竖向的土条,并简化其以方便对每个小土条进行静力平衡的测算,并求出相应的滑动破坏荷载。因此可以采取相关措施来预防最危险滑动面的稳定性失衡。下面以图表形式介绍相关的极限平衡分析法及其特点。

2、边坡稳定性分析中有限元法的应用

有限元法在如今边坡稳定性分析中地位举足轻重。其应用已经由弹性学平面问题扩展到空间问题,由静力平衡问题扩张到稳定性问题及动力问题等。同时在研究对象方面扩展到塑性、粘塑性、粘弹塑性等方面。分析出土体的应变大小及应力分布,从而可以避免将滑体视为刚体这样过于简化的缺陷。在有限元法的基本思想是:用一个简化的问题来替代复杂的问题,然后来分析问题并求得解。总的来讲,在边坡稳定性分析过程中,应当综合性的结合不同技术方式的特征和优点,实现对传统工作的全面改进,并且通过技术的完善和提升,实现新的发展局面,为更加准确的测定和分析得出边坡稳定性奠定坚实的基础。

三、边坡稳定性治理措施

根据上文针对当前边坡稳定性的相关工作现状以及基本的概念、技术方式等进行综合性的研究,可以明确工作的重点和难点。在今后的工作中,还应当结合分析的数据基础加强对治理方案和相关措施的制定,使得工作的建设可以呈现出崭新的面貌。

首先,可以使用改变边坡形状的方式,诸如人工加固的形式,实现对边坡稳定性的综合治理,进而达到施工所需的标准和要求。在实践的施工操作中可以对坡脚进行一定的处理,通过放缓边坡角度等方式,合理的达到处理需求,进而全面的改变边坡内部的应力状态,全面的到改善稳定性的基本效果。同时,在实践的施工过程中边坡稳定性还可能会受到地下水等因素的影响,水压的作用可能会降低边坡的稳定性,所以还应当通过相关手段和措施,降低地下水所产生的压力,使得其影响可以降至最低,达到处理的标准和需求。

此外,还可以采取人工处理的技术方式,对边坡内部的岩土体进行加固处理,一般情况之下采取的手段主要有外加支挡技术以及锚喷技术等,进而通过一系列设备和手段的使用,达到处理的标准,进而在施工建设中确保边坡的稳定。

结束语:

在边坡稳定性分析工作中,随着相关数值分析法应用的范围和特点不断加强,相关技术与现代化的计算机技术相互融合,已经逐步成为了今后工作发展和建设的主要方向之一。但是在实践的分析过程中,还应当充分意识到边坡稳定性技术的局限性,所以应当对不同地质条件的情况作出有针对性的分析,将理论分析、系统研究和实践研究等相互结合起来,建立起科学有效的系统,促进工作实践效应的增强。综上所述,根据对当前施工建设项目中边坡稳定性的主要分析手段和治理的技术方式等进行综合性的研究,从实践的角度出发,对施工过程中应当重点加强的部位和应当重点予以改进的部位进行细致的分析,旨在为今后工作的全面发展奠定坚实基础。同时,通过对施工项目现状的分析,还可以实现对工作的全面发展,进而使得建筑工作可以迈向全新的局面,使得施工项目的经济效益可以实现飞速的增长,为广大施工企业带来更加客观的经济利润。

参考文献

[1]谭文辉,乔兰.爆破震动对公路边坡稳定性影响的数值模拟[A].第九届全国岩石动力学学术会议论文集[C].2005:62-63.

第9篇

Abstract: Slope instability is due to the decrease of local soil's strength. It is not accordance with the engineering practice, using the traditional overall strength subtraction method to analyze all the elements of soil slope. This paper is based on Mohr-Coulomb (M-C) and Drucker Prager (D- P) yield criterion, using local strength subtraction method and traditional overall strength subtraction method analysed and compared slope stability. Results show that the results of M-C model and D-P linear model calculation are reasonable and most closely, the difference are small; compared with overall strength subtraction method, the safety factor、displacement of local strength subtraction method are smaller, it is more reasonable.

关键词: 局部强度折减;边坡;安全系数;稳定性分析

Key words: local strength reduction;slope;safety factor;stability analysis

中图分类号:U418.5+2 文献标识码:A 文章编号:1006-4311(2017)13-0082-03

0 引言

有限元整体强度折减法对边坡的稳定性分析时,对土体内所有单元进行强度折减,但是在实际工程中边坡失稳主要是由于局部土体的强度降低所致,而其余部位岩体力学参数影响很小。若对所有土体单元进行强度折减,对边坡进行稳定性评价并不准确[1-2],所求解出来的结果并不能很好地反映出边坡失稳时的真实情况,故而用局部强度折减法能够更加真实满足工程需要,对边坡的稳定性分析具有重要意义。

ABAQUS软件对经典的D-P模型进行了扩展,屈服面在子午面的形状可以通过线性函数、双曲线函数和指数函数模拟,在一定条件下D-P与M-C模型可以实现参数相互转换。国内学者运用扩展的D-P模型与M-C模型对边坡稳定性问题开展了较多的研究工作:易绍基等[3]利用M-C模型和D-P指数模型对边坡土性参数进行研究,认为塑性参数对边坡安全系数影响最大;张芳枝等[4]利用D-P双曲线模型对某堤防进行了稳定分析,认为应将张拉-剪切复合屈服准则应用到边坡分析;伍韵莹等[5]利用D-P线性模型对边坡进行模拟认为宜联合采用位移判据和塑性区判据对边坡的稳定性进行分析;陈浩等[6]利用D-P线性模型通过Python语言对某地下洞室群分期开挖动态模拟。以上大都是利用整体强度折减法对土体所有单元进行折减,与实际工程有所偏差,而且现有研究将ABAQUS里面的M-C模型和D-P模型结合局部强度折减法对边坡进行分析研究还比较少。故而本文用有限元软件ABAQUS通过整体强度折减法和局部强度折减法,结合M-C准则和D-P准则对边坡进行分析计算。

1 度折减法与模型参数转换

1.1 局部强度折减法原理

边坡失稳是土体抗剪强度失效,剪切应变增量引起土体单元进入屈服阶段,形成塑性屈服阶段的单元区域,即塑性贯通区,也就是潜在滑裂带。局部强度折减法与传统的有限元强度折减法不同,它是指通过不断降低局部土体的强度,致使边坡达到临界失稳状态的方法。可以根据勘察报告判断边坡的潜在滑裂带或软弱土层作为局部土体,若缺乏相关资料,可以先对整个土体单元强度折减,可以得到塑性贯通区的土体单元作为滑裂带土体,然后只对塑性区土体单元的抗剪强度参数进行折减[7]。折减后的抗剪强度参数可以分别表达为:

边坡破坏的判断依据主要有三个准则:一是以数值计算不收敛作为土坡稳定的评价标准;二是以特征点的位移拐点来作为评价标准;三是以结构面塑性区贯通作为评价标准。第一种依据由于收敛准则的不同会导致安全系数的差异;赵尚毅等[8]认为塑性区从坡脚到坡顶贯通并不一定意味着边坡破坏,塑性区贯通只是破坏的必要条件,但不是充分条件;第二种依据有着明确的理论意义,因此本文采用位移突变作为判断依据来评判边坡稳定性。

1.2 M-C与D-P模型的参数转换

基于平面应变的前提下,M-C模型与D-P模型的参数转换,费康[9]等作了相关的研究并给出了转化公式,故不赘述,只简单罗列公式。在用分析同一边坡时,需要对M-C模型与D-P模型参数进行转换。当D-P线性模型的三轴拉伸强度等于三轴压缩强度,二者的屈服面非常接近,M-C模型参数与D-P线性模型参数可以相互转换,D-P线性模型转化公式为:

2 边坡分析计算

2.1 土坡的稳定性分析

本文选取郑颖人等[11]和张鲁渝等[12]做的一个土坡作为计算实例来验证对比整体强度折减法和局部强度折减法在M-C模型与D-P模型中的应用情况。土坡高H=20m,土体容重为25kN/m3,弹性模量为1000kPa,泊松比为0.3,粘聚力为42kPa,内摩擦角为17,坡脚取为40°。由于郑颖人等[11]所得的安全系数与Spencer极限平衡法的结果最为接近,故而本文用Spencer极限平衡法的计算结果来作比较,其安全系数为1.21。由于分析中考虑了剪胀角会使安全系数偏高,而传统极限平衡方法没有考虑剪胀角的影响使结果较为保守。为了与传统极限平衡法的结论相一致,方便对比,分析中不考虑剪张角的影响[13]。本例取在边坡节点A(网格划分后的节点,A点在塑区内)处的位移拐点作为判断依据,计算模型如图1所示。

要用局部强度折减对边坡进行分析,需要得到边坡的潜在滑裂带。可以先利用软件对边坡所有土体单元进行强度折减,然后将所得到的塑性变形贯通区作为边坡的滑裂带。如图2所示,依次为M-C模型、D-P线性模型、D-P双曲线模型、D-P指数模型的塑性贯通区变形云图。

然后提取图2中塑性贯通区的单元节点,仅对以上的塑性贯通区域的土体进行强度折减,其他土体强度保持不变。选取安全系数、安全系数与Spencer法之间的误差作为计算结果进行比较,如表1所示。

由表1可知,两种强度折减计算的安全系数与Spencer极限平衡法计算得到的安全系数十分接近,误差很小,计算结果是可靠的。局部强度折减与整体折减相比,安全系数略有降低,安全系数误差变小。从局部折减的结果看:M-C模型和D-P线性模型的第安全系数与Spencer极限平衡法给的安全系数最为接近;D-P双曲线模型和D-P指数模型的安全系数与Spencer极限平衡法误差相对较大。

以上边坡例子较为理想,但是在实际工程中修建了大量的工程设施,这些工程在建设中会形成大量的高、陡边坡。故而需要验证以上结果在实际工程中应用性,本文选取M-C模型和D-P线性模型对下文的岩质边坡进行稳定性分析对比。

2.2 工程实例分析

选取阎寒等[14]做的一个人工岩质边坡工程实例来进行稳定性分析。某岩质边坡一级坡率1:1,坡高3m,第二、三级坡率1:0.5,每级坡高7m,具体模型如图3所示。该岩质边坡的岩性主要为强风化花岗岩和中等风化花岗岩,岩性参数如表2所示。分析过程中假设两岩体界面连接良好,各个土体都是各向同性的均质材料。根据边坡安全系数以特征点的位移突变性为失稳判据,阎寒等用FLAC3D软件基于强度折减法算出的安全系数为2.2,边坡处于稳定状态。根据上文的结论,采用M-C模型和D-P线性模型对岩质边坡进行稳定性分析。取在边坡节点B(网格划分后的节点,B点在塑性区内)处的位移拐点作为判断依据,采用局部强度折减法对该边坡进行分析。先对边坡整体进行强度折减后得到塑性区滑裂带,然后塑性区以外的土体强度保持不变,再对滑裂带进行强度折减。

计算中采用非关联流动法则,选用非对称算法(Un-symmetric),采用M-C模型和D-P线性模型对所有土体进行折减后得到的塑性贯通区滑裂带如图4所示,然后提取塑性贯通区土体单元节点,对塑性区进行强度折减,计算结果如表3所示。

由表3可知局部折减后的安全系数相比整体折减小,两种屈服准则所得的安全系数与FLAC3D软件所算的结果很接近,且略小于FLAC3D软件所得的安全系数,黄天成[15]认为如若以位移突变作为评判边坡的稳定性,FLAC3D计算所得的安全系数大于ABAQUS。故而两种屈服准则基于整体强度折减法和局部强度折减法分析边坡的结果是合理的。

表3中局部强度折减的位移相比整体强度折减小,是因为仅对边坡滑裂带区域进行强度折减,减少了滑裂带以外区域土体的因强度折减引起的位移增量,故而得出的位移比全局强度折减法要小,其符合边坡的实际情况。从位移结果来看,D-P线性模型计算得到的最终位移略大于M-C模型,这是因为屈服准则的不同所致,但总体而言,M-C模型与D-P线性模型计算结果很相近。实际工程中,可以将M-C模型与D-P线性模型相结合来计算边坡的稳定性。

本文采用M-C模型的整体折减和局部强度折减后的位移等值线云图进行对比,如图5所示。采用整体折减和局部折减对边坡进行计算后的边坡滑动面大致一样,局部折减的位移略小于整体折减,两则最大位移均发生在边坡坡顶,且位移较小;二者的滑动面位置大致一样,滑动面位置呈大致的圆弧状,并且通过坡脚点,滑动土体主要是边坡上半沿的强风化花岗岩和中风化花岗岩土体。由安全系数可知,边坡由于边坡处于稳定状态。但如果遇到不当的人类工程活动、强降雨、雪等,容易对边坡安全造成影响。

3 结论

采用ABAQUS软件结合强度折减法对土坡和岩质边坡进行了稳定性分析,得到了以下结论:

①采用局部强度折减法计算所得安全系数、位移量、比整体强度折减法小,与工程实际更为接近,用局部强度折减法来分析边坡比整体强度折减法更为合理,验证了局部折减法的可行性。②M-C模型和D-P线性模型计算结果很相近,建议可将M-C模型和D-P线性模型相结合利用局部强度折减法对边坡进行计算。

参考文献:

[1]赵川,付成华.基于局部强度折减法的某水电站边坡稳定性分析[J].人江,2015,36(3):66-69.

[2]钟志辉.边坡分析的局部强度折减法及其工程应用[D].广州:华南理工大学,2012.

[3]易绍基,黄英,韩玲,等.土性参数对边坡稳定性的影响研究[J].水利与建筑工程学报,2011,9(3):1-7.

[4]张芳枝,陈晓平,梁志松.强度折减有限元在堤防稳定分析中的应用研究[J].工程地质学报,2011,19(2):244-249.

[5]伍韵莹,王志鹏,孙立宇.Mohr-Coulomb内切圆屈服准则在ABAQUS软件边坡分析中的应用[J].长春工程学院学报(自然科学版),2012,13(2):52-55.

[6]陈浩,肖明,衡为方.基于ABAQUS大型地下洞室群分期开挖动态模拟[J].武汉大学学报(工学版),2013,46(3):321-327.

[7]杨光华,钟志辉,张玉成,等.用局部强度折减法进行边坡稳定性分析[J].岩土力学,2010,31(Z2):53-58.

[8]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座―Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.

[9]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.

[10]易绍基.基于ABAQUS的边坡稳定敏感性分析及模型验证[D].昆明:昆明理工大学,2011.

[11]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,4(10):52-56,78.

[12]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,34(1):21-27.

[13]高志辉.有限元边坡稳定参数敏感性分析[D].北京:北京工业大学2007.

第10篇

关键词:高速公路路基;边坡防护;稳定性;治理措施;

中图分类号:U213.1 文献标识码:A

阿尔及利亚东西高速公路是北非马格里布高速公路的重要组成部分,全长1216KM,横贯阿尔及利亚北部山谷地区,地势起伏,地质情况复杂。在项目实施过程中,根据不同地区不同路段的地质情况,对路基边坡的稳定性进行了认真地分析和设计,有效地控制了边坡失稳,降低了工程造价。促使路基边坡失稳的因素可归纳为自然和人为两大类,自然因素主要包括岩土性质、岩体结构及地质构造、水的作用( 降低坡体抗滑力、增加下滑力,故有“十坡九水”之说) 、地形地貌、地震等。人为因素包括开挖坡脚、堆填加载、施工爆破、乱砍滥伐等。路基边坡的稳定性与设计及施工都有着直接的关系,只有在设计时遵循规范要求,保证排水通畅,在施工的关键部位上严格把控施工工艺,才能取得更佳的防护效果。

一 边坡稳定分析的历史及现状

近年来各种现代科学理论如系统工程论、数量理论、信息理论、现代概率统计论、耗散论、突变理论等用于边坡研究,为边坡稳定研究提供了新方法,边坡稳定性研究呈现出各种传统方法不断完善和新方法不断提出的局面。目前边坡稳定分析方法可分为三大类。

1.1 定性分析法

定性分析主要是通过工程地质勘察和其他调查方法,对边坡稳定主要影响因素、可能的变形破坏方式进行分析,对已变形地质体的成因及其演化史进行分析,从而给出被评价边坡稳定状况及可能发展趋势的定性说明。定性分析的优点是能综合考虑多种影响因素,快速对边坡的稳定状况及发展趋势作出评价,具体有以下几种。

( 1) 成因历史分析法

该法通过对边坡的地质环境、水文地质条件、发育历史中的各种变形破坏迹象及其基本规律和稳定性影响因素进行综合分析,追溯边坡演变的全过程,对边坡稳定性的总体状况、趋势和区域特征作出定性评价和预测,主要用于天然斜坡的稳定性评价,是其它分析方法的基础。

( 2) 工程类比法

该法是将所要研究的边坡与已经研究过的天然斜坡或人工边坡进行类比,以评价其稳定性及可能的变形破坏方式,确定其坡角和坡高。工程类比法具有经验性和地区性的特点,是目前常用的一种方法。

( 3) 专家系统法

即边坡工程稳定性分析与设计的智能化计算机程序,它把多位边坡工程专家的知识、工程经验、理论分析、数值分析、物理模拟、现场监测等有机地组织起来,建成一个边坡工程知识库,并进行推理和决策,对所研究的边坡进行分析评价,专家系统法可以节省时间,降低工程费用。

1.2 定量分析法

( 1) 极限平衡分析法

建立在摩尔-库仑强度准则、安全系数定义和静力平衡条件基础上,把滑体作为刚体只考虑滑面的极限平衡状态,不考虑滑体岩土体的变形和破坏。主要优点是历史长、计算简便、计算结果较稳定,缺点是把滑体作为刚体处理,不能真实反映内部的应力-应变关系,但总体来说是一种较成熟的方法。

( 2) 数值分析法

该方法通过应力、应变分析求解边坡的极限荷载,既可用于连续介质,也可以应用于不连续介质。目前常用的数值方法有边界元法、有限元法、离散元法、无界元法及快速拉格朗日法。

1.3 非确定性分析方法

因为影响边坡稳定的因素很多,实际中难以准确提供确定性方法所需要的参数,且这些参数具有随机性和不确定性。所以建立边坡稳定性分析的非确定性模型,考虑参数的随机性、模糊性是发展趋势。目前非确定性分析方法有可靠性分析法、模糊综合分析法、灰色系统理论法、突变理论法、神经网络法等。

二 边坡治理技术发展及现状

边坡治理措施的基本思路一是减小下滑力,二是增加抗滑力。我国公路边坡以前常采用改变坡体几何形态、排水、挡土墙、护坡、喷浆、土质改良、抗滑桩、植被防护等治理方法,具有安全经济、施工简便等优点,但在一定程度上存在持水性差、维护困难、稳定效果欠佳、景观效果差等缺点,不能满足高速公路的发展要求。目前路基边坡防护措施有很多,其中比较常用的有:锚杆加固、预应力锚索加固、抗滑挡土墙、格构加固、重力罩面等。

2.1 锚杆加固

锚杆加固技术因其经济、便捷、受外界影响小等特点,是阿尔及利亚东西高速公路中普遍采用的一种边坡治理措施。主要采用的原材料是钢筋锚杆、水泥浆等。利用钢筋锚杆注浆后与土体间的摩擦力,有效抵制边坡失稳的方法。比较适合含水量低的土质边坡。

2.2 预应力锚索加固

预应力锚索加固技术是利用水泥浆、锚索和深层稳定岩体之间的胶合力,通过锚索实现张力的传递,制约表面的滑移体,使其和稳定的地层相连接,形成一个坚固的整体,从而实现对边坡的加固。预应力锚索加固技术的特点是深层加固、主动加固、具有一定的柔性、经济性好、施工快捷灵活,近年来被广泛的应用于公路路基边坡的加固中。

2.3 抗滑挡土墙

抗滑挡土墙是用来实现稳定滑坡,也就是通过挡土墙支撑土体,抵抗滑坡的剩余下滑力,其优点是对边坡的破坏小,稳定的速度也快,常用的挡土墙有重力式挡土墙。在抗滑挡土墙施工时,要尽量避免开挖边坡的前部。

2.4 格构加固

格构加固技术是利用现浇钢筋混凝土、预制混凝土和浆砌块石实现对坡面的防护,同时利用锚杆对边坡进行加固,其优点是不仅能对边坡进行加固,保证道路的安全,而且还可以通过在框格内种植花草来美化边坡的环境。格构加固技术的基本原理是通过把岩石压力、土压力和滑移力均匀的分配到每个格构结点处的锚索,再由锚索传递给地层,其中,格构只是用于传力,锚索则主要起加固作用。次方法较适用于岩土较坚硬、均匀、坡度较大的边坡。

2.5 重力罩面加固

重力罩面加固技术是欧洲高等级公路经常被采用的一种路基边坡防护形式,施工简单,操作方便,在阿尔及利亚东西高速公路的施工中也被广泛使用。此种方法主要是将因褒水而变形的路基边坡,开挖成阶梯状,铺上土工布,回填0-200mm或200-400mm的片石至原坡面高度,靠片石的自身重力来抵制坡体的变形,故称重力罩面。此方法主要适用于富水地段的边坡。

三锚杆加固工艺在边坡治理中的应用

在上述5种边坡治理措施中,锚杆加固是阿尔及利亚东西高速公路项目最为普遍采用的形式,也是被目前国内高等级公路广泛接受和认可的治理措施。以下就该工艺的施工流程及方法做以简单介绍。

3.1 定位

依照设计图纸对边坡钻孔的位置准确放样,可以有±15mm的偏差;锚杆的孔距所允许的偏差不得超过150mm。

3.2 钻孔

安放锚杆的孔洞可以采用风枪打眼的方法进行打钻,锚杆轴线与岩体主体结构面或滑移面成大角度相交,钻孔时要按照以下规范进行:所钻的孔要圆且直,钻孔时钻孔的方向要与所处岩层的主要结构面保持垂直;所钻的锚杆孔直径一定要大于锚杆的直径15mm。除此之外,对锚杆孔的深度也有严格的要求,主要是孔的深度只允许50mm的偏差。钻孔的质量与锚杆杆体材料的质量一样,都是高速公路路堑的边坡防护施工质量的基础环节,它是保证锚杆发挥其保护支撑作用的重要因素。

3.3 清孔

钻孔后要用高压风管将孔内遗留的粉尘和杂物吹出,确保孔内干净。

3.4 锚杆准备

锚杆要采用18-32mm钢筋,且在截取锚杆时要按照设计要求进行,对所截取的锚杆还要进行整直、祛锈以及除油等处理。客土喷播护坡锚杆长度和不含草籽的绿化基材混合物厚度按地质条件不同分 2 种形式:稳定性良好的软质岩边坡,长锚杆采用 3m,短锚杆采用 1m,绿化基材混合物厚 10cm;稳定性较好的土石混合边坡,长锚杆采用4m,短锚杆采用 2m,绿化基材混合料厚 8cm。当边坡可能出现局部不稳定病害时,长锚杆长度应经分析计算后确定。

3.5 安放锚杆

清孔结束后迅速将钢筋锚杆体插入,锚杆杆体插入孔内的长度不得短于设计长度的 95%。在安放锚杆的过程中,必须保证孔内不能出现塌孔,否则必须将锚杆体拔出,清孔后重新安放。

3.6 砂浆制备

砂浆要采用不低于 42.5 级的且具有抵抗水侵蚀的化学稳定性较好的普通硅酸盐水泥,按施工时所要求的配合比在拌合站进行统一的拌合。

3.7 注浆

在对安放锚杆后的孔径、孔深以及孔内杂物清理等验收合格后才能进行灌注水泥砂浆。以普通水泥砂浆灌注为例介绍其注浆施工的要求:砂浆要用现场拌合的砂浆,拌合的砂浆要在一定的时间内用完,避免使用以前剩余的砂浆。砂浆的质量能有效的确保锚固,所以必须给予充分的重视,必须在砂浆初凝以前用完,同时要遵循砂浆使用的规定。

(1)进行注浆后,如果中途停止超过30分钟,就要用水对管路进行湿润;

(2)注浆口的压力要控制在一定的范围内,一般控制为0.4~0.6Mpa 之间;

(3)在注浆的过程中,注浆的管要伸入孔的下部,随着砂浆的不断注入,不断的提升管子,直至把砂浆注满为止。

四 结语

我国高速公路建设由于起步较晚,一些普通低等级公路设计施工习惯影响到高速公路建设,使目前高速公路边坡治理存在安全重视度不够、防护措施落后等问题。同时尽管高速公路建设已开始实行“一大四小”工程,对于绿化施工的要求越来越高,采用客土喷播与喷混植生工艺,采用"草、灌、乔”相结合的方式进行绿化,有效保护了生态坏境。但受各种因素制约,从全国来看高速公路建设还是缺乏整体生态考虑,为使我国的高速公路真正成为“生态高速公路”,给人们带来永久的福利,要在今后的高速公路边坡治理中引起充分的重视。

参考文献:

[1] 谢飞鸿,王锦山,尹伯悦.成南高速公路滑坡稳定性分析及治理[J].岩石力学与工程学报,2005,24(2):54- 56.

第11篇

水利工程论文3000字(一):水利工程施工中边坡开挖支护技术研究论文

摘要:水利工程的施工在我国基础设施建设工作中占据着身份重要的位置,水利工程施工环境比较复杂,尤其是高边坡部分,极易受到地质结构的影响,出现相应性的病害和风险。本文详细分析了水利工程施工中边坡开挖支护技术的相关内容,对其要点进行了全面论述,具有一定的借鉴性。

关键词:水利工程;边坡开挖施工;支護技术;研究

目前在水利工程建设中其岩质边坡高度若是超过30m则将其定性为高边坡,而在高边坡开挖施工中若是其出现失稳情况则会带来极为严重的安全隐患问题,为此必须要根据水利工程高边坡的力学结构特征来进行分析如何科学的采用开挖与支护技术提升高边坡施工的安全性、稳定性,以此来降低在水利水电工程施工中其高边坡开挖对周边土体所产生的扰动及影响,从而进一步的提升施工质量及施工效益。

1水利工程施工中边坡开挖支护技术的重要意义

国家水利工程行业蓬勃发展,这关系到老百姓日常生活的点点滴滴,同时也是地方政府每年大力支持发展的基础设施项目之一。水利工程项目开展建设阶段,边坡结构不规则,对于开展作业的施工人员来说是一个挑战,在工程的质量控制和可靠性上受到的影响较大。因此,当水利工程遇到复杂的边坡条件时,一定要认真细致勘察现场情况,合理实施边坡开挖支护技术,随着工程的推进要即使做好过程检查与控制,作业方案需进行动态调整和优化。一方面有利于缩短整个项目工程周期,一方面有利于改善成本控制效果。在水利工程项目建设中,边坡开挖支护技术可以大大减少边坡岩体脱离并滑落甚至坍塌等疑难杂症问题,改善边坡开挖结构支护效果,从而能够避免水利工程施工阶段发生各类安全事故,提升施工效率,为我国的水利工程事业长远发展提供战略支持。

2水利水电边坡开挖支护作业阶段存在的困难

1)地下水渗漏,拖累施工效率。在水利工程建设阶段,边坡开挖作业是前期非常重要的一个环节。在边坡开挖作业阶段,基坑通常在设计上都是比较大的深度,所以为了满足要求,要进行有效地施工。不过,在挖掘土壤过程中,通常都会对地表生态产生严重的损坏,地质状态发生变化,地表水分会慢慢渗漏出来。基坑越挖越深,而积累的水分也就越来越多,导致周围的土壤变成了稀泥。同时,挖掘施工单位在作业过程中很少会细致地认真勘查地下水源状况,所以就算遇到了积水问题,也没有认真设计排水方案,所以边坡开挖过程中常常遇到水浸基坑,水分积聚导致边坡支护施工效率大幅下降。

2)超挖过度的问题比较普遍。一般情况下,水利工程边坡土方开挖阶段,多数是借助人力挖掘的,在地势环境确定好以后,挖掘基坑时两道支撑之间的坡度较平顺,所以人工操作上难以把持深度,导致超挖、挖深的情况比较普遍,所以多数情况下的实测基坑深度跟设计要求是有一定的差距的,需在设法额外进行修复作业。还有就是多开挖出的土壤,一时间无法及时运出,当遇上雷雨天气时,泥水混着土壤重新回流到基坑里面,也给施工造成大麻烦。

3水利工程施工中高边坡开挖技术分析

1)边坡清理。边坡清理属于水利工程高边坡开挖施工的基础部分,在进行开挖施工作业之前需要对高边坡其表面进行彻底的清理,主要是针对施工区域的植被、杂草、碎石等杂物的清除工作。一般情况下其清理范围需要超过所设定的开挖线5米外,以此来为后续的高边坡开挖施工提供基本的施工保障。

2)土方开挖。在进行土方开挖作业时需要注意其多数是采用自上而下的方式进行分层开挖施工作业,在高边坡开挖施工中需要注意对每层的削坡厚度进行控制,通常其会控制在3米左右。并且在土方开挖中其多数是采用机械与人工进行结合的方式来进行作业,在应用机械完成开挖施工后需要利用人工作业的方式来进行修坡,这样能够使开挖施工的高边坡区域形成一定的坡度,为水利工程排水提供基础条件,这样可以防止在高边坡上出现积水留存的情况。

3)石方开挖。在石方开挖中其具有较高的施工难度,因此在实际中必须要按照设计方案的内容来进行规范化、标准化施工,在石方开挖中其通常会采用爆裂施工方法来对开挖进行处理,目前主要是应用预裂爆破施工技术来进行作业。在爆破作业中需要对其各项爆破参数及炸药用量进行控制,以此来构建起合格的爆破网络,从而降低在爆破作业中的危险性。在进行爆破钻孔施工之前需要对钻孔位置进行准确的定位,以此来保证钻孔之间的间隔能够保持在相同的距离,其一般需要使间隔距离在50cm左右,并且对于钻孔的深度需要使其在50cm以内。

4水利工程施工中高边坡支护技术分析

1)锚杆技术。锚杆技术的应用在水利工程施工边坡开挖支护技术中最为广泛。在水利施工时,利用锚杆固定边坡的岩体可以提高边坡开挖工作的效率、质量自己安全系数。锚杆技术的特点是占地面积小、施工便利、安全系数高,并且可以通过完全人工操作在施工工程中进行运用,是一种便捷的技术。但是施工单位应用这种技术时,一定要严格控制相关的材料和设备质量,从而保证锚杆优秀的性能和质量。另外,在锚杆技术的应用过程中,主要通过施工人员主观判断,分析岩体情况,找到坡位存在隐患问题的某一边,再判断岩石的走向和倾斜角,调整施工设备,控制钻头和岩石的位置以及两者之间的距离,在岩石中钻出放置锚杆的孔洞。

2)钢筋的铺设技术。钢筋铺设作业是水利工程施工中最为基础的一环。通过合理编排钢筋的顺序、数量,能够有效提升整个边坡支护的作用,从而给予整个水利工程长效使用的有力支持。需要注意的是,尽管钢筋铺设作业是一项相对较为简单的工程,但相关的施工人员也要将设计图纸、设计意图等进行详细的分析,确保了解到整个工程的流程后在进行具体工程,要将经验主义所摒弃,才能高质量地完成相关的工作。由于边坡支护工作往往工程量相对较大,支护工程的规模也相对较大,所以其钢筋往往需要进行一定的连接工序。尽管目前市场上也能供应相对较长的钢筋,但综合考虑到运输成本和安装成本,绝大多数的施工单位还是会采用绑扎钢筋。

3)混凝土喷涂技术。在水利工程的边坡开挖防护中运用混凝土喷涂技术可以在边坡和外界环境中建设隔离带,避免边坡在自然环境和人为活动的影响下变得不稳定,对边坡进行有效防护。喷涂技术具有原材料易获取、施工速度快、施工后对原本土壤条件影响较小的特点,在目前的边坡防护技术作业中最为常见。利用混凝土喷涂技术还可以有效避免雨水的冲击可能带来的边坡坍塌现象,在水利工程施工中对长时间接触水资源的设施起到增加其强度的作用。同时,混凝土喷涂技术也需要严格的施工要求。喷涂作业只有分次有序的进行,保持干净无杂质无灰尘的条件才可以体现出更好的效果。当然喷涂设施需要工作人员的实时检查,防止设备过热或者其他异常现象的发生。

4)钻爆技术。当前的水利施工中钻爆技术的应用比较少,因为该项技术通常在质地较硬的工作区使用。不过,通过结合锚杆和混凝土喷射可以有效提高边坡开挖工作的安全系数,对边坡发挥支护作用。需要施工单位注意的是,运用钻爆技术一定要考虑开挖地点的周围环境和地质条件,同时采用正确合适的施工角度和施工方法。

5结束语

综上所述,作为我国基础设施建设最基础并且最重要的一部分,水利工程施工是促进我国经济可持续发展的动力。高边坡开挖支护技术的应用,具有自身的特点,对这项技术的特点和内容进行详细分析,找出技术的重点和难点,在严格控制的基础上,保障技术的合理化运行。

水利工程毕业论文范文模板(二):水利工程档案管理信息化建设思考论文

摘要:在水利工程项目建设过程中产生了大量的项目档案,而是否能对档案进行科学管理、有效利用,是工程建设非常重要的一项内容。

关键词:水利工程;档案管理体系;问题;对策;建设规模

1水利工程档案管理概述

为了实现对水利工程档案的高效利用,增强应用效果,则需要对与之相关的内容有所了解,同时结合实际的水利工程条件和特点进行相关数据、资料的有序管理,积极发挥档案管理的作用。实际的档案管理中,需要以档案管理标准化、规范化为重要目标,促进档案管理水平的提升,从而保证档案收集、整理、归档工作的有效性,给水利工程建设中的决策、施工、养护管理等提供有效依据。这就要求水利工程的档案管理工作要在工程建设的全过程中严格落实,并保证档案数据的全面性、及时性、准确性,及时发现档案管理工作中的问题,不断完善档案管理体系。

2水利工程档案信息化管理建设的重要意义

随着信息技术的不断发展,将以前水利工程的档案信息化,之前水利工程的档案都是纸质化的不利于管理与保存,将传统的纸质档案转化为电子档案,通过信息软件以及相应的平台进行保管比较方便查阅。相对于传统的纸质档案管理来说,将水利工程的档案信息化之后,可以简化档案管理的工作流程,使档案的管理更加简单便捷。通过使用信息化技术使档案的分类,组合等工作节省了大量时间,同时又大大降低了该类工作的错误率。同时,对于传统的纸质档案来说,在管理的过程中需要解决纸质档案的防尘,防虫等问题,同时纸质档案的存放又比较占空间。将档案信息化不仅可以减少档案存储的空间,通过采用硬盘,光盘等载体来存放相应的档案,便于档案的存储与携带管理。将水利工程的档案信息化后可以实现信息的共享,相应的工作人员可以通过计算机来查询相应的文献档案资料这样极大的,方便了水利工程档案的管理工作。水利工程档案管理体系的构成在细化水利工程档案管理研究内容的过程中,需要对管理体系构成加以分析。构成的要素具体包括:1)档案管理制度:像地方性法规、国家强制性的法律法规、国家标准及行业标准等,隶属水利工程档案管理制度的范畴;2)档案管理机构:在国家档案行政管理部门、参建各单位的档案管理部门等管理机构的支持下,为水利工程档案管理提供了专业保障,确保了管理计划制定与实施的有效性;3)档案管理技术:通过对档案收集、整理、保管及利用这四方面的综合考虑,有利于丰富水利工程档案管理中的技术内涵,为管理工作的高效完成提供技术保障;4)管理人员:在提升水利工程档案专业化管理水平的过程中,应重视管理人员的综合素质,充分发挥专业优势,落实好专业性强的档案管理工作。

3水利工程档案管理中存在的问题

3.1档案管理方式落后

随着各领域档案管理工作方法的更新,水利工程档案管理也需要与时俱进的创新档案管理模式,然而受传统管理理念的影响,水利工程档案信息的收集、整理、归档仍采用纸质形式,档案利用也通过人工操作来实现。这样传统的档案管理方法显然是不能满足现代化水利工程建设需求的。并且,落后的档案管理方式,还容易使档案出现丢失、损坏等问题,对实际工程建设造成严重影响。

3.2档案管理缺少安全性

实际上,在电脑中录入纸质档案的重要内容形成电子文档,通过软件进行管理,就是水利工程档案的信息化管理。但是我们无法保证电脑不会出现系统漏洞,导致电子文档丢失和被不法分子偷窃的可能性,所以电脑系统的安全性也是我们必须面对的问题。如果档案数据泄露,那么对于我国的安全、民生以及社会的稳定都会造成极大的不利影响。

3.3管理制度不严

因制度方面存在一定的问题,致使这方面的管理体系应用效果不显著,制约着档案管理水平的提升,影响着水利工程运行效果及专业资料的利用价值等。具体表现为:1)由于既有的档案管理制度不完善,应用中缺乏适用性,导致水利工程在这方面的管理工作效率有所降低,难以满足管理体系科学应用要求;2)实践中因档案管理制度实施不到位,致使相应的管理工作质量缺乏保障,对水利工程档案资料利用效果产生了不利影响;3)思想上对水利工程档案管理制度落实方面缺乏足够的重视,使得管理体系构建不及时,从而降低了该工程档案管理及利用水平。

4健全水利工程档案管理体系的对策

4.1完善档案管理相关设备

水利工程档案信息化管理主要是通过电子设备实现,比如计算机、电子阅览设置等,所以档案信息化管理的实现和发展离不开一套系统完善的设备。社会经济发展迅猛,水利工程建设大幅提升,相对应水利工程档案管理工作量也越来越大,一套完善并且先进的设备不仅可以更好的管理档案资料,还可以大大的缓解工作人员的管理压力。现在使用最为广泛的设备是光盘储存设备,或者计算机磁盘储存系统。完善的档案管理设备可以在水利工程档案信息化建设当中奠定夯实的基础。

4.2加强档案管理意识

在水利工程建设过程中各方都应该树立正确的档案管理意识。档案工作与管理意识间是互相促进的作用,档案管理工作开展好坏与否关键就在于是否具备正确的档案管理意识。为了使档案管理工作能够很好的落实到位,我们就必须将工程建设与档案管理,对建设项目档案管理实施落实.

4.3加强档案管理人员综合素质

水利工程档案管理工作需要具备丰富经验和专业知识,严格遵守各项规定。要有计划、有方法的培养档案管理人员,通过业务培训不断提升管理人员的综合素质。档案人员要严格遵循《档案法》法相关规定,将档案管理的新知识和新理论应用到工作中,不断提升自身综合素质,全面提升档案工作服务质量和管理能力。

4.4管理模式创新

目前,许多单位的档案管理工作都处于非独立结构,比如只是腾出一间办公室作为档案室,没有独立的管理中心。

4.5營造良好的电子档案储存环境

随着网络技术的不断发展,在水利工程档案管理室全面采用信息化建设可以充分提高查档时的效率。工程档案信息化管理建设的实现,离不开资金的支持和完善

5结语

第12篇

关键词:边坡 数值模拟 软件FLAC3D 应力场

中图分类号:P5.TP31 文献标识码:A 文章编号:1672-3791(2015)04(b)-0092-02

我国地质条件复杂,常常发生边坡变形破坏,国家每年需花费大量资金进行边坡治理。边坡通常会发生变形和滑坡破坏二种。斜坡岩土体沿着贯通的剪切破坏面所发生的滑移现象,称为滑坡[1]。滑坡的主要作用原理是滑动带(简称滑带)或某一滑移面上的剪应力超过了滑带或滑移面的抗剪强度所致。对边坡破坏形式认识和稳定性分析,对于边坡的治理有着积极意义。在边坡稳定性分析方法中,经常用到的有剩余推力法、极限平衡法和概率法等,这些方法已经在边坡的稳定性分析得到了广泛应用[2-3]。由于上述的每种方法都有一定的局限性,约束条件和假设条件较多,有时候会给较带来较大偏差。数值模拟方法的出现,由于其准确率高,能预测边坡的变形破坏形式,因而在边坡工程中得到了广泛应用,因而常常为边坡工程分析提供科学的理论依据[4]。

1 滑坡的数值模拟分析

某边坡工程,岩土结构特征上部覆盖层主要由残坡积体分布,下伏为基岩。覆盖层主要由残、坡积堆积层组成,其成分为碎石土及粘土夹碎石,呈中密至密实状态,厚约4.5~11.0m,下层基岩为强化砂岩。此边坡工程位于降雨充沛地区,降雨使得此边坡覆盖层的土质强度降低,使得边坡容易发生变形和滑坡破坏。为了治理该边坡,对该边坡的风化基岩进行了灌浆处理。为了对该边坡工程的稳定性进行预测和分析,从现场采取岩土样进行室内试验,室内试验以岩土相关试验规范标准执行。岩土样的取值根据相关《岩土工程勘察规范》,结合现行边坡工程的经验取值而得。其边坡体的物理力学参数如下:上层土的天然容重1.823g/cm3,粘聚力为33kPa,内摩擦角12°,下层风化砂岩的密度为2.72 g/cm3,粘聚力为90kPa,内摩擦角28°,抗拉强度0.08 kPa,剪胀角为25°。该边坡工程是否具有稳定性以及为了预测今后的发展变形,该文运用模拟软件FLAC对该边坡进行了边坡稳定性分析。

该边坡工程地质的模型,其边坡设计的计算模型如图1所示,边坡单元划分为8个单元。选取的坐标系x轴为与边坡坡面走向垂直作为横坐标轴,以边坡坡面走向的平行方向指向作为纵坐标y轴,铅垂方向为z轴。同时,结合该边坡工程实际情况,计算模型沿边坡的x轴方向宽度值为245m,沿边坡y轴方向的走向长度为365m,z向边坡底部高程为1 880m。运用数值模拟软件FLAC3D计算时,将边坡坡面设为自由边界,模型底部设为固定约束边界,模型四周设为单向边界。在初始条件中,不考虑构造应力,仅考虑自重应力产生的初始应力场和水压力。按照以上的约束条件,进行Mohr-Coulomb模型为本构模型的弹塑性对该边坡工程的应力场规律分析,从而分析边坡破坏的形式。

根据FLAC软件进行数值模拟分析,分别得到图2和图3,分别为该边坡的第一主应力σ1和第三主应力σ3云图。需要说明的是,数值模拟FLAC3D软件中,以拉应力为正,压应力为负,因此以绝对值的大小判定第一主应力σ1和第三主应力σ3。从图2和图3边坡主应力云图来看,边坡并未出现明显的拉应力区,总体基本上以压应力为主,也就是说该边坡若发生破坏,是以“压-剪”破坏模式为主,不会以“拉-剪”破坏模式为主。

2 结语

采用数值模拟软件FLAC3D对边坡工程的应力场规律进行分析,分析该边坡的破坏形式。从该边坡的第一主应力σ1和第三主应力σ3云图进行综合以上位移分析,该边坡未出现明显的拉应力区,总体基本上以压应力为主,即该边坡若发生破坏,是以“压-剪”破坏模式为主。运用数值模拟来对边坡进行应力场分析,可以减少手工计算的工程量,并且能有利于工程的判断和预测。

参考文献

[1] 李智毅,王智济,杨裕云.工程地质学基础[M].武汉:中国地质大学出版社,1990.

[2] 时卫民,郑颖人,唐伯明.滑坡稳定性评价方法的探讨[J].岩土力学,2003,24(4):545-552.