HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 冶金技术

冶金技术

时间:2022-06-22 13:03:45

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇冶金技术,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

冶金技术

第1篇

关键词:粉末冶金 温压技术 流动温压技术 模壁技术 高速压制技术 动磁压制技术 放电等离子烧结技术 爆炸压制技术

1 温压技术

虽然温压技术只是一项新技术,在近几年才取得了一些发展,但是由于它生产出来的粉末冶金零件具有高密度、高强度的特点,现阶段已经得到了大量的应用。这项技术和传统的粉末冶金工艺不同,它可以采用特制的粉末加温、粉末输送和模具加热系统,将加有特殊剂的预合金粉末和模具等加热至130~150℃,并将温度波动控制在±2.5℃以内,之后的压制和烧结工序和传统工艺是一样的。与传统工艺相比,区别点就集中在温压粉末制备和温压系统两个方面。采用这项技术不管是从压坯密度方面来说,还是从密度方面来说,都比采用传统工艺要好很多。在同样的压制压力下,使用温压材料比采用传统工艺不管是屈服强度、极限拉伸强度,还是冲击韧性都要高。此外,由于温压零件的生坯强度比传统方法下的生坯强度要高很多,可达20~30MPa,如此一来,既降低了搬运过程中生坯的破损率,也保证了生坯的表面光洁度。另外,采用该技术生产出来的零件不仅性能均一,精度高,而且材料的利用率很高。温压工艺的成本不高,而且工艺并不复杂。与传统的工艺相比,温压工艺下的粉末冶金的利用率高,耗能低,经济效益高,是节能、节材的强有力手段。

2 流动温压技术

流动温压粉末冶金技术(Warm Flow Compaction,简称WFC)是一种新型粉末冶金零部件成形技术,目前国外还处于研究的初试阶段,它的核心价值就是能够提高混合粉末的流动性、填充能力和成形性。

WFC技术有效利用了金属粉末注射成形工艺的优点并在粉末压制、温压成形工艺的基础上被发现。这项技术可以将混合粉末的流动性提高,这样就使混合粉末可以在80~130℃温度下,只需要在传统的压机上经过精密成形就可以形成各种各样外形的零件,省掉了二次加工的步骤。WFC技术在成形复杂几何形状方面具有很大的优势,是传统工艺无法比的,而且成本不高,具有非常广阔的应用前景。

综上所述,我们可以归纳出WFC技术具有以下四个优势:一是能够制造出各种各样外形的零件;二是有着很好的材料的适应性;三是工艺简单,成本低;四是压坯密度高、密度均匀。

3 模壁技术

模壁技术是在解决传统工艺面临的一系列难题的基础上应运而生。传统工艺是采用粉末来减少粉末颗粒之间和粉末颗粒与模壁之间的摩擦,然而现实往往是由于加进去的剂因密度低,使得粉末冶金零件的密度也得不到有效的保证。此外,剂的烧结不仅会给环境造成很大的不利影响,还可能会影响到烧结炉的寿命和产品的性能。现阶段,有两个渠道可以进行模壁:一是由于下模冲复位时与阴模及芯杆之间的配合间隙会出现毛细作用,利用这个作用可以把液相剂带到阴模及芯杆表面。二是选择带着静电的固态剂粉末利用喷枪喷射到压模的型腔表面上,就是安装一个剂靴在装粉靴的前部。在开始成形时,压坯会被剂靴推开,此时带有静电的剂会被压缩空气从靴内喷射到模腔内,但是此时得到的极性和阴模的是不一致的,在电场牵引下粉末会撞击在模壁上,同时粘连在上面,之后装靴粉装粉,只需进行常规压制即可。采用该项技术可使粉末材料的生坯密度达到7.4g/cm3,大大提高了粉末材料的生坯密度,并且采用该方法比采用传统的方法还能够大大提高铁粉的生坯强度。有研究结果结果表明,利用温压、模壁与高压制压力,使铁基粉末压坯全致密也是有可能的。

4 高速压制技术

瑞典的Hoaganas公司曾经推出过一项名叫高速压制技术(Hjgh Velocity Compaction)的新技术,简称HVC。虽然这项新技术生产零件的过程和过去的压制过程工序是一样的,但是这项新技术的压制速度比过去的压制速度提高了500-1000倍,同时也大大增加了液压驱动的锤头重量,提高了压机锤头速度,在这种情况下,粉末利用高能量冲击只需0.02s就可以进行压制,在压制的过程中会出现明显的冲击波。要想达到更高的密度,通过附加间隔0.3s的多重冲击就能做到。HVC技术具有很多优势,比如高密度、低成本、可成形大零件、高性能和高生产率等。现阶段该技术已经得到了广泛的应用,很多产品都采用了该项技术,比如制备阀门、气门导筒、轮毂、法兰、简单齿轮、齿轮、主轴承盖等。有了这项技术,未来将会出现更多更复杂的多级部件。

5 动磁压制技术

动力磁性压制技术(dynamic magnetic cornpaction)是一种新型的压制技术,简称DMC,它能够使高性能粉末最终成形,这项技术固结粉末的方式主要是通过利用脉冲调制电磁场施加的压力。虽然这项技术和传统的压制技术一样都是两维压制工艺,但是不同的是传统的压制技术是轴向压制,而这项技术是径向压制。利用该项技术进行压制只需1ms,整个过程非常的迅速,只需把粉末放入一个具有磁场的导电的容器(护套)内,护套就会产生感应电流。利用磁场和感应电流之间的相互作用,就可以完成粉末的压制工作。DMC具有成本低廉、不受温度和气氛的影响、适合所有材料、工作条件灵活、环保等优点。DMC技术适于制造柱形对称的零件,薄壁管,高纵横比部件和内部形状复杂的部件。现可以生产直径×长度:12.7mm×76.2mm到127.0mm×25.4mm的部件。

6 放电等离子烧结技术

早在1930年美国科学家就提出了这项放电等离子烧结技术(Spark Plasma Sintering),简称SPS,然而该技术直到近几年才得到世人的关注。SPS技术独到之处就在于无需预先成形,也不需要任何添加剂和粘结剂,是集粉末成形和烧结于一体的新技术。这项技术主要是通过先把粉末颗粒周围的各种物质清除干净,如此一来粉末表面的扩散能力会得到提高,然后再利用强电流短时加热粉末就可以达到致密的目的,注意加热时应在较低机械压力情况下。有研究结果显示,采用该项技术由于场活化等作用的影响,不仅有效降低了粉体的烧结温度,也大大缩短了烧结时间,再加上粉体自身可以发热的影响,不仅热效率很高,加热也很均匀,所以采用该技术只需一次成形就可以得到质量上乘的、符合要求的零件。现阶段,该技术大范围应用的主要是在陶瓷、金属间化合物、纳米材料、金属陶瓷、功能材料及复合材料等。另外,该技术在金刚石、制备和成形非晶合金等领域也得到了不错的发展。

7 爆炸压制技术

爆炸压制(Explosive Compaction)是一种利用化学能的高能成形方法,也被叫做冲击波压制。一般情况下,它都是通过在一定结构的模具内对金属粉末材料施加爆炸压力,在爆炸过程中产生的化学能可以转化为四周介质中的高压冲击波,然后利用脉冲波就可以实现粉末致密。整个过程只需10-100us,其中粉末成形时间只有大约1ms。这种压制方式最大的优势是可以解决传统的压制方式一直无法解决的难题,即可以使松散材料达到理论密度,比如金属陶瓷材料、低延性金属等采用传统的压制方法无法使其致密,一直是一个未解的难题,随着爆炸压制技术的出现,我们发现采用这项技术就可以把其压制成复合材料,并制造成零件。

我国的粉末冶金技术带来的前景是非常广阔的,作为一种新工艺、新技术,与国外先进水平相比,它还有很多地方需要改进、需要提高。

参考文献:

[1]张建国,冯湘.粉末冶金成形新技术综述[J].济源职业技术学院学报,2006-03-30.

[2]郭峰.火电厂等离子点火装置中高性能阴极材料的制备与实验研究[D].华北电力大学,2006-03-01.

[3]刘双宇.高强度铁基粉末冶金材料复合制备方法及组织性能研究[D].吉林大学,2007-10-25.

第2篇

关键词:氧化物冶金 非金属夹杂物 晶内铁素体

中图分类号:TF 文献标识码:A 文章编号:1007-0745(2013)06-0258-01

进入21 世纪后,钢铁材料因高的强度与良好的低温冲击韧性而在机械工程制造业中占据着重要地位。机械工程结构向巨型化、高参量方向发展, 如超大型船舶与海洋平台、大跨度桥梁、长距离石油和天然气输送管线等。这些大型机械工程结构对钢铁材料的性能提出了越来越高的要求, 要求在不增加或尽量减少合金元素含量的前提下, 使钢铁材料的强度与韧性成倍提高[1]。许多研究成果表明, 细化晶粒是实现钢铁材料强度与韧性成倍提高的最有效方法。氧化物冶金是近年来用于细化钢铁材料晶粒, 提高强度与韧性的新方法、新技术, 已成功地用于非调质钢、微合金低碳钢、天然气输送管线钢的开发, 日本的“ 新世纪结构材料开发计划”就包含氧化物冶金的内容川。本文介绍了氧化物冶金技术及其应用的新进展。

1 氧化物冶金的基本思路

人们研究焊缝金属的显微组织与强度、韧性之间的关系时,发现当焊缝金属奥氏体晶内的非金属夹杂物周围有似针状的铁素体显微组织时, 焊缝金属不仅具有高的强度, 而且具有良好的低温冲击韧性。这些似针状的铁素体显微组织被称为针状铁素体(Acicular Ferrite , 简称A F ) 。针状铁素体是在奥氏体晶内形成的, 又称为晶内铁素体(Intragranular Ferrite , 简称IG F )。简称IG F )。晶内铁素体总是在非金属夹杂物上形核, 而这些非金属夹杂物主要为Ti、AI 的氧化物与Mn 的硫化物形成的氧、硫复合物仁5 一1。根据非金属夹杂物诱导内铁素体形核, 细化晶粒, 提高强度和韧性的客观事实。日本新日铁公司的高村等: 提出了控制钢中氧化物的组成, 使之细小、弥散化, 诱导晶内铁素体形核, 提高钢的强度与韧性, 并将这一新技术称为氧化物冶金(Oxides Metallurgy)。基本思路可概括为: (1) 若能在原奥氏体晶内形核, 产生大量的晶内铁素体, 即使奥氏体晶粒粗大,也可获得晶粒细小的显微组织。晶内铁素体具有自身细化的能力, 能抑制焊接热影响区的晶粒粗化。(2) 无论多洁净的钢, 其均有许多非金属夹杂物。在适当的条件下,一些非金属夹杂物可诱导晶内铁素体形核, 细化钢的晶粒。

2 氧化物冶金型钢的显微组织特征

氧化物冶金型钢的显微组织主要由非金属夹杂物与晶内铁素体组成, 这时的非金属夹杂物为有益非金属夹杂物, 是钢中相的重要组成部分。它们共同起到细化晶粒提高钢强度与韧性的作用。

1 晶内铁素体的显微组织特征晶内铁素体的相转变温度为680~480℃ ,属于中温转变。晶内铁素体均在奥氏体晶内的非金属夹杂物上形核、长大,每个非金属夹杂物上往往有多个晶内铁素体板条, 呈放射性状[2]。 国家自然科学基金(50334050) 和上海宝山集团公司联合资助重点项目氧化物冶金技术及其应用晶内铁素体板条的平均尺寸为0.1μm~3.0μm。碳化物板条之间相互连锁, 分布在原奥氏体晶内。一方面晶内铁素体能使钢的晶粒细小化,另一方面晶内铁素体板条之间为大角度晶界, 板条内的微裂纹解理跨越晶内铁素体时要发生偏转, 扩展需消耗很高的能量。因此, 氧化物冶金型钢表现出高的强度和韧性。晶内铁素体能自身细化。一定条件下, 由非金属夹杂物诱导生成的晶内铁素体晶界上可以生长出新的晶内铁素体, 这使得钢的晶粒更加细化, 有很强的自身细化晶粒的能力。由非金属夹杂物诱导形核形成的晶内铁素体称为一次晶内铁素体, 在一次晶内铁素体晶界上形成的晶内铁素体称为二次晶内铁素体。二次晶内铁素体的形核称为感生形核,由此形成的晶内铁素体又称为感生晶内铁素体。利用晶内铁素体感生形核具有自身细化晶粒的特点, 可有效地解决焊接热影响区韧性下降的问题。尽管许多学者发现了晶内铁素体感生形核现象仁川, 但对有关晶内铁素体的感生形核规律、感生形核条件和影响晶内铁素体感生形核的因素了解较少, 积累的数据也不多。

2 氧化物冶金型钢中非金属夹杂物的作用与性质

非金属夹杂物是氧化物冶金型钢显微组织的重要组成部分, 这时的非金属夹杂物是有益相, 它们有以下几方面的作用。在钢液中作为非自发形核核心,细化奥氏体晶粒,沉淀于奥氏体晶界, 阻止奥氏体晶粒的长大; 固溶于奥氏体晶内, 影响奥氏体向铁素体的固相转变, 诱导晶内铁素体形核、长大; 在焊接过程中, 促进焊接热影响区粗晶区的晶内铁素体形核与感生形核。现对于诱导晶内铁素体形核非金属夹杂物的性质进行了许多研究。研究了焊缝金属中诱导晶内铁素体形核非金属夹杂物的性质。电子探针分析的结果表明, 诱导晶内铁素体形核的非金属夹杂物为Al、Ti、Mn的氧、硫复合物, 如如TIO·A12O3·MnS。并认为非金属夹杂物表面的MnS在晶内铁素体形核过程中起主导作用。研究了微Ti 脱氧低碳钢中非金属夹杂物的性质,认为TiZO3、TIN和Ti:O3。· TIN复合物在晶内铁素体形核中起主导作用, 并认为TiZO3、TIN与铁素体的错配度较小, 有利于晶内铁素体在非金属夹杂物上形核。A ndres等[3]烫二研究了微v合金氧化物冶金型中碳钢的非金属夹杂物, 认为MnS、vN和MnS·VN复合物在晶内铁素体形核中起主导作用。由于诱导晶内铁素体形核、长大的非金属夹杂物往往是A12O3、TiZO3、MnS、TIN形成的氧、硫复合物或氧、氮复合物。这些复合物的中心为高熔点的TIO、TiZO3等,非金属夹杂物的表层一般为低熔点的MnS、TIN等。在复合非金属夹杂物中, 究竟是复合非金属夹杂物整体共同作用诱导晶内铁素体的形核, 还是表层非金属夹杂物MnS、TIN在诱导晶内铁素体的形核过程中起决定性作用, 在此方面争议较大, 还有待进一步研究。

3 结束语

通过对这门课程的学习,我对这种技术的运用简单的谈了一下我的看法,希望能为今后教师的教学做一些贡献。这也是对我学习这门课程的总结。

参考文献:

[1]王超,朱立光.氧化物冶金技术及应用[J]. 河北理工大学学报(自然科学版). 2011(02).

第3篇

1PLC的选型

PLC选型方式灵活,根据控制对象和控制任务的不同,我们可以选择不同型号的PLC及其模板类型和数量。首先我们根据具体的控制任务决定出需要采集和控制的点数,即DI/DO点数和AI/AO点数,然后像搭积木一样搭出所需PLC的模板配置及其模板的数量。一般来说:点数在100点以下,选用S7-200系列;点数在1000点以下,选用S7-300系列;点数在1000点以上,选用S7-400系列;模板的数量等于点数除以单个模板的通道数。因此唐钢冷轧厂———镀锌生产线所采用的PLC就是S7-400系列。

2西门子PLC的连接方式

西门子PLC的连接方式主要有以下2种:(1)下位连接,即PLC与远程单元的连接,就是主站与从站单元的连接。西门子PLC可以通过PROFIBUS-DP通讯方式与ET200系列远程站构成分布式自动化系统,方便的实现现场级自动化。PROFIBUS-DP通讯数据传输率最大为12Mbit/s,从I/O传送信号到PLC控制器只需短至毫秒级的时间,确保了从单元层到现场层的集成通信。这种连接使现场只有一根总线,彻底避免了多电缆硬线连接容易造成的故障,简化了施工与维护。(2)同位连接,即PLC与PLC之间的连接主要是多台PLC主站之间连接。多台PLC通过通讯模板连接在一起,在S7网络组态中指定2台PLC的伙伴关系,就产生共同的ID号,用来识别网络上构成伙伴通信关系的2台PLC,再通过S7的标准功能FC5(AG-SEND)和(AG-RECV)编程定义数据的发送与接收。如果采用的通讯模板是PROFIBUS网卡,构成伙伴通信关系的2台PLC采用FDL协议;如果采用的通讯模板是工业以太网网卡,构成伙伴通信关系的两台PLC采用ISO协议。

3INTOUCH操作站

上位监控软件INTOUCH是西门子公司推出组态软件平台,它可用于自动化领域中所有的操作员控制和监控任务。INTOUCH使用方便功能强大,使用INTOUCH组态软件可开发出较强的组合画面。以下是INTOUCH组态软件所具备的一些功能:(1)显示功能:用图形实时地显示生产线上各个设备的运行情况,动态显示生产工艺流程;动态显示模拟量信号、开关量信号、各种累计信号的数值,通过按钮、开关、信号灯、颜色、百分比、填充等手段实时生动地表达出来。(2)数据管理:能够建立和产生数据库,操作信息库,故障信息库。(3)数据处理:在INTOUCH的曲线跟踪功能中,它既可以显示实时数据,也可查询历史数据。(4)报警功能:当某一模拟量(如温度,压力,流量等)超出给定范围或某一开关量(如电机启停,阀门开关等)发生变位时,根据不同的需要发出不同等级的报警。(5)报表功能:即时报表,日报表,月报表,年报表。(6)安全功能:按不同的操作级别分别加密,不同级别的操作员操作权限不同。(7)打印功能:可以实现报表和图形的打印,以及各种报警的实时打印。(8)INTOUCH操作站硬件基础是工控机和工业网卡,软件构成为WIN98/NT/2000系统。

4西门子工业通讯网络

(1)工业以太网ETHERNET:工业以太网是基于国际标准的网络,专为工业应用而优化设计。工业以太网技术上与1EEE802.3/802.3u兼容,使用ISO和TCP/IP通讯协议。工业以太网是基于1EEE802.3的强大的区域和单元网络。(2)现场总线PROFIBUS网:现场总线是指将现场设备与工业过程控制单元、现场操作站等互连而成的计算机网络,具有全数字化、分散、双向传输和多分支的特点,是工业控制网络向现场发展的产物。PROFIBUS主要由PROFIBUS-FMS、PROFIBUS-PA和PROFIBUS-DP三部分组成。其中PROFIBUS-DP是一种高速(传输速率9.6kbps~12Mbps)、经济的设备级网络,主要用于现场控制器与分散I/O之间的通讯,可满直流调速系统快速相应的时间要求;PROFIBUS-PA用IECII58-2标准,传输速率为31.25kbps,提供本质安全特性,适用于安全性要求较高以及由总线供电的场合;PROFIBUS-FMS主要解决车间级通信问题,完成中等传输速度的循环或者非循环数据交换任务。唐钢———镀锌车间采用的就是PROFIBUS-DP通讯。

5结语

由西门子可编程控制器和INTOUCH操作站构成的监控系统解决了整个系统实时集中控制和各种数据的在线管理问题,实现了对控制目标的直接数字化控制,大大提高了控制过程的技术水平。西门子PLC技术在唐钢一期镀锌生产线的自动控制系统的应用实践证明该系统具有良好的稳定性,可操作性,完全达到设计的控制要求。

第4篇

1钢铁冶金行业对自动化技术的需求

钢铁冶金行业对自动化技术的需求比较大,主要是在科学技术发展的带动下,体现出了自动化技术的优势。钢铁冶金行业的生产规模越来越大,涉及到的工艺和技术呈现复杂化的发展趋势,需要利用自动化技术,支持钢铁冶金行业的发展,分析钢铁行业对自动化技术的需求,如下:自动化技术的逻辑控制需求,其在钢铁冶金行业中发挥准确的控制作用,提供机械化、信息化的控制方式,落实自动化技术的控制途径,保障钢铁冶金行业的生产效率。钢铁冶金行业利用自动化技术实现智能控制,辅助智能化的编程,充分应用自动化的技术与系统,为钢铁冶金行业提供可靠的技术支持,确保钢铁冶金的效率与效益,有利于钢铁冶金行业的综合化发展,通过自动化技术优化了钢铁冶金行业的生产环境,保障多学科的融合化发展,满足钢铁冶金行业对自动化技术的实践需求。

2自动化技术在钢铁冶金行业中的未来发展

自动化技术在钢铁冶金行业中起到重要的作用,一方面提高钢铁冶金的自动化水平,另一方面改进钢铁冶金的生产工艺,体现技术型的控制优势。自动化技术成为钢铁冶金行业的重点,表现出良好的发展趋势,分析自动化技术的未来发展。

2.1自动化控制的高效性发展钢铁冶金行业的自动化技术,其对控制性能的要求比较高,需要具备高效性的特点,由此才能适应钢铁冶金行业的发展。现代钢铁冶金行业中引进了智能化、数字化的技术,增加了自动化控制的负担,所以针对自动化技术提出高效性的发展要求,促使其在未来发展中达到高效的规范标准,适应钢铁冶金行业的发展需求,最大程度地提高自动化的控制效率。高效性是钢铁冶金行业自动化技术的基础发展,辅助钢铁冶金行业改进生产工艺,保障自动化生产的效率。

2.2自动化技术的一体化发展一体化的自动化技术具有集成的特点,其在钢铁冶金行业中涉及到电子、电气等多项技术,推进自动化技术一体化的融合性发展。一体化的自动化技术解决了传统技术在钢铁冶金行业中出现的应用问题,落实一体化的操作途径。例如:钢铁冶金行业自动化技术中的EIC,联合了仪表、电气等技术,明确划分钢铁冶金行业中的生产工艺,充分利用逻辑控制的方式,避免出现逻辑上的问题,EIC还能在自动化技术一体化的基础上,引进运行软件的应用,提高EIC软件控制的能力,按照钢铁冶金行业的需求,推进EIC的一体化发展,表明自动化技术一体化的应用价值。

2.3低成本发展趋势低成本是指自动化技术的资源控制,在保障自动化技术准确应用的基础上,降低钢铁冶金行业的资源投入,还要提高自动化技术的运行效益。自动化技术低成本的发展趋势,需要采用模块化的发展方式,优化钢铁冶金行业的资源配置,而且低成本是现代工业的一种趋势,其在钢铁冶金自动化方面体现出了积极性。例如:冶金行业中的自动化技术,利用IPC模块,结合CIMS、STD,限制资源投入的规模,有目的的控制成本的投入,打破冶金行业资源高消耗的方式,自动化技术的低成本发展,更有利于自动化技术的应用,展示自动化技术低成本的优势。低成本已经成为自动化技术在钢铁冶金中的一项趋势,满足钢铁冶金行业的未来需求,体现自动化技术低成本的实践性。

3结语

自动化技术改善了钢铁冶金行业的发展,促使其在未来具备良好的发展趋势。钢铁冶金行业的自动化发展,提高了对自动化技术的应用力度,也是自动化技术未来发展的因素。自动化技术提升了钢铁冶金行业的发展水平,完善钢铁冶金制造的环境,体现了自动化技术的应用价值和优势,缓解了钢铁冶金行业的发展压力。

作者:万延林单位:江苏省镔鑫钢铁集团

第5篇

[关键词]冶金行业;节能技术;应用;管理

中图分类号:TF31 文献标识码:A 文章编号:1009-914X(2014)37-0268-01

冶金行业走节能高效、可持续发展的道路已经是行业发展的必然趋势,而在这发展中最为关键的环节就是冶金节能技术的应用与管理,在过去传统的冶金技术中多以粗放型为主,造成资源消耗大,生产效率低,环境污染严重等等,随着科学技术的发展带来冶金节能技术的提高和冶金工作经验的不断积累,冶金节能技术的应用与管理在企业中扮演了越来越重要的角色,本文通过对冶金节能技术的分析,探究节能技术在冶金行业的应用与管理,并对冶金节能技术的发展提出展望。

1 冶金节能技术的概况

冶金就是从矿石中提取金属或金属化合物,用各种加工方法将金属制成具有一定性能的金属材料的过程和工艺。

随着我国钢铁企业的不断发展,装备配置和硬件设施几乎已经达到了世界很高的水平,但我国钢铁企业之所以还与世界发达水平存在很大差距,主要就体现在生产工序上存在较大差距,目前钢铁行业主要通过新技术的应用、工艺改进、设备改造等技术措施, 以及对原来废弃资源的综合利用等措施,来降低能耗,保护环境。

2. 金节能技术的应用与管理

2.1 焦化方面的节能技术

焦化方面的节能技术一直是冶金行业技术应用于管理的重要方面,也是国家重点推进的冶金环保技术,比较典型的应用包括干熄焦技术、炼焦配煤优化系统、烧结烟气的综合利用和催化燃烧烧结助剂的应用等等。

2.1.1 干熄焦技术

干熄焦技术在冶金行业的应用主要是替代传统的湿熄焦技术,通过惰性气体冷却炽热焦炭,从焦炉中推出950~ 1050e的红焦,送往干熄焦容器内,在通过惰性气体进行冷热交换,其惰性气体在从干焦炉中出来后大约是850e,经过除尘进入余热锅炉换热, 从余热锅炉出来的惰性气体再由循环风机送入干熄焦容器内进行循环使用,其节能的特点主要体现在红焦显然的回收利用,产生的蒸汽还可以用于发电等等,经干熄焦技术所产生的焦炭质量相对较高,在节能上经济效益和环境效益都非常明显。

2.1.2 炼焦配煤

将单种煤料配合均匀而获得各种用途的焦炭为炼焦配煤,炼焦配煤的应用利用了煤的结焦性,不同类别的煤在配煤中所起的作用不同,达到了相互之间取长补短,节能环保的目的。

2.1.3应用催化燃烧烧结助剂

在大中型钢铁企业中在烧结过程中加入催化燃烧烧结助剂可以提高燃烧效率和热能释放,在冶金过程中可以达到节约能源的目的,特别是在提高烧结矿硬度和强度方面作用明显。

2.2 炼铁

2.2.1 助燃剂在高炉喷煤的应用

高炉在喷煤的关键所在在于煤粉在高炉中喷吹时的煤粉能否燃烧,在以往的检测中可以发现,除尘灰中高达50%~60%的碳粉,说明喷吹的煤粉在高炉中没有充分燃烧,因此利用助燃剂在高炉喷煤时保证煤粉的充分燃烧,是提高节能效率的手段之一。

2.2.2 高炉喷煤比的提高

想要优化炼铁工序中的燃料结构,从而达到降低生产成本,降低资源消耗的目的,就需要合理搭配煤种,煤焦置换达到1.0高炉喷吹煤粉,合理控制混合煤的成分,提高高炉喷煤比。

2.3 轧钢方面

在轧钢方面新技术与技术改造设备多以蓄热式加热炉为主,在我国目前已有多达270个蓄热式加热炉,高效蓄热式加热炉和煤气、空气预热技术在轧钢工序中的应用。高效蓄热式燃烧技术,可以降低加热炉能耗35%。

2.4 炼钢

回收并利用转炉煤气。转炉煤气来自炼钢过程中转炉内处的高温碳氧反应形成的CO气体。要做到炼钢高效节能,就必须回收并利用转炉煤气,并且还要保证转炉煤气回收利用的质量。转炉煤气的回收利用的技术实现体现在采用电除尘净化转炉运转时的热烟气,并回收煤气,收集的除尘灰,进行热压块后又回到转炉中,作为转炉的冷却剂。转炉煤气干法烟气除尘处理、煤气回收及可以部分或全部补偿转炉炼钢过程中的能耗。

3 冶金节能技术的应用管理趋势

3.1 大型化焦炉和非回收型炼焦技术

在上文已经提到焦化方面的节能技术,在未来冶金节能技术的发展中,特别是大中型钢铁企业。大型化焦炉的节能应用是发展的必然趋势,可通过干熄焦技术回收热能用于发电,装煤系统采用了负压抑尘无烟装煤等技术,实现焦化系统的节能减排等等,除此之外,回收型炼焦技术也是大力加强和发展的方面,回收并非是化工副产品而是燃烧时排放的热能等,对于节能环保方面具有重要意义,且生产质量并未降低反而有更高的质量和经济效益。

3.2 氢冶金技术

随着煤炭资源紧张,资源日益短缺等问题的出现,在完善传统的冶金工艺同时也要加强新工艺的研究与推广,其中氢冶金技术在替代传统的碳还原剂炼铁工艺方面具有一定的发展优势,在氢冶金技术应用的实践中,首先需要解决的问题就是如何得到丰富且廉价的氢气,在传统的钢铁冶金过程中会产生出大量的焦炉煤气,可以为氢冶金技术提高丰富的氢气资源,而通过氢冶金反应的化学式中也可以看出,氢作为还原剂所产出的是水,对于节能环保方面是最佳选择。

3.3 对于冶金渣的利用技术

所谓的冶金渣是钢铁生产过程中所产生的最大量的副产物,冶金渣温的显然温度一般都会达到1400e以上,温度高,二次利用的价值非常大,但在冶金过程中,常常缺乏对这一部分能源的利用,造成能源浪费。一般来说,冶金渣可以用于水泥厂或建材厂作原料使用,或直接做成微晶玻璃或者矿渣棉等建筑装饰材料等。

4 总结

综合以上我们可以发现,冶金节能技术在企业自身的发展和国家建设中都有重要的作用,国家对于冶金生产也非常重视,推出了一系列具有共性和关键作用的节能环保先进技术,支撑清洁生产,企业出于经济效益与社会效益的考虑,也加大了对于冶金节能技术的应用与管理,各项冶金节能技术减少了资源消耗,提高了生产效率,减少了环境污染,促进了企业与国家的发展,而冶金节能技术的发展关键在于对节能技术的重视和节能技术的创新,相信随着冶金节能技术的发展,冶金节能技术的应用与管理将会迈向一个新的高度。

参考文献

[1] 王书桓,赵定国.高压冶金技术在高氮钢冶炼中的应用[J].太原理工大学学报,2014,01:15-18+24.

[2] 江涛,吕巧飞,张维娜,李帅,鄢南平,刘乐. 粉末冶金技术在材料科学与工程专业教学实践中的研究和讨论[J]. 人力资源管理,2014,04:182-183.

第6篇

关键词:粉末冶金技术;新能源材料;应用

前言

为了寻求长远的发展,需要重视能源问题。在全球经济以及热口增长的环境下,传统能源彰显匮乏性,无法满足社会发展的实际需求。同时,也无法进行再生。因此,面对严重的资源危机,要对新能源的开发与利用作为项目对待。粉末冶金对传统冶金技术进行了发扬过大,积极融合现代科技,推动信息化建设,实现现代工业的良性运转,也为新能源的开发提供更多的技术保障。

1 对粉末冶金技术特征的分析

粉末冶金技术具有长远的历史,其主要立足传统冶金技术,达到了对诸多学科知识的融会贯通,形成优势突出的新型冶金技术。粉末冶金主要对象是粉末状的矿石。在传统的冶金方法中,矿石的形式为整块,先进行提炼,而后进行冶炼。应用传统技术,块状矿石提炼技术受制于技术和矿石的大小,只能达到80%左右的利用率,产生大量材料的废置。但是,在粉末冶金技术的应用下,资源利用率得以大幅提升,有效降低资源浪费。另外,块状形式的矿石材料长期处于露天堆放,对环境产生不良影响,甚至破坏。由此可见,冶金技术的改善势在必行,要重视冶金技术水平的提升,使得材料各尽所用,发挥不同冶金材料的作用,切实提升使用效率,形成高性能的新材料,达到成本的降低。利用现代粉末冶金技术,能够对废矿石、旧金属材料进行再利用,有效节约资源,极大推动经济效益的获取,对可持续发展意义重大。因此,粉末冶金技术在原材料选择方面相对较为宽松,能够充分利用废旧金属、矿石等,形成不规则的粉末,满足原材料节约和回收的目标。另外,鉴于粉末冶金可塑性以及相关材料的添加,促进性能的增强和平衡。

2 对新能源技术的阐述

在科技的推动下,新能源技术逐渐被科学界重视。在传统能源开发与应用中,出现严重的资源匮乏现象,加之对环境的不良影响,使得新能源问题的出现备受关注。新能源材料需要在开发、存储以及转化方面具有突出优势。由此可见,新能源材料是发展新能源的关键因素。为了更好地实现转化和存储,其在配件、生产要素等方面都极具特色,与传统能源行业的材料截然不同。粉末冶金技术在整个新能源开发应用中占据举足轻重的地位。

3 系统介绍粉末冶金技术的类型

3.1 传统粉末冶金材料

首先,是铁基粉末冶金。这种材料是最传统,也是最为关键的冶金材料,在制造业中应用较为广泛。随着现代科技的不断发展,其应用范围不断拓展。其次,铜基粉末冶金材料。这种材料类型较多,耐腐蚀性突出,在电器领域应用较多。再次,硬质合金材料。这种材料具有较高的熔点,硬度和强度都十分高,其应用的领域主要是高端技术领域,如核武器等。最后,粉末冶金电工材料和摩擦分类,主要应用在电子领域。随着通讯技术的不断发展,粉末冶金材料的需求量增大。另外,粉末冶金材料在真空技术领域也得到推广。摩擦材料耐摩擦性较强,促使物体运动减速,抑或是停止,在摩擦制动领域应用较多。

3.2 对现代先进粉末冶金材料的介绍

首先,信息范畴内的粉末冶金材料。立足信息领域,主要是指粉末冶金软磁材料。具体讲,是指金属类和铁氧体材料。随着对磁性记录材料的研究,在很大程度上推动了粉末冶金软材料的需求。其次,能源领域内的粉末冶金材料。能源材料的研发推动能源发展,其中,主要涉及储能和新能源材料。全球经济的发展使得能源需求量增大,传统能源彰显不足,因此,新能源开发势在必行,尤其是燃料电池和太阳能的开发。再次,生物领域的粉末冶金技术。生物材料技术的发展对整个社会具有不可替代的作用。要将生物技术列入国家发展计划。在生物材料中,主要包含医用和冶金材料两大类,在维护身心健康的同时,加快金属行业的进步。第四,军事领域的粉末冶金材料。在航天领域,材料的强度和硬度是重要指标,稳定性要突出,具有极强的耐高温性。在核军事范畴,粉末冶金技术也具有发展前景,更好地推动整个社会工业技术的进步。另外,新型核反应堆的建设需要具有较高的防辐射标准,而粉末冶金技术的支持下,切实增强核反应堆的安全性与可靠性,有效降低核辐射强度。

4 对粉末冶金技术在新能源材料中的应用的介绍

4.1 粉末冶金技术在风能材料中的应用

风能对我国而言,十分丰富,不存在污染,是新能源的主要类型。在风能发电材料中,粉末冶金技术主要实现对两种材料的制作,即即风电C组的制动片以及永磁钕铁硼材料。这两种材料的制作与整个风力发电关系密切,事关发电过程的安全性与可靠性,影响发电效率的高低。风能发电机制动片在摩擦系数和磨损率方面,要求较高,同时,力学性能必须突出。目前,主要应用的是铜基粉末冶金技术,完成对压制制动片的制作。制动片需要在导热方面十分突出,同时,制动盘具有较小的摩擦。在应对恶劣温度环境的时候,也能够进行有效的使用。对于永磁钕铁硼,系统永磁材料代替了传统的永磁材料,烧结钕铁硼就是加入了稀土粉,利用粉末冶金工艺制备而成。

4.2 粉末冶金技术在太阳能中的应用

太阳能突出的特点是清洁性,是新型能源的一种,被商界所看好,开发价值巨大。当前,在太阳能领域,主要的发展方向为光电太阳能与热电太阳能,形成发展趋势。立足光电太阳能领域。其主导作用的部件为光电池,也就是半导体二极管,依靠光伏效应,促使太阳能有效转化为电能。目前,太阳能光电转化效率较低,对航天事业的发展产生阻碍。在粉末冶金技术的使用下,能够有效进行薄膜太阳能电池的制作,光电转化率得以显著提升。同时,粉末冶金技术也研发了多晶硅薄膜,代替了传统的晶体硅,光电转化率大幅提升。另外,粉末冶金技术与太阳能热电技术也实现了融合。当太阳进行地表照射之后,为了达到对光热技术的有效收集,需要发挥吸收板的功能。而吸收板的制作与粉末冶金技术息息相关,主要应用了其成型技术,发挥粉体在色素和粘结剂方的作用,而后混合,形成涂料,涂于基板之上。这也充分体现了粉末冶金技术在成型技术方面优势更加突出。

5 结束语

综上,通过对粉末冶金技术优势的分析,可以发现,其在新能源材料的开发和应用中极具发展潜力。粉末冶金在创造性方面十分突出,塑造性较强,使得其在新能源材料的发展和应用中占据核心地位。粉末冶金技术的工艺原理使得其在新能源开发中更具经济性与高效性。因此,要大力推进粉末冶金技术在新能源开发应用中的拓展,为新能源的可持续发展提供保障。

参考文献

[1]陈晓华,贾成厂,刘向兵.粉末冶金技术在银基触点材料中的应用[J].粉末冶金工业,2009,04:41-47.

[2]邱智海,曾维平.粉末冶金技术在航空发动机中的应用[J].科技创新导报,2016,07:10-12.

第7篇

[关键词]湿法冶金;发展;应用

中图分类号:TM713.1 文献标识码:A 文章编号:1009-914X(2017)11-0376-01

1 前言

湿法冶金技术已经在有色金属中有着。在近十几年的时间内,日益进步的科技手段以及所有的工业机构针对有色金属产品的种类、品质与数目的要求逐渐增强,环境维护与资源的充分运用需求高涨;然而矿产资源的数量却日益减低,矿石有价组分贫化与繁琐化,在此背景下湿法冶金因其具备较强的优势而有着大量的发展。

2 湿法冶金概述

湿法冶金所指的是金属矿物材料在碱性介质又或是酸性介质的水溶液里面实施化学处理又或是机溶剂萃取、杂质分离、获取金属以及有关化合物的环节。湿法冶金是一种较为独立的技术手段在二战之后获得大量的发展,在获取铀等部分矿物质之时无法运用传统形式的火法冶金,仅仅可以运用化学溶剂将其完全分离出,此提取金属的方式便是湿法冶金。

3 湿法冶金技术发展与运用

3.1 生物技术在湿法冶金中的运用

生物冶金是将微生物和湿法冶金技术相互融合的冶金工艺。在1983年的时候,生物冶金便在细菌浸出国际会议中被人们所提及。按照生物冶金在金属回收环节所具备的功能,能够将此技术划分成以下3种:生物吸附、生物浸出以及生物累积。在1947年的时候,人们第一次发掘了氧化亚铁硫杆菌可以将铁离子氧化。然而直至1958年的时候,美国国内的肯尼柯铜矿才在此层面获得了较大的突破,从而将生物技术引入至冶金领域之中。截止当前,生物冶金已经被大量运用至各类金属矿的冶炼环节,同时获得了人们的高度重视。其一,因为运用此技术有助于对低品位的矿产实施开采与回收。其二,运用此技术针对金属矿实施提炼,对于环境所造成的影响相对较小,同时具备投资费用较低以及能源消耗低等优势。当前,微生物湿法冶金工艺同样在我们国家较多区域的冶金公司中获得运用。因此,生物冶金工艺的运用,已在国内外获得了较大的发展。

3.2 微波辅助技术在湿法冶金中的运用

在运用微波针对硫化铅锌矿与钒钛磁铁矿进行处理的时候,矿石所具备的可磨性在微波辐射作用下有所增强,其表明微波辐射转变了矿石所具备的可磨性,使得矿石便于粉碎。辐射的时间越久,温度便会更高,增强的幅度也就越大。然而针对硫化矿而言,温度偏高便会挥发出二氧化硫,转变矿物所具备的特性。微波在针对矿石进行处理的环节之中,不但能够增强磨矿产品里面细级别的生产效率,同时并不会导致破碎问题。换而言之,矿石的可选性与解离度均有所增强,为后期的湿法浸出奠定了较好的基础,同时节省了非常多的磨矿费用。

当前,国内与国外所具有的难处理金矿石的预处理方式大致有热压氧化、氧化焙烧、化学氧化以及生物氧化等等。微波氧化法依然处在试验时期。四川省某金矿石运用微波辅助技术进行处理,涵盖斜方砷铁矿、黄铁矿、毒砂、非晶质碳以及石墨等其它对金的浸出造成影响的矿物质。金有着微细的嵌布粒度,包裹金占据的比例为23%。针对矿石直接实施氰化浸出,金的浸出率接近于零。针对此矿样实施多个环境下的微波预处理试验,成效相对较好,氰化浸出率有所增强。直接微波预处理的方式由SO2与A s2O3毒气行程,将精矿和固化剂Ca(OH)2混匀之后实施微波预处理,不但可以节省能源,同时还能够固化硫、砷并且增强金的浸出率。

3.3 电位-PH图在湿法冶金中的运用

氧化还原电位与溶液pH值等是湿法冶金技术中两个最为重要的要素。在正常状况下,在具体的湿法冶金环节,化学反应的方向与限制均能够由pH、电位、反应物以及产物的活度所构成的热力学方程式来预测。然而如此的方程式便能够运用电位-pH图简单的展示出,因此电位-pH图对于湿法冶金具有极为重要的指导性作用。

3.4 真空技术在湿法冶金中的运用

(1)真空干燥与真空冷冻干燥

干燥是运用加热蒸发的形式消除水分,传统形式的干燥手段主要有煮、晒、烘干以及喷雾干燥等等,然而伴随真空干燥技术的逐渐发展,在真空背景下调控温度针对样品实施干燥备受人们的关注。与传统形式的干燥法对比而言,真空干燥具湟韵录父鲇诺悖耗芄辉擞糜谌让粜缘奈镏剩荒芄缓侠淼募跎俑稍锼需的时间;针对各类组成繁琐的机械元件通过清洁之后运用真空干燥的方式,不会留下任何的多余物质;免除了氧化物高温爆炸,运用更加的安全。所以,真空干燥能够处理各类湿法环节所得到的滤饼,还能够运用于干燥各类在传统干燥之时极易发生氧化的化工产品。

(2)真空过滤湿

湿法冶金所具备的特征便是有着较多的液固分离步骤,然而过滤工作品质的好坏对于冶金制造环节与产品品质有着非常大的影响,特别是对于持续性加工的平稳性产生较大的影响。其对干燥对比而言,过滤是经济性能比较好的脱水形式,能够减少运输成本、降低所产生的环境污染等,具备非常强的经济发展潜力。真空过滤所代表的是在压强差距的作用之下,全面运用物料所具有的重力与真空吸力,使得物料经过过滤介质的时候,颗粒被截停在介质外表产生滤饼,然而液体便会经过过滤介质外流,进而实现固液相互分离的目标。

(3)真空蒸发结晶

蒸发结晶主要是经过加温蒸发浓缩的形式使得溶液里面被结晶的物质趋于饱和而结晶析出的方式。真空蒸发结晶便会经过逐渐的抽出所蒸发出的蒸汽使得蒸发环节能够持续不断的实施同时使得溶液快速饱和。

4 结语

冶金领域归属原料工业,然而法冶金的主体大都是资源的充分运用,尤其是针对品位较低、繁琐难选矿的分离获取具备较强的优越性。融合我们国家矿产资源的特征,特别是在有色金属以及稀有金属层面所具备的优点,全面拓展湿法冶金技术的额研发和运用,将资源优势转变为行业优势,不但能够达到我们国家经济发展的需求,同时对于推动出口创汇的发展有着非常重要的作用。所以,增强我们国家湿法冶金全新技术、全新工艺的运用以及进行基础性的研究具备极为重要的意义。

参考文献

[1] 王成彦,邱定蕃,江培海.国内锑冶金技术现状及进展.有色金属(冶炼部分),2002(5):6~9.

[2] 杨显万,郭玉霞.生物湿法冶金的回顾与展望.云南冶金,2002,31(3):85~87.

[3] 杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社,1998.

第8篇

1粉末冶金技术应用于钢铁循环经济的意义

1.1提升资源利用率

粉末冶金是制取金属粉末或用含有金属的混合粉末作为原料,通过化学方法、物理方式进行加工,制造金属材料、复合材料以及其他各种类型制品的一种生产、加工技术。在钢铁工业的生产活动中,会产生许多金属粉末和混合粉末,对其进行二次加工可以有效提升铁资源的利用率[1]。

1.2提升经济效益

钢铁循环经济的重要追求之一即是对经济效益的提升,而粉末冶金技术则是钢铁循环经济的重要组成部分,其可以通过对金属粉末的二次利用达到提升企业经济效益的目的[2]。

2粉末冶金技术在钢铁循环经济中的应用

2.1含铁粉末产生的环节

一般来说,钢铁企业的含铁粉末主要是来自于两个生产环节,即炼铁原料系统和出铁口系统,以武汉钢铁集团为例,其部分产生含铁二次资源的统计如表1所示。

2.2制取铁粉的方式和要求

2.2.1利用固体碳制取铁粉

固体碳还原法是目前使用较为广泛的铁粉制取方法,其具有操作简单、技术成熟、经验丰富的优势,其基本原理是将还原剂、脱硫剂加入含铁粉末中,再进行粉碎筛选,直到所获铁粉达到合格要求,具体流程是,在各生产车间放置收集设备,对含铁粉末进行收集,之后对其进行简单加热,使粉末中的水分蒸发,放入反应容器中,加入固体碳还原剂,初步将铁粉和其他杂质脱离,再加入脱硫剂,去除铁粉中的硫化物,之后通过磁化设备进行精选,得到质量较高的铁粉后,通过专业设备进行检测,如果其质量达标,则属于合格产品,可以用于正常使用,如果质量不达标,则需进行二次制取,重新筛选,直到合格为止,利用固体碳回收的铁粉,其品质较高,利用粉末冶金技术,可以将其加工成复合材料和金属材料,用于相关领域[3]。

2.2.2固体碳回收法对含铁粉末的要求

一般来说,含铁粉末是在加工过程或者出铁时产生,由于加工技术、钢铁用途的差异,含铁粉末往往也不尽相同,比如含硫量、其他杂质含量的不同等。主要标准为粉末的铁含量,铁含量在70%以上的混合粉末回收价值较大,由于我国目前对含铁粉末二次加工的技术并不是特别先进,如果混合粉末中铁含量较低,那么加工所需花费和消耗将大于回收的铁粉的价值,二次利用就没有意义了,通常来说,如果混合粉末中铁粉含量低于20%,就不适合通过固体碳方式进行回收,同时,如果混合粉末中盐酸等不溶物的含量大于1%、硫含量大于0.5%,也要考虑更合适的回收方式,比如磁化装置回收法。

2.2.3磁化装置回收法

磁化装置回收法是最简单的铁粉回收法,其基本原理是利用铁元素同极相斥、异极相吸的原理,通过对较大型的装置进行磁化,使其将铁粉从混合粉末中分离出来。磁化装置回收法的基本流程是,在车间、出铁口周围安置混合粉末回收装置,大量收集混合粉末,之后提取部分粉末送检,研究其铁含量,如果铁含量较高,则可以通过固体碳等方式回收,如果其铁含量在30%以下,则表明这部分混合粉末适合通过磁化装置回收法进行回收[4]。

2.3铁粉的压制

通过固体碳、磁化装置等方式完成铁粉收集工作后,需要对铁粉进行压制处理,将其加工成具有一定规格和形状的铁坯,压制处理的方式通常为加压式,即通过物理方法向铁粉增加压力,将颗粒之间的空气挤压出去,使其最终成型[5]。

2.4铁坯的烧结

烧结是压制过后的进行粉末冶金的关键技术。压制成型后的铁坯,往往依然含有较多的杂质、碳化物、硫化物等,通过烧结,可以使铁坯在高温中发生变化,最终将杂质去除。通常来说,烧结分为元烧结和多元烧结,一些特殊的领域也会采用熔浸、热压等烧结方法。烧结环节需要重点注意的是温度,其基本流程是,将铁坯输入烧结设备中,如果采取的是固相烧结,需保持烧结温度低于铁坯的熔点,铁坯只发生纯金属的组织变化,同时铁粉颗粒间黏结、致密化,金属组织间的不会出现溶解,也不出现合金等新型金属。烧结过后的铁坯,基本上可以满足各行业所需,其杂质等经过铁粉制取、烧结已经基本被清除,此时可以根据所要加工的工件对铁坯进行热处理、电镀、轧制等,将其制成工件或者使其符合下一步加工的要求[6]。

2.5回收铁粉的应用

调查显示,利用回收的铁粉进行机械加工,材料利用率往往在90%以上,而直接使用金属材料进行加工,利用率只有50%左右,一个值得注意的现象是,大部分的回收铁粉都被应用于汽车制造行业,日本80%的回收铁粉应用于汽车零部件制造,其行业利润也远大于我国,如何将回收铁粉应用于汽车制造领域或者其他领域,是目前我国相关行业需要考虑的问题。

3总结

对资源进行二次利用,是社会进步的体现,也是时展的要求,在钢铁循环经济中应用粉末冶金技术,充分了解铁粉回收、铁坯压制、铁坯烧结等关键环节并对其进行有效把控,有利于粉末冶金技术的发展、进步,也有利于其在钢铁循环经济中的进一步应用。

作者:胡沙 潘友发 单位:商丘阳光铝材有限公司

参考文献

[1]郭志猛,杨薇薇,曹慧钦.粉末冶金技术在新能源材料中的应用[J].粉末冶金工业,2013,(3):10-20.

[2]江涛,吕巧飞,张维娜,等.粉末冶金技术在材料科学与工程专业教学实践中的研究和讨论[J].人力资源管理,2014,(4):182-183.

[3]任朋立.浅析粉末冶金材料及冶金技术的发展[J].新材料产业,2014,(9):17-20.

[4]陈晓华,贾成厂,刘向兵.粉末冶金技术在银基触点材料中的应用[J].粉末冶金工业,2009,(4):41-47.

第9篇

1 冶金行业的自动化发展战略

为了满足目前的用户对与钢铁的特殊需求,就需要通过不断的改变和优化目前的冶金以及钢铁生产和管理的力度来提高其生产的效率和优化生产规模。在利用新科技的条件下提高产品的转型和换代。人才是企业的核心命脉,是企业腾飞的基础,没有人才的支撑,要实现其冶金行业的发展是不可能的。因此要通过大量的引进各种管理和技术方面的人才来不断的扩大和提高冶金行业的科技人才队伍,不断的发展冶金行业的知识经济。科学技术作为第一生产力,在生产的过程中具有着举足轻重的作用,通过对技术进行改造和引用,不仅可以大大的减少各种不必要的开支,还可以降低人力资源的消耗,减少生产过程中的失误和损耗,为生产和管理效率的提高提供基础和保障。通过不断的建设加强冶金行业的信息化以及计算机管理和控制,不仅可以实现良好的对生产过程的监视,还能够对其进行一定的控制。通过对信息化进行提高,可以有效的提高产品的质量以及管理和决策的水平。此外,其主要的战略重点还包括面向市场和服务市场;并且通过加强各方面的合作来共同的出尽冶金行业的长足发展。

2冶金行业的电气自动化主要技术

PLC技术主要的功能模块包括八个部分,主要为主程序快、数据传输程序、系统的复位程序、控制程序、状态检测程序、手动控制程序、自动启动的程序以及控制函数方面的程序等。通过系统中这些技术和功能模块的联合使用,不仅可以有效的提高生产过程中的有效性以及对生产过程的控制和检测,还可以保证正常的生产。目前该技术比较典型的应用主要有:三菱集团的PLC技术在其钢卷包装线生产中的应用、在冶金行业的相关静电除尘器及其改造中的应用、在冶金行业中的竖井自动化的控制技术以及在小区中的水处理中的应用等。在冶金行业中其已经成为了一种基础性的应用技术。Intouch技术主要的作用就是在生产的过程中实现实现对生产数据的快速、高效以及简便的数据收集,并且有效的将其转化为能够反应其转炉方面的内部生产过程以及图形化的管理流程的相关集成信息。Intouch的技术可以为转炉冶炼的过程的自动化,并且其主要的任务是实现在生产的过程中对生产计划的显示,以及冶金时候的钢种控制需求及其化学成分、制造标准和生产工艺流程,并且将这些数据及时有效的进行采集并传输至相关数据库,数据库的客户端就可以及时的对这些报表和数据进行打印,以明确其目前的状态等。虽然Intouch技术的确是一种最新的并且具有非常优秀的动态组件的程序和技术,其制作和设计也相当的简单、功能十分强大、系统的功能以及稳定性都很好等。但是其也存在一些缺陷,比如:不支持ADO、系统对于语法错误的报错检验不够严格但是却对语法要求太高等,这些缺陷都需要在以后的冶金过程中不断的改善和优化。

3电气自动化技术在冶金中的发展趋势

对于自主的集成的数字化的控制系统,要不断的在为我所用的原则的指导下,通过对整套的控制系统进行实时的监控来提高去控制的有效性和高效性,实现对冶金过程中的快速判断、快速诊断以及快速和及时的处理。并且在提高企业的竞争力的目标指引下,提高数据挖掘技术的应用水平。自动化技术随着科学技术的引进可以不断的进行优化,通过减少生产故障、提高自动化系统的信息化水平、来提高其标准化的服务。以后的电器自动化技术需要朝着不断的微型化、智能化、信息化、网络化方向发展。

4结语

由于冶金行业生产的特点:环境恶劣、制作工艺流程繁多并且要求精确、对其生产的产品质量要求很高等,因此对先进技术的引用显得尤其重要。俗话说得好,没有电气自动化是练不成钢的。电气自动化技术在冶金的过程中具有非常重要的地位和作用,需要所有的冶金行业的技术人才,在技术科学的进步带动下,为之做出更多的贡献。相信冶金自动化技术会有更加辉煌的成绩和明天。

作者:张文强 单位:天津市王牌电气有限公司

第10篇

关键词:粉末冶金 配料系统 自动化

中图分类号:TF37 文献标识码:A 文章编号:1672-3791(2014)02(c)-0077-01

长期以来我国粉末冶金企业在配料方面存在工艺水平落后、生产效率低、自动化程度不高等问题。随着我国经济社会的发展,用工成本和原材料价格也在不断上涨,依靠传统的人工称量配料或一般的配料设备已不能适应当前的发展。本文提出的快速高精度全自动配料系统,就是有针对性的为粉末冶金配料开发设计的。

1 粉末冶金行业在配料方面存在的问题

1.1 传统配料方式危害工人健康

传统配料方式为工人领到配料单后,按配比将各种原料分别在电子台秤上称量后投入混料机。所用原料多为200目以上的铁粉、铜粉、铅粉、石墨、树脂、硬脂酸锌等。由于颗粒微小极易产生扬尘,加上工人佩戴的口罩或防毒面罩过滤效果有限,工人长期在此环境下工作对皮肤和肺部危害极大。

1.2 配料的用工成本不断增加

据统计近几年粉末冶金行业薪酬以年均10%的速度增长,然而年轻一代的新增就业人群宁愿选择工资低些环境好些的岗位,也不愿意选择像粉末冶金配料这样“脏、累、差”的岗位。再加上老员工的流失,企业不得不开出更高的薪酬留人,即便这样配料工的用工缺口仍在扩大。

1.3 人工配料方式效率低下

由于传统配料过程都是由人工完成,会产生工作繁重、出错率高、无数据纪录、无法保证生产工艺,且无法实现技术档案的信息化管理,不能完成数据的调用与核对。粗放的配料模式已不能满足行业的发展要求。

1.4 一般的配料设备应用性差

针对以上问题,部分粉末冶金企业采购了一些自动化配料设备。如若干原料仓下接螺旋输送机,根据配比将原料输送至一个或几个计量仓,计量完毕后下料至混料机。这种简单的配料设备虽然部分替代了人工,但是这种系统配料精度低,整体稳定性差,不能记录数据,自动化程度低。

2 快速高精度自动化配料系统

这是一种集合了微电脑技术、变频技术、破拱技术、精细喂料技术、实时检测技术和集尘除尘技术的配料系统;集解包、输送、计量、配料、记录、监测、收尘等功能于一体。

2.1 电气控制部分

(1)上位计算机,安装了由组态软件编好的程序放置于控制室内,主要用于对配方的选择和设定、对配料过程的监测、对报警信号的处理、对配料数据的调取。

(2)可编程控制器,安装于电控柜内,用于配料系统的流程控制。

(3)称量仪表,作为工业控制终端以及专门的配料控制器安装在控制柜内,是用来控制一种或多种物料的配制的微电脑系统。

(4)变频器与电位器,安装于电控柜或现场控制箱内,分别用于控制螺旋输送机和电磁振动给料机的无极调速给料。

(5)触摸屏,可作为备选辅助设备安装在控制柜或现场操作箱内,用于现场控制和实时监测。

2.2 上料破拱部分

(1)粉末冶金所用原料上料时易形成扬尘,因此解包器要与集尘机配合使用。主要模块:①自动检测装置,即在开关门上安装行程开关,开门集尘机工作反之则停止;②滤芯反吹装置,储气包内的正压气体通过膜片阀,定期对滤芯上附着的原料粉尘进行反吹回收;③解包器下料口下方带有不锈钢过滤网,网孔大小10*10以上以易于落料并挡住误操作而落入的杂物。

(2)粉末冶金所用原料流动性较差易于起拱,因此破拱装置必不可少。主要有:①电磁振动器,适用于流动性相对好的原料;②气吹破拱装置,适用于密度小流动性差的原料。根据起拱特点决定气吹头的个数、排列方式和气吹频率;③搅拌破拱装置,适用于密度大流动性差的原料。根据起拱特点选择搅拌点的位置和搅拌叶片的形状;④振动料斗,适用于流动性极差的原料。

2.3 喂料计量部分

(1)精密喂料是配料成功的关键,适用于粉末冶金配料的喂料机主要有螺旋输送机和电磁振动给料机。主要应用方式有:①单独螺旋输送机或电磁振动给料机,适用于精度要求不高的原料;②大螺旋输送机配微量螺旋输送机,适用于量大、精度要求高和密度大的原料;③大螺旋输送机配微量电磁振动给料机,适用于量大、精度要求高和密度小的原料。

(2)计量部分一般采用圆形或方形计量仓,仓上配有称重传感器、排料阀和振动器。注意设计:①在规定量程内,尽量选用小量程的传感器,以提高系统的计量精度;②尽量减少喂料机出料口与计量仓之间的落差,以减小原料的提前量而提高计量精度;③在喂料机与计量仓之间配挡料阀,以挡住计量完毕而意外落下的原料,从而提高计量的可靠性。

2.4 监测校核部分

(1)监测部分:①阻旋料位计对原料仓的料位监测。低料位报警则需上料,高料位报警则停止上料;②控制仪表对计量仓的物料检测。启动喂料机后如发生起拱,计量仓持续无物料落入时,控制仪表反馈信号给破拱装置以启动破拱。

(2)校核部分:①仪表对计量仓排料后残余物料量进行核对,如超出允许误差范围则启动声光报警,人工干预后停止报警并继续进行配料流程;②仪表对排至混料机的总物料量与之前所有单个计量仓称量量之和进行对比,如超出允许误差范围则启动声光报警,人工干预后停止报警并启动混料流程。

2.5 集尘除尘部分

(1)集尘部分是用单个带反吹滤芯装置的集尘机,对同一种原料的解包器处、喂料器喂料处和计量仓下料处除尘与回收装置。必须是一种原料配一台集尘机,其出风口接工厂的总除尘系统的负压管道。

(2)除尘部分是相对集尘部分而言的,就是对集尘部分没有涉及到的扬尘处进行收尘的装置。因为其收集的为混合物料或灰尘没有利用价值,所每个收尘单元可直接接工厂的总除尘系统的负压管道。

3 结论

本配料系统通过以上功能模块的协调工作,能很好得完成粉末冶金原料的配料任务。自投入使用以来运行高效稳定可靠,人机界面友好,系统软件易于升级,现场环境干净整洁。为工人创造了高效、舒适的工作环境,为企业提高了效益、降低了成本,为我国粉末冶金行业的转型升级提供了有力支持。

参考文献

[1] 宋建成.PLC控制和应用[M].科学出版社,2002.

第11篇

关键词:冶金污泥; 螺旋离心脱水机; 污泥膏; 烧结

中图分类号:F407.3 文献标识码:A 文章编号:

引言:

冶金生产过程中产生的污泥主要有炼铁高炉瓦斯泥、炼钢转炉除尘污泥以及各轧钢工序产生的化学污泥等。由于各生产工序生产工艺不同, 故产生的污泥性质差别较大。目前, 国内冶金企业污泥综合利用一般是根据不同污泥的性质进行分类回收,炼钢瓦斯泥多采用浮选精选的方法进行提炼, 提炼后含铁量高的污泥送烧结或球团配料, 剩下含铁量低的污泥送往厂外制砖, 如武钢、马钢等即采用该方法; 炼钢转炉污泥多采用浓缩后直接送至烧结一混圆筒进行配料或脱水后送料场配料, 如济钢、柳钢等即采用该方法; 轧钢化学污泥采用脱水外运处理, 如唐钢即采用该方法。总体来说, 冶金污泥回收利用非常普及, 但或多或少存在因污泥外运而带来的二次污染, 且污泥利用率不高。

基本设计参数

1. 处理后污泥膏含水量的确定

在烧结生产过程中, 一般要求烧结混合料含水量在( 6. 5正负 0. 3)%, 故需喷水调整湿度, 通常采用喷湿污泥的方式, 既可以补充水分, 又可以利用污泥, 但由于未经处理的污泥含固率较低, 从而使污泥利用量受到限制, 因此提高污泥利用率的关键在于怎样降低污泥含水率。根据生产的实际情况,烧结生产混合料中的混匀矿、煤粉等物料自身的含水率通常比生产要求的( 6. 5 正负0. 3)% 还要高, 真正能消化污泥的是返矿, 烧结分厂烧结返矿用量为120 t /h, 如果忽略返矿的含水率, 则干污泥总量为51 100 t /a; 每天利用干污泥量为154. 8 t(按年生产330 d计); 每小时利用干污泥量为6. 5 ;t 与返矿混合后混合料含水率按6. 5%计, 则需水量为9 ;t 脱水后污泥膏含水率为58%。

根据以上计算, 考虑到返矿含水率不可能为零,同时考虑安全设计系数, 脱水后污泥含水率计算值暂取35%, 运行时根据实际情况进行控制。

2. 设计规模

污泥量为296 m3 /h。由于厂区生产污泥排放的间歇性, 工程设计最大处理规模为400 m3 /h。

工艺方案的确定

1. 污泥收集与输送

针对冶金生产污泥的不同性质及各生产工序污泥间歇排放的特点, 结合厂区总图布局的实际情况, 将距烧结分厂较近的炼铁高炉瓦斯泥直接泵送至污泥处理站; 炼钢转炉污泥由于流动性差, 输送比较困难, 采用气力输送方式; 其他分厂的生产污泥采用分段加压、逐级输送的方式运至污泥处理站。具体流程见图1。

图1 污泥输送流程

污泥输送管道架空敷设, 所有弯头均采用45b弯头, 且设空气清扫管; 炼钢转炉及连铸污泥采用循环回流、连续输送的方式, 以避免间歇运行造成管道堵塞。

2. 污泥处理工艺流程

污泥处理工艺流程见图2。

图2 污泥处理工艺流程

生产污泥收集至污泥处理站后先经砂水分离器去除粗颗粒固体后自流至重力浓缩池浓缩, 然后泵提至混合池, 同时投加絮凝剂进行充分搅拌, 混合液经螺杆泵加压至螺旋离心脱水机脱水, 浓缩池上清液及滤液回用于生产, 脱水后的污泥膏利用螺旋输送机和切割机直接送至烧结配料皮带输送机, 与混合料混合利用。

3. 设计要点

3.1 污泥输送管路必须考虑冲洗系统和检修口, 以防止管路堵塞。

3.2 脱水机的选择是关键, 经过充分论证、比较和考察后决定采用螺旋离心脱水机作为污泥浓缩脱水设备, 螺旋离心脱水机具有以下特点: 进泥和出泥均为连续运行, 有利于污泥膏直接与烧结配料皮带输送机上的混合料混合; 脱水后污泥的含水率可以通过调整离心脱水机的转速自行调节, 便于污泥膏的制备; 便于自动化运行和清洁生产。

3.3 由于螺旋离心脱水机对进料介质要求较高, 故污泥进入脱水机后需进行充分搅拌, 尽量保证污泥进料基本稳定, 使脱水机稳定运行。

3.4 污泥膏投加前加切割机搅细, 均匀投加以便于烧结混料。

4. 主要建(构)筑物及设备

4.1 污泥浓缩池

污泥浓缩池采用地上高架式, 钢混结构, 尺寸为16. 0m @ 6. 5 m, 有效高度为3. 5 m, 浓缩池底部为污泥提升泵房、高压冲洗泵房、加药间和控制室。

4.2 污泥混合池

非标钢结构设备, 配用搅拌机功率为7. 5 kW。

4.3 卧式螺旋离心脱水机

4台。配用电机功率为45 kW, 转速为3 000 r/m in, 处理量为35m3 /h, PLC 控制。

4.4 螺旋输送机

2台。螺旋输送机圆筒直径为450 mm, 长度根据现场实际需要确定, 配用电机功率为0. 55 kW。

4.5 污泥切割机

2台。非标设备, 配用电机功率为0. 55 kW。

存在的问题及分析

轧钢污泥采用间歇方式输送, 污泥浓缩池进水负荷不稳定造成了浓缩池出水水质不稳定, 有跑泥现象发生, 针对这种情况,将轧钢污泥间歇输送方式改为循环回流连续输送方式。

2. 经离心脱水机脱水后的污泥膏直接送至烧结配料皮带输送机与烧结矿混合, 易产生扬尘, 扬尘粘附在污泥切割机出口造成堵塞, 必须人工定期清除, 还有待进一步改进。

3. 污泥处理系统与皮带输送机原采用联锁控制方式, 由于污泥处理系统开停机延时时间较长, 皮带输送机停机后脱水机仍有部分污泥排至皮带, 造成皮带上污泥膏堆积, 为解决该问题, 改自控为人工调度, 这给生产管理带来不便。

结束语:

冶金生产混合污泥经螺旋离心脱水机脱水制成污泥膏直接用于烧结混合配料的处理工艺是成功的, 该技术不仅改变了过去分质处理利用带来的生产管理复杂性, 避免了常规板框或带机脱水及污泥汽车运输造成的二次污染, 同时也给企业自身带来了巨大的经济效益, 是冶金污泥综合利用技术的一次革新。

参考文献:

[ 1] 苏允隆, 金俊, 王桂龙, 等. 马钢炼钢污泥直接配入烧结混合料系统的研发及使用[ J] . 中国冶金, 2004,( 6): 18- 21.

[ 2] 朱贺民. 马钢炼钢除尘污泥利用技术的开发与应用[ J]. 新技术新工艺, 2007, ( 6): 63- 65.

[ 3] 贺建峰. 济钢炼钢炼铁污泥的综合利用[ J] . 烧结球团, 2002, ( 5): 38- 40.

[ 4] 付清照, 赵艳. 八钢炼铁污泥综合利用分析[ J]. 新疆钢铁, 2001, ( 4): 9- 11.

[ 5] 李奇勇. 转炉除尘污水污泥处理利用技术实践与探讨[ J]. 冶金能源, 2004, 23( 3): 52- 54.

[6] 唐晓华,阚立群. 马钢三钢转炉污泥系统改造[J]. 冶金动力. 2000(05)

[7] 黄鸥. 污水厂污泥处理处置的思路与几种处理方法的应用[J]. 中国建设信息(水工业市场). 2009(04)

第12篇

本文在强夯技术的特点和应用范围的基础上,介绍了其在大型钢厂的冶金渣堆场地基处理中的应用,并取得了较好的经济效益。

关键词:强夯技术;冶金渣场;地基处理

强夯技术由于其具有设备简单、施工速度快、运用范围广、节约主材、效果显著等特点,在各类地基处理措施中,被认为是一种既经济又快捷的技术措施之一,因此在处理地基领域非常广泛,取得了较大的经济效益。

1 前言

冶金工业的排渣量十分巨大,约占钢铁产量的20%(平炉)~60%(高炉)。冶渣成分复杂、均匀性差,且有稳定性问题,通常作为废料堆置,或仅仅限于作临时性建筑或轻型建筑物的地基,而不作为重型工业厂房建筑地基。

2 某钢铁公司渣场及建筑概况

钢铁公司烧结厂场地为1957—1959年填筑的废渣场,渣层厚达20m,冲沟基底为强风化泥岩。渣层的容许承载力为100—150kPa,已无风化稳定问题。渣土成分与构造极不均匀,夹有块石、废钢、砖石等物,按粒径属角砾。内摩擦角平均为42度,渣间或者几十厘米的大块及水平硬层。后者强度极高,开凿困难,厚度0.1—0.3m,不连续,无利用价值。渣土的构造类似夹心饼干,倾斜层(由于废渣倒出后在自重下滚落形成)与水平层交互出现。在大块或废钢附近则会出现空洞。采用强夯处理者为烧结厂的地基,共约8000m2,单柱最大荷载800t,要求地基承载力能达到350kPa。

夯击分三遍进行。第一遍夯点布置成正方形。第二遍夯正方形中点。第三遍全场地依次满夯,能量降低,夯点相切。表1是试验场夯击工艺参数。试夯结果显示夯击能全部用于夯实土层,所选取的工艺参数是恰当的。

3 强夯加密效果检测

通常采用静载荷试验、原状土检验、标贯试验或旁压仪试验等方法,来检验强夯的加密效果。

3.1 现场大体积的重力密度试验(5m以上)

(1)探坑显示,渣层剖面十分复杂;

(2)密度分布很不均匀,夯前体积密度为1.057~1.459t/m3(挖土体积不小于0.4×0.4×0.3m3)。

(3)夯后-5m以上土体明显压密、均匀、实测重力密度为1.954~1.960t/m3。

3.2 静荷载板试验

(1)使用1m2(3个)和0.5m2(1个)压板,进行夯前、夯后静荷载试验。

(2)图2为静压试验的P-S曲线。夯前2号点线有明显拐点,夯后未出现拐点,按照相对沉降0.008标准确定承载力,是偏于安全的。2号试验点的结果反映了大多数地基剖面承载力的提高幅度。夯前允许承载力一般为150kPa,夯后承载力可达到350kPa以上。

3.3 重型动力触探

(1)在触探过程中出现两个问题。一是钢渣中钻进速度慢,合金钻头磨损大;二是碰到大块或浮土使击数偏高或偏低。经剔除那些明显受浮土或大块影响的触探值后,得到图2曲线。

(2)5m以上属硬壳层,触探值由2~4击升到夯后的8~12击;

(3)5m以下由3~6击上升到夯击后的4~10击。从强夯前后动触击数的比较中(图2)看不出夯点间距(5m和6m)的差异对加固效果有明显影响。而625t·m的加固效果在浅层要比500t·m的效果稍好一点。

3.4 波速测试

(1)对于一般建筑地基而言,波速(剪切波与压缩波)与承载力及其他土性指标有良好的对应关系,冶金渣地基缺乏这方面的对比数据。但是,从夯前、夯后波速的明显变化,可以定性地分析出强夯的加密效果是显著的。

(2)同时,深部波速测试也能较好地反映强夯对深部的影响,这是静压等常规方法所不及的。

(3)图3所示为两个场地夯前、夯后的部分剪切波速测试结果,平均剪切波速提高38%-53%。

3.5 共振法测试渣土地基承载力

4 强夯试验小结

冶金渣是一种特殊人工土,本次强夯试验效果的分析,主要是根据上述多项试验的结果综合评定的。见图4。