时间:2022-05-28 03:21:25
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇基因工程疫苗,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
摘要:为研究鹅细小病毒(GPV)VP2蛋白基因工程亚单位疫苗对实验动物的免疫效果,本试验对GPV延边分离株的vp2基因进行原核表达,将Western-blot试验鉴定为阳性的表达蛋白进行乳化,免疫BALB/c小鼠,应用ELISA方法监测试验动物的体液免疫水平,以此评价该疫苗的免疫效果。结果表明,在三免后2d,重组蛋白佐剂组检测到的血清OD450nm值达0.687,而生理盐水阴性对照组为0.038,两者差异极显著(P
关键词:鹅细小病毒;基因工程亚单位疫苗;免疫试验
关键词:鹅细小病毒;基因工程亚单位疫苗;免疫试验
中图分类号:S835 文献标识码:A 文章编号:1674-0432(2012)-01-0171-1
中图分类号:S835 文献标识码:A 文章编号:1674-0432(2012)-01-0171-1
基金项目:吉林省自然科学基金面上项目(201215230),吉林省牧业管理局项目(吉牧科字第200902号)。
基金项目:吉林省自然科学基金面上项目(201215230),吉林省牧业管理局项目(吉牧科字第200902号)。
细小病毒(Goose Parvovirusis,GP)呈世界性分布,发病率和病死率均较高,临床一旦发病,无有效的治疗办法,严重危害本地区养鹅业的健康发展[1]。目前,国内外用于GP的预防主要以传统疫苗为主,基因工程疫苗尚属探索阶段,尚缺乏GPV基因工程疫苗诱导雏鹅细胞免疫和体液免疫的系统研究资料。在GPV的三个结构基因中,Le Gall-Recule等[2]利用杆状病毒表达系统,证明表达的番鸭细小病毒vp2基因具有抗原性和免疫原性。本研究拟对GPV的vp2基因进行原核表达,制备基因工程亚单位疫苗,并进行免疫试验分析,为GPV的vp2基因工程疫苗的研制奠定基础。
细小病毒(Goose Parvovirusis,GP)呈世界性分布,发病率和病死率均较高,临床一旦发病,无有效的治疗办法,严重危害本地区养鹅业的健康发展[1]。目前,国内外用于GP的预防主要以传统疫苗为主,基因工程疫苗尚属探索阶段,尚缺乏GPV基因工程疫苗诱导雏鹅细胞免疫和体液免疫的系统研究资料。在GPV的三个结构基因中,Le Gall-Recule等[2]利用杆状病毒表达系统,证明表达的番鸭细小病毒vp2基因具有抗原性和免疫原性。本研究拟对GPV的vp2基因进行原核表达,制备基因工程亚单位疫苗,并进行免疫试验分析,为GPV的vp2基因工程疫苗的研制奠定基础。
1 材料与方法
1 材料与方法
1.1 材料
1.1 材料
BALB/c小鼠购自哈尔滨兽医研究所;弗氏佐剂购自sigma公司;其他载体与试剂由延边大学预防兽医实验室提供。
BALB/c小鼠购自哈尔滨兽医研究所;弗氏佐剂购自sigma公司;其他载体与试剂由延边大学预防兽医实验室提供。
1.2 GPV延边株vp2基因工程亚单位疫苗的制备
1.2 GPV延边株vp2基因工程亚单位疫苗的制备
采用常规方法提取GPV延边株的基因组DNA,以特异引物[3]扩增vp2基因片段,构建原核表达载体pET30a-vp2,并在大肠杆菌中诱导表达,将Western-blot鉴定为阳性的蛋白进行亲和层析纯化,纯化后重组蛋白与弗氏佐剂混合乳化,制备GPV的基因工程亚单位疫苗。
采用常规方法提取GPV延边株的基因组DNA,以特异引物[3]扩增vp2基因片段,构建原核表达载体pET30a-vp2,并在大肠杆菌中诱导表达,将Western-blot鉴定为阳性的蛋白进行亲和层析纯化,纯化后重组蛋白与弗氏佐剂混合乳化,制备GPV的基因工程亚单位疫苗。
1.3 vp2基因工程亚单位疫苗的动物免疫试验
1.3 vp2基因工程亚单位疫苗的动物免疫试验
免疫试验共分3组,每组10只BALB/c小鼠,分别为接种VP2重组蛋白组,VP2重组蛋白加佐剂组和生理盐水对照组。在每一次免疫前采血分离血清,第3次免疫后的第2d、4d、6d分别采血分离血清,均存于-20℃备用。
免疫试验共分3组,每组10只BALB/c小鼠,分别为接种VP2重组蛋白组,VP2重组蛋白加佐剂组和生理盐水对照组。在每一次免疫前采血分离血清,第3次免疫后的第2d、4d、6d分别采血分离血清,均存于-20℃备用。
1.4 ELISA监测血清VP2抗体水平
1.4 ELISA监测血清VP2抗体水平
用纯化的VP2重组蛋白为抗原包被反应孔,以小鼠抗GPV阳性血清为一抗,以山羊抗小鼠HRP-IgG为二抗,进行ELISA检测实验小鼠血清中抗体水平,并分析vp2基因工程亚单位疫苗对实验小鼠的体液免疫水平。采用SAS软件对试验数据进行分析。-IgG为二抗,进行ELISA检测实验小鼠血清中抗体水平,并分析vp2基因工程亚单位疫苗对实验小鼠的体液免疫水平。采用SAS软件对试验数据进行分析。
2 结果
2 结果
2.1 GPV vp2基因的原达表达
2.1 GPV vp2基因的原达表达
对pET30a-vp2进行IPTG诱导表达,SDS-PAGE与Western-blot试验表明,在经考马斯亮兰染色的SDS-PAGE胶上和NC膜上均出现VP2特异性条带(图略),百未诱导的重组菌未出现特异条带。
对pET30a-vp2进行IPTG诱导表达,SDS-PAGE与Western-blot试验表明,在经考马斯亮兰染色的SDS-PAGE胶上和NC膜上均出现VP2特异性条带(图略),百未诱导的重组菌未出现特异条带。
2.2 GPV重组VP2蛋白的体液免疫水平
2.2 GPV重组VP2蛋白的体液免疫水平
对采集的BALB/c免疫小鼠血清进行ELISA试验检测,每个样品重复检测三次,取平均值计算,详见表1。经统计学分析表明,在三免后第2d,重组蛋白组和重组蛋白佐剂组免疫小鼠血清的OD450nm值均达到最高值,重组蛋白佐剂组与生理盐水阴性对照组间差异极显著(P
对采集的BALB/c免疫小鼠血清进行ELISA试验检测,每个样品重复检测三次,取平均值计算,详见表1。经统计学分析表明,在三免后第2d,重组蛋白组和重组蛋白佐剂组免疫小鼠血清的OD450nm值均达到最高值,重组蛋白佐剂组与生理盐水阴性对照组间差异极显著(P
表1 免疫后BALB/c免疫小鼠血清中抗体消长变化(OD450)
表1 免疫后BALB/c免疫小鼠血清中抗体消长变化(OD450)
组别 一免前 二免前 三免前 三免后2d 三免后4d 三免后6d
组别 一免前 二免前 三免前 三免后2d 三免后4d 三免后6d
重组蛋白组 0.039±
重组蛋白组 0.039±
0.015 0.312±0.012 0.434±0.022 0.536±0.031 0.480±0.036 0.245±
0.015 0.312±0.012 0.434±0.022 0.536±0.031 0.480±0.036 0.245±
0.017
0.017
重组蛋白佐剂组 0.033±
重组蛋白佐剂组 0.033±
0.032 0.498±0.017 0.663±0.028 0.687±0.036 0.569±0.037 0.461±
0.032 0.498±0.017 0.663±0.028 0.687±0.036 0.569±0.037 0.461±
0.019
0.019
生理盐水组 0.037±
生理盐水组 0.037±
0.013 0.031±0.015 0.039±0.015 0.038±0.015 0.034±0.015 0.030±
0.013 0.031±0.015 0.039±0.015 0.038±0.015 0.034±0.015 0.030±
0.015
0.015
3 讨论
3 讨论
本研究以GPV的vp2基因为目的基因,以pET30a为表达载体,在体外高效表达了VP2蛋白,经重组蛋白免疫小鼠试验发现,该重组蛋白具有免疫活性,重组蛋白佐剂组与阴性组间血清抗体水平差异极显著,说明vp2基因可以作为基因工程疫苗的候选基因,而重组蛋白佐剂组与重组蛋白组间血清抗体水平差异显著,提示佐剂对基因工程亚单位苗的免疫效果影响较大。由于本研究只是初步的预试验,未进行攻毒试验和鹅体内试验,这将在下一步试验中予以开展。本研究结果为GPV vp2基因工程疫苗的研制奠定基础。
本研究以GPV的vp2基因为目的基因,以pET30a为表达载体,在体外高效表达了VP2蛋白,经重组蛋白免疫小鼠试验发现,该重组蛋白具有免疫活性,重组蛋白佐剂组与阴性组间血清抗体水平差异极显著,说明vp2基因可以作为基因工程疫苗的候选基因,而重组蛋白佐剂组与重组蛋白组间血清抗体水平差异显著,提示佐剂对基因工程亚单位苗的免疫效果影响较大。由于本研究只是初步的预试验,未进行攻毒试验和鹅体内试验,这将在下一步试验中予以开展。本研究结果为GPV vp2基因工程疫苗的研制奠定基础。
参考文献
参考文献
[1] 方定一.小鹅瘟的介绍[J].中国兽医杂志,1962,8:19-20.
[1] 方定一.小鹅瘟的介绍[J].中国兽医杂志,1962,8:19-20.
[2] le Gall-Recule, Jestin V,Chagnaud P.Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins [J].J GenVirol,1996,77(9):2159-2163.
[2] le Gall-Recule, Jestin V,Chagnaud P.Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins [J].J GenVirol,1996,77(9):2159-2163.
[3] 胡晓静,潘杰,陈进喜,等.2株鹅细小病毒主要结构蛋白vp2基因的克隆和序列分析[J].现代农业科技,2008,(23):262-265.
[3] 胡晓静,潘杰,陈进喜,等.2株鹅细小病毒主要结构蛋白vp2基因的克隆和序列分析[J].现代农业科技,2008,(23):262-265.
作者简介:高旭(1977-),男,吉林德惠人,博士,副教授,研究方向:动物病毒病分子生物学与免疫学。
【关键词】基因工程 蛋白药物 发展概况
中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03
基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。
生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。
当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。
以下将介绍一些基因工程产物的市场概况和研究发展。
1 促红细胞生成素
是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。
2001年,EPO的全球销售额达21.1亿美元,2002年达26.8亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。
2 胰岛素
自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。
国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。
3 疫苗
在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。
疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。
随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。
在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。
4 抗体
从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。
治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。
参考文献
[1] 章江益, , 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14.
[2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14.
[3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70.
[4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社.
[5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65.
[6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267.
[7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20.
[8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23.
[9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005.
[10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460.
[11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9.
[12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2.
关键词:人用乙型脑炎疫苗;兽用脑炎疫苗乙型;卫生管理;定期免疫
中图分类号:S512.31 文献标识码:B 文章编号:1007-273X(2013)10-0062-02
流行性乙型脑炎(JE)是由日本脑炎病毒(JEV)引起的以中枢神经系统发生病变为主的急性传染病,也是一种人畜共患的自然疫源性疾病。该病主要流行于亚洲地区及环西太平洋地区,已成为人类脑炎疾病最主要的病因之一,严重威胁着人类健康,并影响畜牧业特别是养猪业的发展。
1 传统疫苗
1.1 人用乙型脑炎疫苗
人使用乙肝脑炎疫苗有包括灭活乙型脑炎疫苗和减毒苗,其中灭活疫苗有鼠脑灭活苗、地鼠肾细胞灭活苗和IC51疫苗,减毒苗只有SA14-14-2减毒活疫苗。
1.1.1 灭活疫苗 ①鼠脑灭活疫苗。很多国家长期使用鼠脑灭活疫苗,它是利用Nakayama或Binjing-1病毒株接种乳鼠后脑研磨液,经福尔马林灭活、纯化等工艺制备的灭活疫苗。每毫升疫苗的鼠脑灭活苗包含接近500 μg的明胶稳定剂和低于50 ng的鼠血清蛋白[1],但各国在2006年前后陆续终止了该疫苗的生产。②地鼠肾细胞(PHK细胞)灭活疫苗。该病毒式从人病例中分离得到的JEV毒株-P3株,经小鼠脑内传代后制成病毒悬液,接种PHK单层细胞,收获病毒,后经甲醛灭活后加入硫柳汞,加入0.1%的人血清白蛋白做保护剂制备疫苗。该疫苗的使用曾经出现过严重的不良反应,并且接种次数越多,副反应发生率越高[2],我国已于2007年后停止了该疫苗的使用。
1.1.2 减毒活疫苗 目前人类用于预防流行性乙肝脑炎(JE)惟一的减毒活疫苗SA14-14-2减毒苗是由中国成都生物制品研究所研制的[3]。经20多年的使用,该疫苗未见有大量不良反应发生的报道, SA14-14-2疫苗极高的安全性和良好的有效性。但SA14-14-2是一种减毒苗,在理论上存在病毒反强的危险性[4]。
2013年10月9日,世界卫生组织(WHO)在日内瓦正式宣布:由中国生物技术股份有限公司所属成都生物制品研究所有限责任公司生产的乙型脑炎减毒活疫苗(SA14-14-2)(以下简称乙脑活疫苗)通过WHO预认证。这是中国自主研发的疫苗首次通过WHO预认证,进合国采购机构的药品采购清单,实现了零的突破,在中国疫苗发展史上具有里程碑意义。
1.2 兽用疫苗
1.2.1 弱毒疫苗 目前使用仓鼠肾细胞培养的病毒制成的弱毒活疫苗用于马属的免疫。SA14-14-2株减毒苗主要用于预防猪的流行性乙型脑炎疾病,也适用于马,免疫过后均能获得较好的保护效果。
1.2.2 灭活疫苗 鼠脑灭活疫苗是采用JEV HW1株接种乳鼠,取出现临床症状和濒临死亡的小鼠脑组织制成悬液,甲醛灭活后制成油乳剂灭活疫苗。该疫苗需要进行二次免疫,易引起过敏反应。
2 新型疫苗
2.1 嵌合病毒疫苗
嵌合病毒疫苗是利用基因工程技术,在基因水平上改造病原体的基因组,将两种或者多种病原体的基因片段嵌合到活载体中,从而连接到载体相应的部位或替换掉载体中相应的片段。在活载体进入组织细胞后,插入的基因片段在相应的细胞内得到表达,激发机体为产生体液和细胞免疫,从而起到预防病原体感染的作用。
2.2 DNA疫苗
DNA疫苗的理化性质稳定,体外不易受到不良因素的影响而产生降解,并且导入的质粒在机体细胞质内进行复制、转录和表达蛋白,Leitner等[5]的研究表明了DNA疫苗使用的安全性。
2.3 基因工程亚单位疫苗
基因工程亚单位疫苗是将编码病毒的主要抗原基因与表达载体连接后转入宿主细胞,并在宿主细胞内病毒蛋白得到表达,经过抽提和纯化后制成基因工程亚单位疫苗。与传统的亚单位疫苗相比,基因工程亚单位疫苗具有更好的安全性,它只含病毒结构的一部分,且不含有核酸物质,不会引发病毒感染动物[6]。
3 小结
研究JE疫苗的进展历经久远,不论人用乙脑病毒疫苗还是兽用乙型脑炎疫苗。随着技术在不断改进,乙脑疫苗的技术也相应改进,但也不忘做好最初的卫生防疫。
(1)夏天做好驱蚊蝇,以及养殖场的隔离和消毒工作,切断传播途径。
(2)定期免疫疫苗免疫能刺激猪群机体产生较高水平的保护抗体,因此对本病的防控应坚持疫苗预防为主。
(3)加强饲养管理 提高种猪的免疫力,改善种猪的饲料配方,增强猪的抵抗能力。
参考文献:
[1] HALSTEAD S B, THOMAS S J. New Japanese encephalitis vaccines: alternatives to production in mouse brain[J]. Expert Rev Vaccines,2011,10(3):355-364.
[2] BEASLEY D W, LEWTHWAITE P, SOLOMON T. Current use and development of vaccines for Japanese encephalitis[J]. Expert Opin Biol Ther,2008,8(1):95-106.
[3] JIA L, WANG Z, YU Y. Protection of SA14-14-2 live attenuated Japanese encephalitis vaccine against the wild-type JE viruses[J]. Chin Med J (Engl),2003,116(6):941-943.
[4] UMENAI T, KRZYSKO R, BEKTIMIROV T A, et al. Japanese encephalitis: current worldwide status[J]. Bull World Health Organ,1985,63(4):625-631.
关键词 儿童 乙肝疫苗 表面抗体
doi:10.3969/j.issn.1007-614x.2012.02.376
乙型肝炎病毒(HBV)感染是一个全球性的公共卫生问题。我国属乙型肝炎高感染区,乙型肝炎表面抗原(HBsAg)的携带率为10%~15%[1]。迄今,世界上尚无治疗乙型肝炎的特效药物。儿童尤其新生儿,感染HBV不仅影响身体健康,而且成长过程中还会面临社会歧视,对其今后的人生有重要影响。为了解新生儿接种乙型肝炎疫苗后的免疫效果,探讨新生儿乙型肝炎预防的对策和措施,笔者对南宁市妇幼保健院预防接种门诊全程接种重组(酵母)乙型肝炎疫苗的741例儿童进行接种乙型肝炎疫苗后的免疫效果分析。
资料与方法
一般资料:随机抽样方法抽取741例婴幼儿,男414例,女327例;1岁组387例,2岁组258例,3岁组96例。婴幼儿均按我国现行标准注射乙肝疫苗,即出生后24小时注射第1针,1个月时注射第2针,6个月注射第3针,均为5μg的乙型肝炎疫苗,疫苗的储存、运输均在2~8℃的条件下。接种部位为右上臂三角肌中部,肌内注射。
方法:采集手指末端微量血,ELISA法检测乙肝抗-HBS,用英科新创试剂盒,在有效期内使用。
结 果
1岁组乙型肝炎病毒表面抗体阳性率为80.88%,阴性率为19.12%;2岁组乙型病毒性肝炎病毒表面抗体阳性率为32.17%,阴性率为67.83%;3岁组阳性率为2.83%,阴性率为79.17%。741例儿童乙型肝炎病毒表面抗体检测结果,1岁组婴儿乙型肝炎病毒表面抗体阳性率与2岁、3岁组儿童比较,有显著性差异(X2=40.38、31.09,P<0.01)。结果见表1。
讨 论
乙型病毒性肝炎具有病程长、预后差、易转为慢性等特点,受到社会的广泛关注。广西是乙型肝炎的高发区,乙型肝炎病毒携带者达总人口10%以上,每年新增感染者数百万,约半数将转为慢性肝炎或病毒携带状态。受HBV慢性感染者易发展为慢性肝炎,甚至可转变为肝硬化及肝癌。用乙肝疫苗免疫接种,可有效地预防HBV传播,大大降低人群HBV的携带率。我国当前使用的乙肝疫苗是基因工程疫苗,是一种安全有效的制品、不良反应少,人体接种乙肝疫苗后,通过主动免疫方式产生抗体,使人体获得对乙肝的免疫力,预防HBV感染的成效显著。
婴幼儿全程接种基因工程乙肝疫苗后,对血液乙型肝炎病毒表面抗体的定性测定,可以看出1岁组婴儿乙型肝炎病毒表面抗体阳性率高达80.88%,与文献报道的结果相近[2~3]。而本次调查结果,2岁、3岁组儿童乙型肝炎病毒表面抗体阳性率分别为32.17%和20.83%,与1岁组婴幼儿乙型肝炎病毒表面抗体阳性率比较,有显著性差异。说明婴幼儿全程注射乙型病毒性肝炎基因工程疫苗后,大部分人群可以产生保护性的乙型肝炎病毒表面抗体,但随着时间的推移,2岁以后保护性的乙型肝炎病毒表面抗体逐渐消失。
广西免疫程序规定小儿4岁时才加强注射1次,这样在2~4岁之间就会出现乙型肝炎表面抗体缺失阶段,容易造成乙型病毒性肝炎病毒感染。不少人认为接种乙肝疫苗后可终身预防HBV感染,其实这种认识是偏面的。婴幼儿按计划规范接种乙肝疫苗后,抗体水平逐年下降,3~4岁年龄组儿童抗体阳性率最低,处于弱保护状态。一些儿童对乙肝疫苗无应答[4]。因此接种乙肝疫苗并非一劳永逸,笔者建议儿童2岁左右检测乙型肝炎病毒表面抗体,若出现表面抗体阴性,应给予全程接种乙型肝炎疫苗,以预防乙型肝炎病毒感染。
参考文献
1 付晓玲,张全奖,韦海涛.2552名2~14岁儿童接种重组酵母乙型肝炎疫苗免疫效果观察及分析[J].中华预防医学杂志,2007,41(3):231-232.
2 周贤雅,刘演艮,苏海燕,等.广州市416例新生儿接种疫苗的免疫效果观察[J].临床医学工程,2008,15(11):43-44.
关键词:新城疫;疫苗;研制;应用
中图分类号:S858.31 文献标识码:B 文章编号:1007-273X(2013)09-0065-02
1 新城疫流行情况及疫苗应用现状
鸡新城疫又叫亚洲鸡瘟。它是一种由副粘病毒引起的高度接触性、急性败血性传染病。主要感染禽,也可感染人类。该病流行于很多国家,给世界养殖业造成很大的威胁,被世界卫生组织定为A类疫病[1]。新城疫自1926年被确认以来,在世界范围内广为传播已有80多年,给养禽业带来了巨大的经济损失,迄今仍是禽类最重要的疾病之一。新城疫病毒自1946年在我国首次分离至今已在中国存在了60多年,自20世纪90年代以来,临床上非典型新城疫的发生现象十分普遍,在鹅群及鸭群中均有发生[2-4],说明新城疫的易感宿主范围在进一步扩大。由于疫苗的广泛应用,目前的NDV流行株基因型已发生较大改变,流行病学调查充分显示,基因Ⅶd亚型在我国当前NDV流行株中占有绝对优势,与经典疫苗Lasota 株(基因Ⅱ型)核苷酸同源性不足78%。扬州大学[5]、中国动物疫病流行中心[6,7]、山东农科院家禽所[8]等在流行病学调查中均显示我国近几年基因Ⅶ型NDV流行十分普遍。目前国内外企业生产的新城疫疫苗毒株有10余株,其中Lasota毒株制备的活疫苗、灭活疫苗占据优势地位。
2 疫苗种类
2.1 灭活疫苗
目前预防鸡新城疫的灭活疫苗使用较多的为油乳剂灭活疫苗,国内生物制品厂家多用Lasota株,梅里亚用Ulster2c株、英特威用Clone-30株制备疫苗。评价疫苗质量的主要因素在于毒株的免疫原性及病毒含量的高低。目前,疫苗效力均已达到国际上要求的灭活苗标准,可用于不同日龄的鸡,主要通过颈部皮下及肌肉注射途径免疫。
2.2 活疫苗
目前新城疫弱毒活疫苗有I系、Ⅱ系、Ⅳ系、Clone-30、CS2、VG/GA、HB1、Mukteswar、ZM10、N79、F、Ulsterzc、V4/HB92克隆株、VH株等几种。
2.2.1 I系苗 为中等毒力,主要由Mukteswar株制备,对雏鸡有一定的致病性。60日龄以上鸡才可以用。用法为肌肉注射,不能点眼、滴鼻或饮水,接种后产生免疫力很快,7~10 d抗体水平上升到高峰,随后缓慢下降。同低毒力疫苗相比,免疫期较长。I系苗不能用于产蛋鸡,否则可引起产蛋量大幅下降,蛋壳变劣,且恢复缓慢。
2.2.2 CS株 为中等毒力,免疫效果与普通I系苗相似但毒力稍温和,安全性较优。鸡群1月龄以上才可使用,且此前至少接种过1次新城疫低毒力苗,不能用于初生雏鸡;产蛋鸡不宜接种;在有成鸡和雏鸡的鸡场,应注意消毒隔离,避免苗毒的传播引起雏鸡死亡。接种方法只能肌肉注射。
2.2.3 Ⅱ系苗 毒力弱,通常只用于雏鸡首免,安全性好,但产生免疫力较慢较弱。用法为点眼、滴鼻,不能饮水。
2.2.4 Ⅳ系苗(Lasota株) 是国内外广泛应用的优良低毒力苗,其毒力与免疫性能高于Ⅱ系苗,安全性良好。7日龄以上的健康雏鸡、青年鸡、产蛋鸡均可使用。用法可滴眼、滴鼻、饮水或肌肉注射,雏鸡首免可点眼、滴鼻。
2.2.5 Clone-30株 该疫苗最早是荷兰研制者应用克隆技术,由Lasota株优化制成。其免疫效果与Ⅳ系苗相似而毒力较温和,能突破母源抗体障碍,从1日龄雏鸡至成年鸡均可使用。用法可点眼、滴鼻、饮水或肌注,雏鸡首免可点眼、滴鼻。
2.2.6 N79株 是美国应用克隆技术对Ⅳ系苗加以优化而制成,滴鼻、点眼、饮水免疫均可。
2.2.7 VH株 是以色列用新城疫病毒自然弱毒株制成的一种低毒力苗,毒力温和而稳定,主要用于雏鸡首免。通常应用的是该毒与传支制成的联苗,如VH+H120+28/86,用法可点眼、滴鼻。
2.2.8 其他新城疫低毒力苗 有法国的“卫鸡城”活疫苗与VG/GA株活疫苗、ZM10株活疫苗、V4/HB92克隆株活疫苗、HB1株活疫苗、F株活疫苗等,其主要优点是免疫原性好而毒力温和,呼吸道反应轻微,可饮水、点眼、滴鼻。
2.3 基因工程苗
随着分子生物学及重组DNA技术的发展,基因工程疫苗的研究不断深入,传统的全病毒疫苗存在诸多缺陷,利用基因工程技术开发疫苗是目前疫苗研究的热点,但商品化的产品较少。国内外一些实验室从20世纪80年代末开始利用重组DNA技术研制ND基因工程疫苗。目前,ND基因工程苗主要有DNA疫苗、亚单位苗、活载体疫苗、多肽苗和转基因植物疫苗等几种。
2.3.1 亚单位苗 是将NDV保护性抗原基因在原核或真核系统中表达所获得的产品制成的疫苗,具有安全性高,稳定性好,便于保存运输,易于批量生产的优点。有研究利用相同系统表达的NDV长春株的HN蛋白作为亚单位疫苗,雏鸡可抵抗NDV强毒攻击,并可获得100%的保护。扬州大学[9]利用反向遗传操作构建的基因Ⅶ型疫苗为经过改造的Ⅶ型毒株与大多数流行株一致,为基因Ⅶd亚型,可有效降低喉气管和泄殖腔中的排毒率,对鹅、鸭等水禽具有更好的免疫效果,比经典疫苗Lasota株产生更高的抗体。
2.3.2 DNA 疫苗 具有能够激发机体体液免疫和细胞免疫反应、不散毒、便于储存和运输等优点。DNA疫苗不仅可诱导体液免疫应答,而且还可诱导细胞免疫应答,并兼有亚单位苗的安全性和弱毒疫苗的高效性,已经成为国际疫苗研究领域最热门的课题之一。2005年底农业部宣布,中国已成功研制出禽流感-新城疫重组二联活疫苗,并正式批准生产。
2.4 联苗
新城疫在我国主要养殖区域流行相当普遍,尤其与其他疾病混合感染的情况也很常见,因此在进行新城疫疫苗免疫的同时还要对其他禽病进行疫苗免疫。为了减少对鸡的免疫次数和应激,多采用联苗来防治鸡的各种疾病。国内外新城疫联苗正处于研制及推广应用阶段,已显示出其打一针可防数病的优越性。国内灭活疫苗产品有新支二联、新流二联、新法二联、新病二联、新支减三联、新支流三联、新支法三联、新流法三联、新支法关四联、新支流法四联等相关产品,活疫苗有新支二联等,市场应用效果较好。
3 应用展望
从以上介绍来看,灭活疫苗接种剂量较大,接种后通常需2~3周后才能产生免疫力,不能用作紧急预防免疫。活疫苗能刺激产生局部免疫,免疫后很快得到保护。亚单位疫苗虽然安全性高,稳定性好,便于保存运输,易于批量生产,但是市场应用效果一般,故目前市场仍然采用活疫苗加灭活苗的免疫程序进行鸡新城疫的预防。
据市场跟踪调查,新城疫活疫苗每个月用一次,灭活苗2~3个月免疫一次,使用频率如此之高,但新城疫病毒仍不能得到有效控制,有研究者提出,鸡新城疫虽然只有一个血清型,但由于疫苗株与当前流行株之间的基因型和抗原差异性,免疫鸡群中也会不同程度地感染强毒,目前常用新城疫疫苗毒株与当前流行毒株基因型不匹配,免疫保护力不足。新城疫新型疫苗对控制我国新城疫病毒流行有着非常广阔的应用前景,并且实验室的数据表明,使用与流行株同型的基因Ⅶ型疫苗可以有效降低免疫鸡群中新城疫强毒的携带量及感染率。秦卓明等[10]对国内大量新城疫病毒(NDV)血凝素基因F和HN的测序表明,NDV主要免疫原HN和F基因与生产中广泛应用的经典疫苗Lasota 株的核苷酸同源性不足80%,而NDV流行株之间的同源性则高达94.4%~100%,从分子遗传学角度证实了VIId型NDV是导致新城疫免疫失败的重要原因。HI交叉抑制试验和鸡胚中和试验等则从抗原性的角度证实了NDV在免疫压力下抗原性的变化。
新城疫目前没有特效药物及疫苗,只能以预防为主,根据当地的发病特点、流行趋势和规律,用高质量的疫苗,科学的免疫程序,加强饲养管理与隔离消毒,才是防治ND的关键。因而筛选出优质高效的VIId型NDV毒株制备灭活疫苗或者活疫苗,有可能在今后的生产上替代现有的疫苗,而被广泛使用。参考文献:
[1] 甘孟侯.中国禽病学[M].北京:中国农业出版社,1999.
[2] 宋战胜,王晶钰,赵 伟,等.鸭源新城疫病毒的分离鉴定[J].动物医学进展,2007,28(5):22-25.
[3]张训海,朱鸿飞,陈溥言,等. 鸭副粘病毒强毒株的分离和鉴定 [J]. 中国动物检疫,2001,18(10):24-26.
[4] 陈金顶,廖 明,辛朝安.鹅Ⅰ型禽副粘病毒GPMV/QY97 -1株HN 基因的克隆和序列分析[J].病毒学报,2003,19(4):355-359.
[5] 姚春峰,刘文博,刘秀梵,等.新城疫病毒分离株的生物学特性鉴定
及F 蛋白基因序列分析 [J].病毒学报,2009,25(2):117-124.
[6] LIU H, WANG Z, WU Y, et al. Molecular epidemiological analysis of Newcastle disease virus isolated in China in 2005[J]. J Virol Methods, 2007, 140(1-2):206-211.
[7] LIU H, WANG Z, WU Y, et al. Molecular characterization and phylogenetic analysisof new Newcastle disease virus isolates from the mainland of China[J]. Res Vet Sci, 2008, 85 (3):612-616.
[8] QIN Z M,TAN L T,XU H Y,et al. Pathotypical characterization and molecular epidemiology of Newcastle disease virus isolates from different hosts in China from 1996 to 2005[J].J Cin Microbiol,2008,46(2):601-611.
【关键词】 乙型病毒性肝炎;传播;免疫预防
doi:10.3969/j.issn.1004-7484(x).2013.06.647 文章编号:1004-7484(2013)-06-3391-01
在中国,80%以上的乙肝是通过家族内的母婴垂直传播而感染的,另有20%左右是通过吸毒、性接触、血液透析等医源性感染和其它媒介途径感染。预防乙肝的关键是保护好那些乙肝患者(包括HBV携带者)的亲属、新生儿以及其它高危人群,尤其是新生儿。工作中,对乙肝表面抗原(HBsAg)阳性孕妇所生婴儿及时实施主动免疫(接种乙肝疫苗)和被动免疫(注射乙肝免疫球蛋白,HBIG)相结合;对特殊人群和高危人群先检测体内乙肝表面抗原和抗体(抗-HBs)水平,根据检测结果和暴露危险程度再制定个体化的、科学灵活的主动、被动免疫策略等方法预防HBV的传播,效果显著。人群HBsAg携带率由1992年的9.75%下降为2006年的7.18%;5岁以下儿童HBsAg携带率将至0.98%。
1 乙肝疫苗的免疫策略
接种乙肝疫苗是目前世界公认的预防乙肝最科学最高效的措施。针对不同的人群,我们采取不同的乙肝疫苗免疫策略:①对HBsAg阴性孕妇所生婴儿,采用重组酵母基因工程乙肝疫苗按0,1,6月3针间隔接种法,“0”指出生后24小时内接种第1针,疫苗剂量5vg/剂(0.5ml),上臂三角肌肌内注射。②对HBsAg阳性孕妇所生婴儿,采用出生后12小时内肌肉注射HBIG 100IU(被动免疫)和重组酵母基因工程乙肝疫苗(主动免疫)按0,1,6月3针间隔接种相结合的方法,疫苗剂量10vg/剂(1ml)。③学龄前儿童和学龄儿童及其他人群,之前无乙肝疫苗免疫史或免疫后抗-HBs低、无应答者,采用重组酵母基因工程乙肝疫苗按0,1,6月3针间隔接种法,“疫苗剂量10vg/剂(1ml),上臂三角肌肌内注射;之前有规范的乙肝疫苗免疫史且免后抗-HBs滴度10Miu/ml者,则根据实际需要确定是否加强免疫接种第4剂乙肝疫苗。④有职业危险的医务人员,如传染科、手术室、口腔科、妇产科、检验科、血液透析室和注射室的医护人员,包括实习和进修的医护人员、新就业的医护人员,保育人员及其他高危人群等,采用重组酵母基因工程乙肝疫苗按0,1,6月3针间隔接种法,“疫苗剂量10vg/剂(1ml),上臂三角肌肌内注射。
2 乙肝疫苗的免疫效果观察
上亿人次的乙肝疫苗接种证明这种疫苗是非常安全有效的。新生儿按0,1,6月程序接种3针乙肝疫苗后1-3个月检测抗-HBs阳性率可达95%以上[3],表面抗体几何平均滴度(GMT)30mIU/ml[2],效益成本比172:1。单用乙肝疫苗的母婴阻断率85.97-91.08%,乙肝疫苗与HBIG结合应用的母婴阻断率达到95%以上。
乙肝疫苗的免疫效果受多种因素影响。①疫苗的免疫原性和接种剂量是决定免疫效果的关键因素。同种疫苗不同剂量免疫效果不同,剂量大者免疫效果好于剂量少者,新生儿10vg-10vg-10vg 3针次免疫与10vg-5vg-5vg 3针次免疫、5vg-5vg-5vg 3针次免疫比较,表面抗体阳转率和抗体几何滴度都有显出差异,后者的低、无应答比率明显高于前者。①授种者的年龄和接种部位是影响免疫效果的另一重要因素。接种同样的5vg乙肝疫苗,新生儿的抗体阳转率100%,GMT97.07IU/ml,显著18-60岁的成年人,后者抗体阳转率89.25%,GMT18.88IU/ml。而65岁以上老人抗体阳转率只有50-60%。疫苗接种上臂三角肌的免疫应答显著高于臀部接种的免疫应答率。
3 乙肝免疫预防的工作体会
3.1 接种乙肝疫苗前是否需要做检查 对孕妇实行产前乙肝“两对半”检测确有必要,有了这一检测结果医生才能决定对新生儿采取哪些防护措施,实施不同的乙肝疫苗和HBIG接种方案,以期达到最好的免疫效果。对意外暴露于HBsAg阳性材料的人员(医务人员为主),有必要立即检测体内抗-HBs水平,无应答者注射HBIG200IU的同时按“0、1、6”月程序接种20vg或60vg乙肝疫苗,低应答者只要接种10vg或20vg乙肝疫苗,高应答者不需采取任何措施。对其他人群不需要在接种疫苗前做任何检测,因为即使授种者是潜在HBsAg感染者或者已经是抗-HBs阳性者,接种乙肝疫苗都是安全的。
3.2 初免成功后是否需要加强免疫 疫苗的免疫持久性是决定授种者是否需要加强免疫的关键。有研究表明疫苗诱生的抗-HBs水平5年后显著下降,在免后初期高应答者中,5年后,低应答占30-40%,无应答占10-15%,因此,实施加强免疫确有必要,加强免疫1针次后,授种者抗-HBs水平显著回升至高应答水平,对授种者形成很好的保护。
3.3 乙肝疫苗的安全性 重组基因工程乙肝疫苗在制备过程中不含有活的HBV和其他感染因子,安全可靠。
正确识别疫苗接种禁忌症,对提高疫苗安全性至关重要。新生儿发热、严重皮肤湿疹、早产儿体重低于1700g、严重脏器畸形时,要暂缓接种乙肝疫苗,待上述症状消失后及时给予补种。对疫苗成分过敏者禁止接种乙肝疫苗。对实施国家免疫规划的儿童来说,乙肝疫苗与麻疹疫苗不可同时接种,至少间隔4周以上。
参考文献
[1] 秦玲,马俊锋.南通市某医院新生儿乙肝疫苗首针接种情况分析[J].南京医科大学学报(自然科学版),2011(07):109-110.
摘要:生物技术作为创造未来文明的五大新技术之一,正日益受到世界各国的加倍重视。本文阐述了生物技术的的定义,论述了生物技术的发展现状和发展趋势。
关键词:生物技术 发展现状 发展趋势
1.前言
我国的生化工程学科是在20世纪80年代初开始建立的,20多年来我国经历了将化工技术用生物技术和融合生物技术知识发展生化工程的2个阶段。[1]生物技术服务的领域主要包括医药、农业、食品、化工、冶金、能源等方面。在与人类健康有关的重要领域,已能设计和制造脏器、诊断试剂以及治疗药物;在农业上,能够制造兽药,培养植物细胞、利用基因工程和细胞工程技术获得抗病毒、抗虫、抗除萎剂、抗冻、抗旱、抗盐、保鲜、高蛋白、高养分的植物新品种和良种家禽、家畜;在化工方面,生产氨基酸、生物大分子及基本有机化工产品,如乙醇、丁醇、丙酮等,利用基因工程技术和细胞融合得到高产工程菌,为化工生产提供高效、低成本的新途径;另外在“三废”处理、低品位金属提取、生物能源、煤的气化和液化等方面都有不同进展。这些技术的丰富交叉引起了世界各国的强烈兴趣,生物技术商品化的竞争已经到来。
2.生物技术定义
所谓生物技术,即为应用生命科学研究成果,以人们意志设计,对生物或生物的成分进行改造和利用的技术。现代生物技术综合分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、化学、物理学、信息学、计算机等多学科技术,可用于研究生命活动的规律和提品为社会服务等。20世纪30年代生物技术以发酵产品为主干,40年代抗生素工业成为生物技术产业的支柱产业,50年代氨基酸发酵和60年代酶制剂工程相继出现,到70年代DNA重组技术使生物技术得到了突飞猛进的发展,并与信息技术、材料技术及能源技术共同构成了人类新的技术革命的基础。[2]
生物技术是现代生物学发展及其与相关学科交差融和的产物,其核心是以DNA重组技术为中心的基因工程,还包括微生物工程、生化工程、细胞工程及生物制品等领域。
3.生物技术的发展现状
近些年来,以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术发展迅猛,并日益影响和改变着人们的生产和生活方式。所谓生物技术(Biotechnology)是指“用活的生物体(或生物体的物质)来改进产品、改良植物和动物,或为特殊用途而培养微生物的技术”。生物工程则是生物技术的统称,是指运用生物化学、分子生物学、微生物学、遗传学等原理与生化工程相结合,来改造或重新创造设计细胞的遗传物质、培育出新品种,以工业规模利用现有生物体系,以生物化学过程来制造工业产品。简言之,就是将活的生物体、生命体系或生命过程产业化的过程。
生物工程包括基因工程、细胞工程、酶工程、发酵工程、生物电子工程、生物反应器、灭菌技术以及新兴的蛋白质工程等,其中,基因工程是现代生物工程的核心。基因工程(或称遗传工程、基因重组技术)就是将不同生物的基因在体外剪切组合,并和载体(质粒、噬菌体、病毒)的DNA连接,然后转入微生物或细胞内,进行克隆,并使转入的基因在细胞或微生物内表达,产生所需要的蛋白质。目前,有60%以上的生物技术成果集中应用于医药产业,用以开发特色新药或对传统医药进行改良,由此引起了医药产业的重大变革,生物制药也得以迅速发展。生物制药就是把生物工程技术应用到药物制造领域的过程,其中最为主要的是基因工程方法。即利用克隆技术和组织培养技术,对DNA进行切割、插入、连接和重组,从而获得生物医药制品。生物药品是以微生物、寄生虫、动物毒素、生物组织为起始材料,采用生物学工艺或分离纯化技术制备,并以生物学技术和分析技术控制中间产物和成品质量而制成的生物活化制剂,包括菌苗、疫苗、毒素、类毒素、血清、血液制品、免疫制剂、细胞因子、抗原、单克隆抗体及基因工程产品(DNA重组产品、体外诊断试剂)等。目前,人类已研制开发并进入临床应用阶段的生物药品,根据其用途不同可分为三大类:基因工程药物、生物疫苗和生物诊断试剂。这些产品在诊断、预防、控制乃至消灭传染病,保护人类健康中,发挥着越来越重要的作用。
鉴于世界上技术先进,经济发达国家对生物技术的高度重视,面对世界新技术革命的挑战,我国“863”高科技发展计划把发展生物技术放在首位,结合我国国情,以解决发展我国农业、医药中存在的关键技术为重点,确定了三个主题:一是高产优质抗逆的动植物新品种、二是新型药物、疫苗和基因治疗、三是蛋白质工程。
4.生物技术的发展趋势
4.1生物技术在农业中的发展趋势
充分利用我国丰富的和特有的遗传资源,分离克隆有自主知识产权的基因和基因工程品种已刻不容缓,以期在以“基因”为核心的生物技术产业中取得主动。实现单基因生物抗逆向持久性抗逆、生物性抗逆向非生物性抗逆的转移。重视转基因植物的环境安全性评估,借鉴国外的成功经验,防止转基因植物危害的发生与蔓延。随着基因组时代向后基因组时代的过渡,研究重心已经从揭示生命的所有遗传信息转移到整体水平上对生物功能的研究。因此,在整体水平上研究细胞内蛋白质的组成及其活动规律的蛋白质学的发展和成熟,必将与基因组研究互相补充,给农业生物技术带来革命性改变。建立一支专门的农业生物技术队伍,尤其是基因工程专业队伍,杜绝一哄而上,避免人财物的无谓浪费,把有限的资金用在刀刃上。
4.2生物技术在环境中的发展趋势
在污染的处理过程中,传统的物理或化学处理方法常伴随二次污染,且运行费用高,处理问题单一而微生物对各类污染物均有较强、较快的适应性,并可将其作为代谢底物降解和转化因此,生物处理具有效果好、运行费用低、无二次污染等优势,是保障可持续发展的一项最有力的技术措施。[3]
生物技术的发展趋势将朝着传统技术的改良、与其他污染处理手段相结合和与现代高新技术相结合等方向发展,研究高效快速的工艺流程。
4.3生物技术在工业中的发展趋势
工业生物技术的新崛起有两个巨大的推动力,即社会强烈需求和生物技术的进步。人类社会发展迫切需要解决的问题是资源、能源、人口、环境问题.随着生物技术突破性进展,使得人类可以设计和构建新一代的工业生物技术,可高效快速地将各类可再生生物质资源转化为新的资源和能源。工业生物技术在生物能源、生物材料以及生物质资源化方面发挥着重要作用。[4]其中生物能源、生物材料、生物质资源化等都是现在以及将来发展的重中之重。
4.结语
生物技术是2l世纪改变人们生活方式最重要的科技手段。发展生物技术,实现产业化,将为国民经济培育新的增长点。大力发展生物技术和生物技术产业,需要有高水平的专业技术人才,只有高水平的专业技术人才才能掌握现代生物技术,为实现和发展生物技术产业作出应有的贡献。
参考文献:
[1]欧阳藩.生物技术发展现状及发展战略[J].现代化工,2004(6):1-7.
[2]瞿礼嘉,顾红雅,胡苹等.现代生物技术导论[M].北京:高等教育出版社,1998.
【关键词】 迟缓爱德华菌;,抗独特型抗体;,基因克隆;,序列分析
[摘 要] 目的: 克隆并分析迟缓爱德华菌抗独特型单克隆抗体(mAb) VH基因。方法: 从分泌迟缓爱德华菌抗独特型mAb的杂交瘤细胞株(1E11)中提取总RNA, 利用RTPCR技术,扩增迟缓爱德华菌抗独特型抗体VH基因, 并将其克隆到PBSTvector中进行序列分析。结果: VH基因的全长序列为339 bp, 编码113个氨基酸。通过NCBI/BLAST/N和IMGT数据库(Lefrance, 2001)分析表明, VH基因符合小鼠IgG V区基因的特征: 含有4个框架区(FR), 3个抗原互补决定区(CDR)及两个抗体特征性的半胱氨酸。结论: 成功地克隆了迟缓爱德华菌抗独特型mAb VH基因, 为进一步构建迟缓爱德华菌抗独特型抗体基因工程疫苗奠定了基础。
[关键词]迟缓爱德华菌; 抗独特型抗体; 基因克隆; 序列分析
迟缓爱德华菌(Edwardsiella tarda) 是淡、 海水养殖鱼类的一种最主要的病原菌[1], 具有很强的致病性, 其感染具有流行面积广、 发病率及死亡率高等特点, 是水产养殖业中危害最大的一种疾病。该菌的宿主范围较广泛, 常能从多种冷血动物、 鸟类、 温血脊椎动物及环境中分离出[2], 可引起人类的各种感染(胃肠炎、 败血症、 肝脓肿、 脑膜炎、 伤口感染等)。临床表现为腹泻、 水样便、 伴呕吐、 腹痛及低热等。此外, 亦有报道迟缓爱德华菌可引起肝脓肿、 脑膜炎及软组织感染等的报道[3]。目前, 国内对该菌的治疗仍然是应用各类抗生素等药物, 如在饵料中添加适量的土霉素、 四环素、 庆大霉素、 氯霉素、 呋喃唑酮和磺胺类药物等, 并定期用福尔马林药浴。但长期应用抗生素易产生耐药性和药物残留等负面影响[4, 5]。欧、 美等国家已有将弧菌、 气单胞菌及爱德华菌等制成灭活疫苗, 并从中提取多糖、 胞外蛋白等有效抗原, 制备了单克隆抗体(mAb)工程疫苗, 且已商品化生产。由于灭活疫苗的抗原性较弱, 而减毒疫苗的安全性不稳定, 为此, 研制使用方便、 高效、 易商品化大规模生产、 切实有效的疫苗, 对水产业甚为必要。我们首次从分泌抗迟缓爱德华菌独特型mAb的杂交瘤细胞株(1E11)中提取总RNA, 并以RTPCR成功克隆了该mAb的VH基因。
1 材料和方法
1.1 材料 分泌抗迟缓爱德华菌独特型mAb的杂交瘤细胞株(1E11)为本室建立[6]。RPMI1640干粉为Gibco BRL公司产品。RNA抽提试剂TRIzolTMReagents购自TaKaRa公司。RTPCR试剂盒为美国Invitrogen公司产品。质粒提取试剂盒和胶回收试剂盒, 均购自北京博大泰克公司。PCR试剂, 连接试剂和pBSTvector均购自北京天为时代公司。
1.2 方法 迟缓爱德华菌抗独特型mAb VH基因的扩增: 复苏分泌抗迟缓爱德华菌独特型mAb的杂交瘤细胞株(1E11), 传至3代使细胞数目达2.8×107/L后收获细胞。用TRIzolTMReagents、 氯仿和异丙醇抽提RNA后, 以无水乙醇沉淀。以11 μL RNA为模板, 以Oligo(dT)20为随机引物, 反转录合成cDNA第1链。PCR引物序列: Back: 5′ATGAAATGCAGCTGGGGCAT(C,G)TTCTTC3′; For: 5′CAGTGGATAGACAGATGGGGG3′。在25 μL反应体系中, 加入cDNA 2 μL, Back和For引物各1 μL进行PCR。反应参数为: 于94℃变性5 min后, 94℃、 1 min, 50℃、 1 min, 72℃、 1 min, 共25次循环后, 于72℃再延伸10 min。PCR产物用10 g/L琼脂糖凝胶电泳鉴定。
转贴于
2 结果
2.1 RTPCR扩增产物的鉴定 经10 g/L琼脂糖凝胶电泳鉴定表明, VH基因的RTPCR产物大小为420~500 bp(图1)。
图1 mAb 1E11 VH基因RTPCR产物的琼脂糖凝胶电泳分析(略)
1: DL 2000 DNA marker; 2: VH基因的RTPCR产物.
2.2 VH基因的克隆及序列分析 将PCR扩增的VH基因胶回收后, 克隆入pBSTvector载体中, 并转化E.coli DH5α的感受态细胞中, 经Xgal蓝白筛选后, 挑取阳性克隆, 经菌落PCR鉴定正确后进行测序。测序结果经IMGT数据库(Lefrance, 2001)分析显示, VH基因具有小鼠IgG VH基因的特征, 含有3个CDR区, 4个FR区和两个抗体特征性的半胱氨酸 (图2)。
图2 抗迟缓爱德华菌独特型mAb VH 基因的核苷酸及推导的氨基酸序列(略)
3 讨论
克隆得到正确的抗体轻、 重链可变区基因, 是制备基因工程抗体中最重要也是最关键的一步。由于在RTPCR而得到的杂交瘤细胞株的cDNA中, 一些非复制的重排片段是最佳的PCR模板; 而且在进行细胞融合时可能融合不止一个脾细胞至骨髓瘤细胞, 从而导致多种功能性以及非功能性V区基因发生。因此在做PCR克隆抗体轻、 重链可变区基因时, 可能会克隆出除目的基因以外无关的轻重链基因。另外, 由于V区基因内部的5′端和3′端的突变可能会抑制引物退火而阻碍扩增反应。因此我们采用了抗体重链可变区基因5′端的信号肽, 及3′端恒定区的通用引物, 通过NCBI/BLAST/N和IMGT数据库(Lefrance,2001)将PCR出的基因序列进行分析, 找出抗体重链可变区的基因序列, 并在计算机上进行Blast综合分析, 经过以上研究工作的反复论证, 以确保抗体重链可变区基因的完整和准确。结果, 通过Blast分析未见相同序列。我们得到的抗体重链可变区VH基因共编码113个氨基酸, 序列中无终止密码子, 为一开放读框; 具有4个FR, 3个CDR和维持抗体V区空间结构所必需的2个特征性的半胱氨酸, 分别位于第22位和第96位, 为VDJ重排, 符合小鼠IgGVH基因特征。同源性分析表明, 我们所得到的VH基因与GenBank中序列号为M13832.1(Identities 96%)和U88672.1(Identities 93%)序列相似性较高, 它们均为小鼠重链可变区基因。迟缓爱德华菌抗独特型mAb重链可变区VH基因的成功获得, 为制备新型、 有效的迟缓爱德华菌抗独特型基因工程抗体奠定了基础。
参考文献
[1] Amandi A, Hiu SF, Rohovec JS, et al. Isolation and characterization of Edwardsiella tarda from fall chinook salmon(Oncorhynchus tshawytscha)[J]. Appl Environ Mcrobiol, 1982, 43: 1380-1384.
[2] White FH, Simpson CF, Williams LE Jr. Isolation of Edwardsiella tarda from aquatic animal species and surface waters in Florida[J]. J Wildl Dis, 1973, 9: 204-208.
[3] Holt JG, Krieg NR, Sneath PHA, et al. Bergey’s manual of determinative bacteriology[M]. (Ninth Edition), Baltimore, Williams and Wilkins, 1994: 190-194, 253-274.
[4] 张晓君, 战文斌, 陈翠珍, 等. 牙鲆迟钝爱德华菌感染症及其病原的研究[J]. 水生生物学报, 2005, 29(1): 31-37.
1酶联免疫吸附试验
酶联免疫吸附试验也是一种在现代生物技术之上发展而来的疫病的诊断技术,其英文翻译为Enzymelinkedim-munosorbentassay,因此其英文简称为ELISA,目前主要应用在生物体液的微量物质的检测过程中,具有很好的检测效果。其检测或是诊断的一般过程为,先将抗原或是抗体或是抗原吸附在固相的载体上,然后再对于固相载体进行染色,染色剂采用的是免疫酶,最后根据实际的染色效果进行判断。目前ELISA在猪传染性胃肠炎、牛副结核病、牛传染性鼻气管炎、猪伪狂犬病、蓝舌病等的诊断中已为广泛采用的标准方法。
2现代生物技术与兽药的发展
2.1现代生物技术与疫苗
现代生物技术的核心技术就是DNA重组技术,因此其直接进行操作的对象就是细胞机体或是基因、遗传物质。近些年,克隆技术的不断发展为畜禽类的疫苗的开发和研制奠定了良好的发展基础,疫苗不仅可以减少人类很多疾病的发生率,而且对于畜禽类的疾病预防也会起到很好地作用。基于现代生物技术基础之上的基因疫苗对于当前的兽药的开发以及增加牲畜的免疫抗性是具有极大的可行性和应用前景的。
2.2现代生物技术与生物制药
现代生物技术的一个很重要的方面就是生物制药,这对于兽药的研制也是非常重要而又具有很好的应用价值的。生物制药主要分为两类,天然生物药物和基因工程药物。天然生物药品:这类药物的主要是利用生物体、生物组织或其成分,综合运用微生物学、物理学、药学和生物学的原理与方法制造的用来预防、诊断或治疗的生物制品。基因工程药物:主要是利用重组DNA技术生产的多肽、蛋白质、酶和细胞生长因子等。激素类、可溶性细胞因子受体类、细胞因子类是其主要的种类。
3结束语
进入21世纪以来,现代生物技术的应用程度在不断加大,应用的范围也在不断扩大,这对于我国的医药、兽药、兽医学等的发展起到了良好的促进作用。并随着国际贸易额的逐年增加,给我国的畜禽在出口以及进口的安全检疫等方面提供了极大的便利,为促进我国的经济发展、保障我国的食品食肉安全创造了一个良好的环境。在充分看到其良好发展前景的同时,我们还需要关注起发展过程中的困难和问题,并且加大经济的投入和科技的支持,加强各方面的协作,共同努力,共同攻关,努力将我国的兽医兽药行业做得更好。
作者:王立明 单位:吉林省伊通满族自治县动物疫病预防控制中心
生物技术(biotechnology),也被人们称作为生物工程,以现代生命科学为核心基础,结合其他类别的基础科学,并采用极为先进的科学技术手段,根据计划,对生物体进行改造或者是加工生物原料,进而生产人们所需要的产品。生物技术(biotechnology),利用动植物体以及微生物对物质原料进行加工,并生产处相关产品,为社会服务。其主要分成现代生物技术以及发酵技术两大类别。生物技术可以说是,现代生物学的发展以及和相关科学融合的产物,以DNA重组技术为根本,并包括了细胞工程、生化工程以及微生物工程和生物制品等。
2生物技术在制药中的应用
2.1细胞工程制药
就目前我国的生物技术(biotechnology)来讲,有关于细胞工程还没有一个统一的定义以及范围,通常认为,细胞工程就是根据分子生物学和细胞生物学的原理,并采用细胞的培养技术,对细胞进行水平的遗传操作。细胞工程大致上可以分为细胞质工程以及染色体工程和细胞融合工程这三种。而归根结底,细胞工程就是利用动物以及植物的细胞培养进而生产药物的技术。例如,利用动物细胞培养可身缠人类生理活性因子以及疫苗和单克隆抗体等产品;再如利用植物细胞培养可以大量的生产经济价值极高的植物有效成分,提取药材精华,也可以生产人类活性因子以及疫苗等重新组合DNA产品。值得注意的是植物细胞培养并不会受到客观的地理以及环境的影响,次级代谢的产物在产量上比较高。例如,人身皂苷在该组织培养中含量占干重的27%,而全株只有可怜的1.5%。现在不少药用植物,如三七和人参等的培养已经有了系统化的研究,并且充分优化了培养条件。值得庆贺的是人参细胞培养物的化学成分以及药理活性,相比于种植人参并没有明显的差异。关于细胞工程制药技术,在国外一些相关的细胞工程制药已经达到了商业化的生产水平,例如美国的Phyto公司的紫杉醇的生产商已经达到了75000L的生产规模,而日本植物细胞培养反应器的规模达到了4000L~20000L的惊人地步。除却大规模的细胞培养技术,不定根组织与毛状根的培养也特别成功。例如培养的黄芪毛状根的药效与药用黄芪不分上下,而在丹参毛状根的培养上,其含有的丹参碱,能在分泌中得到培养。例如,希腊毛地黄细胞,在褐藻酸盐的固定化培养中,可以将其中有毒物质的毛地黄苷转化成为地高辛,在利用紫草细胞培养技术生产出紫草宁等。而根据野生新疆雪莲的辐射以及抗炎等作用,贾景明等相关技术人员进行了天然新疆雪莲镇痛以及抗炎和抗辐射与细胞培养的药理实验,而实验表明,新疆雪莲细胞的培养物完全可以称为野生新疆雪莲的替代品,其药效与野生新疆雪莲几乎相同,而该实验也取得了深入开发应用的极高价值。而细胞培养技术甚至可以进行如犀角等极为昂贵的药用动物器官的培养,在解决资源的短缺同时,有效的保护了稀有动物的生存。
2.2发酵工程制药
生物技术中的发酵工程,又称为微生物工程,是指利用现代生物工程的技术,利用微生物的相关特定功能,生产出对人类有用的产品,或者直接把微生物应用于工业生产中。发酵工程制药是利用微生物的代谢过程,所生产药物的生物技术。例如人们普遍认知的抗生素、氨基酸以及维生素等。而发酵工程的制药在研究也主要在微生物菌种的筛选和改良上,还有极为重要的产品后处理也就是分离纯化。在现如今的社会中,DNA的重组技术在微生物菌种改良上起到了举足轻重的作用。在上世纪七十年代,细胞融合以及基因重组技术的飞速发展的情况下,发酵工程进入了现代化的发酵工程阶段。不仅仅是酒精类饮料以及醋酸和面包,并且猪脚生产了生长激素以及胰岛素等多种医疗保健药物。周晓燕等相关研究人员用精良选育的猪芩PU-99菌做生产菌株,在1t灌中生产,菌丝体重达2.3%,含粗多糖31%;该实验充分的利用了发酵工程,并在当时得到了广大的认可。利用微生物成长代谢来炮制中药,比一般的物理或化学炮制手段更为优越,能较大幅度的改变中药的药性,并且提高疗效的同时,大大减轻毒副作用,使得中药活性成分结构提供了新的途径。
2.3酶工程制药
酶工程是利用酶、细胞或者细胞器具有特殊催化功能,并使用生物反应相关装置以及通过一定的技术手段生产出的人类所需要的产品。这是一种酶学理论与化工技术两相结合而形成的新型技术,现如今依旧有数十个国家采用了固定化酶以及固定化细胞,进行药品的生产。酶工程可以说是现代生物技术组成的重要部分,酶工程制药也是将酶用于药品生产的技术。固定化酶可以全程合成药物的分子,并且还能用于药物的转化。而我国就是充分的利用了微生物并使用两步转换法生产出了维生素C。就我国的酶工程制药来讲,其主要研究方向在,各种酶(细胞)的固定化以及产药酶的来源和酶反应器还有相关的操作条件等。可以说酶工程应用具有极其广阔的发展前景,该技术将使得整个发酵工业和化学合成工业发生巨大的变革。
2.4基因工程制药
基因工程是在基因的水平上,按照人类的需求,有针对性的涉及,并且按照设计的方案,生产出具有某种新的形状的生物产品,并且使得其可以稳定的遗传给后代。基因工程的设计与与工程设计有些类似,既显示出理学的特性,也具有工程学的特点。工程制药也是通过将DNA重组技术应用到疾病的治疗中,例如蛋白质、酶以及肽类激素和其他药物的基因转移到宿主体内,使得细胞繁殖,最终获得相关的药物。如苯丙氨酸以及丝氨酸和次生代谢的产物所制成的抗生素,通常是一些人体内的活性因子,例如白细胞介素-2和胰岛素以及干扰素等。而目前我国基因工程的研究方向,主要在基因的鉴定以及克隆和基因载体构建的产物的表达以及分离纯化等。人类掌握基因工程技术在时间上虽说不是很长,但已经获得了很多具有实际应用价值极高的成果,而基因工程为现代生物技术组成的重要部分,在未来相当长的一段时间里,都会在制药中发挥出极大的作用。
3结束语
关键词:生物工程技术;进展;现状
生物工程包括基因工程、细胞工程、微生物工程发酵工程、酶工程和生物反应器工程。在这五大领域中,基因工程是根据人类的需要对DNA进行设计,使生物表现出新的性状。细胞工程是根据遗传需要进行细胞培养。酶工程利用生物反应装置,产生人类所需要的产品。近年来,生物工程在农学、医药学、医学等方面都有新的收获,这些收获离不开我国科技工作者的努力,他们充分发挥了自己的潜力,为人们提供了巨大的经济效益和社会效益。
1生物工程技术在农学领域的进展
1.1改良种子的蛋白质储量
生物工程技术近几年来发展迅速,可利用生物工程技术提高农作物中蛋白质的含量,在农业中广泛运用,显示出巨大的经济效益,比如,单双子叶植物中的氨基酸含量不同,双子叶植物的赖氨酸含量高,甲硫氨酸的含量不足,而单子叶植物恰恰相反。利用基因工程将二者的蛋白质基因互换,能够提高单双子叶蛋白质的丰富程度,使二者营养价值更丰富。利用我国丰富的衍生资源,寻找氨基酸蛋白质含量丰富的植物,通过人工改造和合成,将基因转移到需要改进的植物中去。
1.2快速无性繁殖,提高存活率
在自然状态下,植物的繁殖需要经过传粉受精,但是所需的周期较长,而且会受到温度、湿度以及病虫害的影响,成活率低。植物细胞具有全能性,通过选择植物不同部位的组织细胞,进行组织培养,能够实现植物的快速繁殖。对于一些稀有的、名贵的花卉,比如一品红、南洋金花等,无性繁殖不仅可以降低培育成本,还不受季节的限制。利用基因工程进行生物载体细胞注射,注入抗病毒基因,通过基因的转录、表达,培育出生命力强的作物,能够提高我国的粮食产量,提高农民的收入,促进经济的发展。
1.3提高储存能力
果蔬在收获时,会在运输途中因为虫害和自身的腐烂造成大量的损失。成熟的果蔬会逐渐变软,不利于存储,主要是因为在果蔬成熟的过程中,自身会产生乙烯,乙烯具有催熟的作用。生物工程技术利用反义技术抑制乙烯合成酶的活性,降低果蔬在成熟过程中乙烯的分泌。水果中的多聚半乳糖醛酸酶能降解细胞壁导致水果在成熟过程中变软,通过向基因组中转入多聚半乳糖醛酸酶的反义基因,就可起到延缓变软的良好效果,从而延迟变软腐败的时间,使果蔬能够长时间储存,减少了经济损失。
2生物工程技术在食品领域的发展
2.1研究新的可食用资源
随着人口的增加,我们面临的不仅仅是住房能源的缺乏,食品的不足也是我们必须考虑的,生物工程技术在食品开发方面做出了很大贡献。微生物食品,利用生物工程技术对螺旋藻进行研究,发现它蛋白质含量高,碳水化合物丰富,脂肪胆固醇含量低,有着很高的营养价值。昆虫类蛋白质,科学家运用生物工程技术在蝇蛆的体内提取纯度很高的几丁质。转基因食品的研究近年来也非常热门,虽然在食用上存在争议,但是转基因食品有着很高的营养价值,微量元素的含量也很丰富。
2.2食品加工
通过基因导入技术,可以获得高产蛋白质和氨基酸的作物。利用基因工程来调节淀粉合成过程定酶的含量或几种酶之间的比例,从而达到增加淀粉含量或获得特性独特、品质优良的新型淀粉。酶工程的应用也是生物工程在食品领域的重要代表,可以利用酶的催化性质,将原材料催化成需要的物质。比如淀粉酶的催化,能够使面包更加松软、可口。细胞工程在食品加工方面应用也很广泛,比如运用细胞融合技术,将黄曲霉菌的种间细胞融合,选育出优良的菌株。食品的口感和营养也与生物工程技术息息相关。
2.3食品安全检测
病从口入,许多疾病都是因为食品安全问题导致的。比如,英国的疯牛病和日本的口蹄疫,以及现在流行的禽流感,都是食品卫生问题导致的,因此食品安全检测技术尤为重要。现在用于食品安全检测的生物工程技术有生物传感器技术、免疫学方法、分子生物学技术和生物芯片等。生物传感器通过将待测物质的浓度转换成不同的电信号来检测物质的含量。免疫学预测是根据抗原和抗体的特异性结合,利用不同病菌对不同物质的反应不同进行特异性识别,检测食品是否安全。生物工程技术的应用能够改善人们的膳食结构,提高人们的健康水平。
3生物工程技术在医药领域的发展
3.1生物工程制药
生物工程制药是对微生物和微量元素进行处理,以细胞为基础,使用先进的科学技术使生物产生人类需要的物质。基因工程主要用来研发新的药物,一些药物用传统的方法很难被制造出来,造价也非常昂贵,普通患者根本消费不起。通过基因工程表达基因片段,降低制药的成本,造福人类,同时也能提高药物的纯度,提高药效。运用细胞工程技术培养细胞、组织,再利用这些组织生产出对疾病治疗有帮助的药品,缩短了制药的周期,为人类的健康带来福音。
3.2疾病的诊断
基因突变和外源基因的入侵是造成人类绝大部分疾病的一个重要因素。我们可以从基因的水平进行分析,检测疾病,这也是近些年来我国生物工程技术的发展方向。我国的基因检测技术主要有DNA探针技术、合酶链式反应、生物芯片技术,这些技术能尽早检测出病原性物质,早发现早治疗。基因芯片是运用生物工程技术进行疾病检测的一个重要方法,可以对样品进行大量分析与检测。我国科研人员已经研究出许多遗传病的基因序列,根据这些基因序列,制成基因探针,对各种疾病进行检测,具有针对性强、灵敏度高的特点。
3.3疾病的治疗与预防
我国在疾病的治疗与预防方面也运用了生物工程技术。基因治疗技术有了很大的突破,通过干细胞的移植进行肿瘤和自身免疫系统疾病的治疗也有很好的疗效。转基因和克隆技术也逐渐成熟,在器官移植的过程中,为了减少肌体的排异反应,可以对自身器官进行克隆,为器官移植做出了巨大贡献。在疾病的预防方面,我国研制的基因工程乙肝疫苗已经大规模投入市场,还有许多疫苗正在研制过程中,也取得了不小的成果。生物工程技术在疾病预防中起到了很好的社会效益。
4结语
生物工程技术被视为当今世界的主导产业,在医药、农业、化工、食品等众多产业中都有着很高的使用率,对经济发展有着很大的推动作用,为医学的发展提供了宝贵的技术资源和信息资源。虽然生物工程技术的研究还有许多瓶颈和难题,但是随着科技的进步,这些问题会逐渐解决。只要我们把眼光放长远一点,加大对生物工程技术的资金投入,重视生物工程技术的研究,就一定会有所收获,为社会产生更多的效益,全面改善人们的生活。
作者:姜加良 单位:吉林工商学院
参考文献:
[1]陈章良.植物基因工程研究[M].北京:北京大学出版社,1992:1-20.
近几年来,生物制药产业已成为最活跃、发展最快的产业之一,社会对生物技术制药人才的需求也日益增加。如何增强生物技术制药课程的教学效果,培养富有创新精神和具有实践能力的高素质的生物技术和药学复合人才,是广大药学教育工作者所关注的问题之一[1]。生物技术制药课程着重讨论应用基因工程、抗体工程、细胞工程、酶工程、发酵工程等技术研制新药的原理和方法,突出“生物技术”与“药学”的有机结合。课程涉及的知识面广、内容多、更新速度快。笔者近几年针对四年制药学本科专业生物技术制药教学的特点,不断改进教学内容和教学方法,取得了良好的效果。
1 教学内容
1.1 不断更新教学内容,让学生经常接触到学科的前沿知识:现代生物技术和制药技术的发展日新月异,要使学生学到最新的有用知识,必须不断更新教学内容,把最新的知识引入到教学中。教研室在结合高等教育出版社出版的《生物技术制药》课程教材的基础上,自编了辅助教材《生物制药前沿》,并每年更新一次,着重用于扩展补充新知识。如在教学内容中增加了基因工程疫苗研制、海洋生物技术制药、生物技术与靶向药物开发、抗HIV新药开发、药物基因组学等专题。通过在教学中不断补充新知识、新理论和新观点,学生了解到当前生物技术制药最前沿的知识,拓展了学生的知识面,加深了学生对学科重要性的了解,极大地调动了学生的学习兴趣并培养了学生的创新能力。
1.2 融合相关学科内容:生物技术制药是一门综合性学科,生物技术制药的学习涉及到细胞生物学、生物化学、免疫学等生物学科以及药剂学、药理学、药物分析等药学学科。因此,笔者在教学过程中,注重各个学科之间的密切联系,引导学生复习相关学科知识,从而加深了学生对现学知识的理解,提高了教学效率。如在基因工程制药中质量控制的教学中,笔者就融合了药物分析、药剂学、药物化学等学科的相关知识。药物的质量控制是药物分析课学习的重点,主要包括鉴别、检查、含量测定和稳定性研究,基因工程药物的质量控制也是从这几方面来入手的,但是基因工程药物又有其独特之处,对其质量控制的要求更加严格。笔者因此将基因工程药物与化学药物的质量控制做对比进行讲述,如基因工程药物的鉴别采用肽图分析、氨基酸成分分析、部分氨基酸序列分析和二硫键分析等,而化学药物则是用红外、紫外、质谱和核磁共振谱进行结构鉴定,两者比较教学,加深了学生对基因工程药物的理解,同时又复习了化学药物结构鉴定的知识。
2 教学方法
2.1 开展启发式教学,引导学生进行科学思维[2]:在传统教学中,学生被动地接受知识的灌输,死记硬背,围着考试的指挥棒团团转,不利于培养学生的思维能力和学习兴趣。开展启发式教学,精讲巧问,引导学生边学边想边分析,并通过适时提问来激发学生的思维活动,培养学生的想象力和独立思考、钻研问题的能力,使教与学双方紧密结合起来。针对禽流感病毒、SARS病毒等疫苗和药物开发是目前生物技术制药研究的一个热点,笔者在授课过程中,积极引导学生运用生物技术制药的基础理论知识对禽流感、SARS等病毒感染治疗性药物和相关诊断试剂的开发思路进行分析。这种启发式的教学方式加深了学生对PCR、免疫酶技术、免疫荧光技术的理解,培养了学生进行科学思维的能力。教学活动是由教与学两方面构成,只有将教师的讲授和学生的思维活动有机结合起来,学生才会对所学的知识记忆深刻;学生只有对所学内容表现出强烈的好奇心和求知欲,才会自觉地去思考。
2.2 充分利用现代化信息技术和教学工具,提高教学效率:随着以计算机为核心的信息技术的快速发展,信息技术、计算机技术和教学的紧密结合将成为推动当前教学改革的强大动力[3]。笔者在备课时,充分利用各种信息资源库,访问各种电子化的课程资源库,获得直接相关的素材和资料;使用各种多媒体百科全书光盘(如“科学大百科”、“药学大辞典”等) ,获得图文声并茂的教学资料;通过网络检索图书馆的相关资源,或者直接访问数字图书馆中的内容,获得学科的最新信息(如生物技术的专业网站http://省略,医药专业网站http://省略等)。例如,笔者通过查阅国外的电子版教材,下载了质粒克隆的QuickTime动画,在讲授外源基因通过质粒载体在大肠杆菌中复制表达时,通过给学生看形象的动画,加深学生对知识的理解。在讲授cDNA合成及PCR扩增原理等内容时,笔者运用PhotoShop,Flash等绘图及动画软件自己制作一些教学示意图及动画,给学生以形象的认识。当前现代生物技术发展迅速,运用集图、文、声于一体的现代信息多媒体教学模式,充分发挥现代信息技术的特点,扩充新的教学内容,使其直观化、形象化,有助于学生对生物技术制药知识的掌握,增强学习效果。
2.3 开展合作研讨性教学活动:合作研讨性教学是近年来广受重视的教学方式,具有学生参与度高、启发性强、趣味性浓、易于学生理解和掌握、利于学生综合素质提高等优点[4]。笔者在教学实践中开展了合作研讨性活动,收到良好的效果。如在讲授完转基因技术制药后, 笔者提出了“转基因技术与食品药品安全性”的研讨论题,学生分为小组分别准备,组织方案,每个小组分配一名代表表达自己的答案和思路。讨论时各个小组的代表各抒己见,相互评价,相互启发,气氛热烈,促进了研讨的深化。最后笔者根据学生的研讨对论题进行总结和提炼,总结出转基因食品药品存在一定的安全隐患,需对其质量进行严格控制,引导学生形成概括性的理解。在讨论过程中,要求学生对自己研讨问题的思考做成Power Point演示文稿,使自己的表达更清楚、更有条理。同时,通过在讲台上讲述,锻炼了学生的口头表达能力,提高了他们的综合素质。
2.4 课堂教学与实验教学相结合:课堂教学主要讲解知识的理论框架、基本概论和原理,实验教学则主要训练学生的操作和动手能力,使学生对所学的理论知识有一个形象实际的认识。笔者在课堂教学过程中,通过给学生观看部分实验的多媒体录像,加深学生对单调抽象的理论知识的理解,提高了学习效率。同时,在观看录像过程中穿插对学生进行提问,让学生带着问题想,带着问题学,有针对性地进行学习,引导学生主动思考。一系列的教学实践加深了学生对基本理论知识的理解,并且使抽象的理论变得更形象化,培养了学生的观察力、分析和解决实践问题的能力。
2.5 结合教研室最新科研成果,运用实例引导学生进行创新药物的开发:幽门螺杆菌目前已证实是导致慢性胃炎、十二指肠溃疡等疾病的主要病原菌,且被WHO组织列为一类致癌因子。教研室运用基因工程技术,针对幽门螺杆菌的特异保护性抗原,通过多年的基础研究,研制出了国家Ⅰ类新药“分子内佐剂胃病疫苗”。笔者结合这一课题,引导学生思考如何从复杂的病原微生物抗原成分中寻找并筛选具有特异的治疗或预防效果的活性物质,如何运用所学的生物制药的相关技术进行新药开发的基本策略。同时,笔者结合对于新药临床前研究的基础及经验,引导学生运用已学习的药理学、药物化学、药剂学等基础理论知识,设计开发创新性新药,培养了学生的开创性思维能力,对学生以后从事生物新药的开发起到了很好的引路作用。
参考文献:
[1] 罗焕敏.我国药学教育的现状及应注意的问题[J].药学教育,2005,3:8.
[2] 张 颖,阎 雷.高校专业课教学改革模式的探索和实践[J].黑龙江高教研究,2001,6:35.
[3] 高等学校教育技术协作委员会.教育技术理论导读[M].高等教育出版社,2001.92.