时间:2022-06-07 00:38:55
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇plc技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
plc,全称ProgrammableLogicController,可编程逻辑控制器,是一种以微处理器为核心的数字运算操作的电力系统装置。它是专门为工业现场应用而设计的。采用一类可编程的存储器,相关人员可以在该存储器内部执行相应的逻辑运算、顺序控制等操作指令,并通过数字式或模拟式的输入、输出接口,实现对各种类型设备的识别或生产过程的控制。PLC技术属于计算机控制技术范畴,其工作原理主要有三个不同的阶段,即输入采样阶段、用户程序执行阶段和输出刷新阶段。在输出采样阶段,PLC可以依次扫描所有输入状态和数据,并将其存入I/O映像区中的相应单元内,然后转而执行用户程序,控制输出操作;在用户程序执行阶段,PLC可以按照从上到下、自左向右的顺序,依次扫描用户程序,并对扫描到的数据信息进行运算,根据运算结果控制逻辑线圈的状态,以确定程序是否处于正常运行状态;在输出刷新阶段,CPU会发出相应的指令,然后依据I/O映像区数据和相关状态,结合电路封锁功能驱动外部设备的运行,从而实现电气自动化控制。
2PLC技术的优点
作为微机技术和传统继电接触控制技术相互结合的产物,PLC技术克服了继电接触控制系统中机械触点接线复杂、可靠性低、功耗高、灵活性差等缺点,充分利用了微处理器的优势,具体包括以下优点。
2.1功能完善
当前,PLC产品的规模和型号非常丰富,可以满足各种工业控制的需要,而且具有非常完善的逻辑处理和数据运算功能,被广泛应用于各种数字控制领域。
2.2可靠性高
在PLC的生产过程中,采取了先进的内部抗干扰技术,极大地提高了系统的可靠性。同时,PLC具备相应的自我检测能力,一旦发现硬件故障,可以及时发出警报信号,提醒相关人员处理故障,因此,PLC控制系统具备很高的可靠性。
2.3编程语言简单
作为一种工控计算机,PLC的接口相对简单,编程容易,其使用的梯形图语言编程对工作人员的专业技能要求较低,不需要面对复杂的汇编语言,即使那些不熟悉计算机的人员也可以轻松上手。
2.4维护方便
在PLC技术中,以存储逻辑代替了接线逻辑,极大地降低了装置外部的接线数量,减少了系统的建设周期,同时,也在一定程度上降低了设计难度,以便于系统的维护和管理。不仅如此,PLC可以实现在线编程,转变生产过程,被广泛应用于多品种、小批量的工业生产控制中。
3PLC技术在电力工程中的应用
在电力工程中,PLC技术的应用主要表现在以下几个方面。
3.1开关量控制
开关量控制包括以下两方面的内容。
3.1.1断路器控制
在传统的电力自动化控制系统中,对断路器的控制多是采用继电器控制的方式,需要使用大量的电磁继电器,存在许多触点和联接点,进而降低了系统的可靠性。而PLC技术的应用和普及,使得软继电器逐渐代替了继电元件,极大地提高了控制系统的可靠性。在PLC控制系统中,操作人员只需要执行一些非常简单的工作,比如分闸、合闸等,系统就会自动根据实际运行状况,给出正确的操作信号。同时,在系统出现故障时,会自动跳闸,并发出相应的报警信号。而且,PLC控制系统不需要进行复杂的二次接线,可以有效地降低接线失误率,大大减少维护检修的工作量。
3.1.2备用电源自动投入装置
备用电源自动投入装置的主要功能是提高供电系统的可靠性,被广泛应用于大型企业的供电系统中。在原有的备用电源投入系统中,多采用手动或自动供回电线路的方式供电,在投切过程中,会出现几秒钟的断电时间,影响供电的连续性和可靠性。而应用PLC,可以实现对备用电源自动投入装置的控制,可以根据系统的实际情况进行抗干扰,具有可靠性高、操作简单、接线方便等优点。
3.2顺序控制
在原有的电力工程中,控制系统一般都是采用继电器控制,而随着PLC技术的发展,高性能的PLC控制系统逐渐取代了继电器控制。在实际应用中,PLC不仅能够全面调节整个电力工程,也可以控制部分电路。同时,PLC控制器属于远方终端单元,可以利用远程控制的方式控制变电站现场的RTU装置,实现对各种开关状态量的采集和处理,并通过相应的反馈环节获得故障信息,以便及时处理和解决其中存在的问题和故障,以保证电力系统的安全、稳定运行。
4结束语
课题名称: PLC先进控制策略研究与应用
1、选题意义和背景。
可编程序逻辑控制器(Programmable Logic Controller, PLC)具有可靠性高、抗干扰能力强、功能丰富等强大技术优势,已经成为目前自动化领域的主流控制系统。然而,从目前的应用情况来看,PLC还大都只是承担最基本的控制功能,如顺序控制、数据采集和PID反馈控制。各个PLC厂家也在其产品中设计了PID模块。虽然PID算法控制有很高的稳定性,但对于一些复杂控制系统,PID控制很难满足控制要求,这也使PLC的发展面临着一种挑战。随着越来越多的PLC产品与IEC1131-3标准兼容,PLC控制系统越来越开放,将先进控制算法嵌入PLC常规控制系统成为可能。本课题从工业控制实际应用角度出发,对PLC的控制功能进行深入的研究和探讨,以提高和扩展PLC控制器的应用水平和应用范围。本课题:PLC先进控制策略的研究与应用,其目的是通过研究使一些先进控制算法在PLC及组态系统上得以实现,并开发相应的应用程序,经过验证后最终应用到工业过程控制中去。
在PLC组态系统中实现先进控制算法,包括预测控制算法和模糊逻辑控制算法,形成具有人工智能的控制模块及网络系统,能大大提高系统的控制水平,改善控制质量。从经济角度来看,目前PLC生产商的一些产品具备先进控制模块,如模糊模块。但它们的价格十分昂贵,且封闭性较强,不适合我国中小型企业的工业改造。因此开发较为通用的先进算法实现技术,对于我国中小型企业的工业改造具有很大的意义,既可降低生产成本,又可提高经济效益。
模糊控制与预测控制是智能控制中技术较为成熟的分支,因此,研制和开发出适合工业环境的实时先进控制开发工具,实现模糊控制、预测控制嵌入PLC,与常规控制集成运行,让先进控制从教授、专家手中走出来,实现先进控制的工程化、实用化、转化为社会生产力,对缩短控制系统开发周期,加快先进控制技术的广泛应用,提高我国的工业自动化水平有着重大的意义。
2、论文综述/研究基础。
在过程工业界,从40年代开始,采用PID控制规律的单输入单输出简单反馈控制回路己成为过程控制的核心系统。目前,PID控制仍广泛应用,即便是在大量采用DCS控制的最现代的工业生产过程中,这类回路仍占总回路80%-90%.这是因为PID控制算法是对人的简单而有效操作的总结和模仿,足以维护一般过程的平稳操作与运行,而且这类算法简单且应用历史悠久,工业界比较熟悉且容易接受。
然而,单回路PID控制并不能适用于所有的过程和不同的要求[4}0 50年代开始,逐渐发展了串级、比值、前馈、均匀和Smith预估控制等复杂控制系统,即当时的先进控制系统,在很大程度上满足了单变量控制系统的一些特殊的控制要求。在工业生产过程中,仍有10%-20%的控制问题采用上述控制策略无法奏效,所涉及的被控过程往往具有强藕合性、不确定性、非线性、信息不完全性和大纯滞后等特性,并存在着苛刻的约束条件,更重要的是它们大多数是生产过程的核心部分,直接关系到产品的质量、生产率和成本等有关指标。随着过程工业日益走向大型化、连续化,对工业生产过程控制的品质提出了更高的要求,控制与经济效益的矛盾日趋尖锐,迫切需要一类合适的先进控制策略。自50年代末发展起来的以状态空间方法为主体的现代控制理论,为过程控制带来了状态反馈、输出反馈、解疆控制、自适应控制等一系列多变量控制系统设计方法}s}.上述多变量控制策略有其自身的不足之处,工业过程的复杂性使得建立其正确的数学模型比较困难。同时,计算机技术的持续发展使得计算机控制在工业生产过程中得到了广泛的应用,强大的计算能力可以用来求解过去认为是无法求解的问题,这一切都孕育着过程控制领域的新突破。
整个80年代,出现了许多约束模型预测控制的工程化软件包。通过在模型识别、优化算法、控制结构分析、参数整定和有关稳定性和鲁棒性研究等一系列工作,基于模型控制的理论体系己基本形成,并成为目前过程控制应用最成功,也最有前途的先进控制策略。近年来,人工智能技术有了长足的长进并在许多科学与工程领域中取得了较广泛的应用。就过程控制而言,专家系统、神经网络、模糊系统是最有潜力的三种工具。专家系统可望在过程故障诊断、监督控制、检测仪表和控制回路有效性检验中获得成功应用。神经网络则可以为复杂的非线性过程的建模提供有效的方法,进而可用于过程软测量和控制系统的设计上。模糊系统不仅是行之有效的模糊控制理论基础,而且有望成为表达确定性和不确定性两类混合并提炼这些经验使之成为知识进而改进以后的控制,也将是先进控制的重要内容。
由于先进控制受控制算法的复杂性和计算机硬件两方面因素的影响,早期的先进控制算法通常是在PC机和UNIX机上实施的。随着DCS功能的不断增强,更多的先进控制策略可以与基本控制回路一起在DCS控制站上实现。国外发达国家几乎所有企业都采用了DCS系统或其它智能化设备来实现对生产过程的控制,并在此基础上通过实施先进控制与优化较大的提升了系统的性能。可以说,高性能控制系统,尤其是DCS系统的普及为先进控制的应用提供了强有力的硬件和软件平台。国外从70年代末就开始了先进控制技术商品化软件的开发及应用,并在DCS的基础上实现先进控制和优化。如爱默生公司的DeltaV和Honeywell公司的TDC3000,其先进控制软件RMPGT和RPID等在现场的实际应用都集中在自己的DCS系统上。传统的PLC由于不支持浮点运算以及先进控制所必须的精确的时间,因此,除了模糊逻辑控制外,其他的先进控制并没有在PLG平台上实现。然而,在过程工业中大多系统使用先进灵活的PLC控制系统,因此1996年Barnes提出了一种基于PC-PLC通讯的混合方式,通过控制网络实现计算机与PLG的通讯,从而实现先进控制。
3、参考文献。
[1]基希林,曲非非。PLC的发展[J].微计算机信息,2002, 18(9):1-2
[2]陈夕松,张景胜。过程控制发展综述与教学研讨[J].南京工程学报,2002,2(1):49-52
[3]Ohaman Martin, Johansson,Stefan, Arzen, Karl-Erik. Implementation aspects of the PLC standard IEC 1131-3 [J].Control Engineering Practice, 1998,6(8):547-555
[4]范宗海,黄步余,唐卫泽。先进过程控制在聚丙烯装置上的应用[J].石油化工自动化,1999, (6):7-12
[5]王跃宣。先进控制策略与软件实现及应用研究[M].浙江大学博士论文,2003,(1):8-20
[6]褚健。现代控制理论基础[M].杭州:浙江大学出版社,1995: 9-15
[7]沈平,赵宏,孙优贤。过程控制理论基础[M].杭州:浙江大学出版社,1991:31-38
[8]张志辉一套常减压先进控制的应用与开发「M].陕西:西安交通大学硕士论文,2003:20-25
[9]薛美胜,吴刚,孙德敏,王永。工业过程的先进控制[J].化工自动化及仪表,2002,29(2):1一9
[10] Kolokotsa D.,Stavrakakis,G S二Genetic algoritluns optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks[J].Engineering Applications of Artificial Intelligence,2002,15(5):417-428
[11]黄丽雯。新型PLC的特点及应用[J].新特器件应用,1999 , (6) : 27-29
[12]杨昌馄。可编程序控制器发展趋势概述[J],基础自动化,1998 , (2) :1-5
[13]蔡伟,巨永锋。PLC分布式控制系统[J].西安公路交通大学学报,1996,16(3):20-25
[14]胡惠延。用PLC实现的一种集散型控制系统[J].煤矿自动化,2000, (4) : 22-24
[15]陈勇,赵勇飞,徐莉。工控机与PLC分布式测控系统的设计[J].西安公路交通大学学报,1999 , (6) : 41-43
[16]任俊杰,钱琳琳,刘泽祥。基于SIMATIC S7 PLC的现场总线控制系统[J],电工技术杂志,2004,(9):40-42
[17〕田红芳,李颖宏。PLC与上位机的串行通讯[J].微计算机信息,2001,17(3):36-37
[18]姚锡凡,彭永红,陈统坚,李伟光。基于模糊芯片的加工过程智能控制[J].组合机床与自动化加工技术,2000, (2):26-29
[19]汪小澄,方强。基于PLC的模糊控制研究[J].武汉大学学报,2002, 35(3): 79-81
[20]肖汉光。模糊控制在悬挂链同步控制中的应用[M].广州:华南理工大学硕士论文,2002: 20-31
[21]成晓明,柳爱美,田淑杭,PLC的炉温多级模糊控制的优化与实现[J].自动化仪器与仪表,2000,(1) : 20-22
[22]李敬兆,张崇巍。基于PLC直接查表方式实现的模糊控制器研究[J].电子技术杂志,2001,(9): 18-21
[23]张玺,刘勇,张小兵。二次开发Wincc模糊控制算法[J].计算机应用,2002,(1):69-71
[24]孙东卫,周立峰。预测模糊控制在渠道系统中的应用[J].现代电子技术,2002,(4): 82-85
[25]石红瑞,孙洪涛,马智宏。二次开发RSView32嵌入广义预测控制算法[J] .测控技术,2004 23(9) : 52-54
[26西门子公司。西门子57-300系统参考手册[M].北京:西门子自动化与驱动集团,2002: 10-200
[27西门子公司。STEP? V5.1编程手册[M].北京:西门子自动化与驱动集团,2002:40-60
[28]王磊,王为民。模糊控制理论及应用[M].北京:国防工业出版社,1997: 17-29
[291章为国,杨向忠。模糊控制理论与应用[M].陕西:西北工业大学出版社,1999:15一19
[30]蔡自兴。智能控制一基础与应用[M].北京:国防工业出版社,1998: 35-37
[31]孙增折。智能控制理论与技术[M].北京:清华大学出版社,1997; 55-62
[32]齐蓉,林辉,李玉忍,谢利理,通用模糊控制器在PLC上的实现[[J].工业仪表与自动化装置,2003, (4):23-25
[33]闻新,周露,李东江,贝超。MATLAB模糊逻辑工具箱的分析与应用〔M].北京:科学出版社,2001: 44-45
[34]许建平,刘添兵。PLC控制软件的模块化设计[J].九江职业技术学校学报,2003,(3):13一14
[35]张运波。PLC梯形图设计中的关键技术[J].长春工程学院学报,2000,1(1):30-32
[36] Richalet J, Rault A. Model Predictive Heuristic Cortrol:Application to Industrial Process[J] .Automatica, 1978,14(1):413-428
[37] Rouhani R,Mehra R K. Model algorithmic control (MAC):Basic Theoretical Properties[J].Automatica,1982,18(4):401-414
[38] Culter C R,Ramaker B L .Dynamic Matrix :ontrol-A Computer Control Algorithm[M].San Francisco: American Automatic Control Council,1980:221-230
[39] Clarhe D W, Mohtadi C.Constrained receding hori:on predictive control[J].IEEProc-D, 1991,13 8(4) : 347-3 54
[40] Garica C E,Morari M. Internal Model Control-A Unifying Review and Some New Results[J] .Process DesDew, 1982,(21):308一32;5
[41]Richalet J .Predictive functional control-Appliation to fast and accurate robots[J].Proc Of 10“ IFAC World Congress, Munich, FRG, 1987, (1): 25I-258
[42]许超,陈治钢,邵慧鹤。预测控制技术及应用发展综述[J].自动化及仪表,2002,29(3):1一10
[43]舒迪前。预测控制系统及其应用[M].北京:机械工业出版社,1996: 225-228
[44]李绍勇,陈希平,王刚,范宗良,树龙,蔡颖。换热机组供水温度的广义预钡(控制[J].甘肃科学学报,2004, 16(3):95-97
[45]俞树荣,祁振强,商建平。集中供热系统热力站二段换热机组系统建模及研究[J].甘肃工业大学学报,2002, 28(2):57-61
4、论文提纲。
第一章前言
1. I论文研究的目的和意义
1. 2论文研究的主要内容及工作简述
1. 3国内外文献综述
I. 3. 1先进控制的发展及现状
1 .3 . 2 PLC在工业控制领域的应用
1.3 . 3 PLC基本控制方法
1. 3. 4 PLC模糊控制器
I. 3. 5 PLC预测控制算法
第二章SIMATIC S7-300 PLC及STEP7系统
2.1 SIMATIC 57-300 PLC系统
2.1.1 S7-300 PLC
2.1.2 S7-300 PLC控制系统
2.2 STEP7系统
2.2.1 STEP7功能及结构
2.2.2组态环境及编程语言
2.2.3基本控制算法的实现二
第三章PLC模糊控制器的研究与实现
3.1模糊控制算法与系统
3.1.1模糊控制理论
3.1.2模糊控制系统
3.1.2.1模糊控制器的组成
3.1.2.2模糊控制算法
3.1.2.3模糊控制器的结构
3.2 PLC模糊控制器设计
3.2.1 PLC模糊控制器结构
3.2.2模糊控制器离线部分设计
3.2.2.1模糊控制器离线部分算法设计内容
3.2.2.2基于MATLAB模糊逻辑工具箱的设计
3.2.3 STEP7实现模糊控制器设计
3.2.3.1模糊算法流程图
3.2.3.2模糊算法的功能块
3.2.4 PLC模糊控制器的仿真验证
3.2.4.1仿真系统的建立
3.2.4.2仿真结果验证
第四章PLC预测控制器的研究与实现
4.1广义预测控制算法
4.1.1单值广义预测控制
4.1.2单值广义预测控制律计算
4.2 PLC单值广义预测控制器的设计与实现
4.2.1单值广义预测算法的实现步骤
4.2.2单值广义预测控制器的设计
4.3单值广义预测控制器的仿真验证
4.3.1仿真模型的建立
4.3.2仿真结果分析比较
第五章基于PLC的空调性能检测实验室计算机控制系统
5.1工艺流程与控制方案
5.1.1工艺过程简述
5.1.2控制要求
5.1.3控制方案设计
5.2控制系统结构及配置
5.3监控系统组态设计
5.4 57-300 PLC控制系统设计
5.4.1硬件系统组态
5.4.2 PLC控制程序设计
5、论文的理论依据、研究方法、研究内容。
目前,PLC的应用十分广泛,涉及到过程控制的方方面面。但在控制策略上,它依然沿用传统的PID控制。许多PLC开发商把PID算法做成模块,固化在PLC中。
但从长远角度看,对于一些复杂的控制系统,PID很难满足控制要求,这就需要把先进的控制算法嵌入到PLC的设计中。本课题以此为主要研究内容。
工业过程的复杂性以及对于控制日益提高的要求,各种先进控制算法越来越多地深入到控制领域,但由于PLC的编程目前还限于低级语言(如梯形图),所以,给在PLC上实现先进控制算法带来了困难。SIEMENS在PLC的编程系统STEP7中提供了比较丰富的功能模块,因此,本课题首先是通过对控制算法的研究与改进和对STEP?功能的开发,使先进控制策略在S7-300 PLC上得以较好的实现。本论文重点研究基于PLC的模糊控制器的实现,这一领域目前研究的比较多,因此在总结前人研究方法的基础上,设计出一个基于PLC的通用的模糊控制器,并使其固化在STEP7软件中。此外,对于PLC预测控制虽已有一些研究,但都仅限于理论方面,尚未给出PLC上实现的实例。本课题也想在此方面有所创新,开发出基于PLC的预测控制实现技术。
本论文第一章简要介绍了课题的来源背景、主要内容、目的意义以及国外相关工作的研究状况等。
第二章介绍了SIMATIC S7-300 PLC的主要特点,系统组成及控制系统的配置与实现,同时介绍了STEP?软件的功能及结构,组态环境,以及一些基本算法的实现方法。
第三章重点阐述了模糊控制的基本理论、模糊控制算法、模糊控制器的结构及设计方法。提出了基于PLC的模糊控制器的实现方法,即采用MATLAB离线设计,PLC在线查询的方式。给出了STEP?实现模糊算法的流程图及部分程序。
最后建立一个过程仿真系统,对PLC模糊控制器进行仿真验证。
第四章介绍了预测控制的基本理论,重点阐述了广义预测控制算法,并结合PLC的特点,提出了基于PLC的单值广义预测控制器的设计方法,给出了STEP7实现单值广义预测算法的步骤与流程图。最后建立一个二阶大滞后的对象模型,构成仿真控制系统,与PID控制进行比较分析,验证PLC预测控制器的有效性。
第五章是作者在研究生期间参加的某空调性能检测实验室基于PLC实现的计算机控制系统,从系统控制方案的设计、系统配置和硬件构成、监控系统的设计等几个方面分别进行了详细的论述。
第六章结论与体会,总结自己在课题研究和项目研究的过程中的一些体会和心得,分析了工作中的不足,提出了以后工作的注意事项,改进方法。
6、研究条件和可能存在的问题。
I.尽快建立样板工程,把己经取得的研究成果应用到工程实际过程中,通过实践检验,发现问题以便不断改进和提高。
2. PLC预测控制器目前只应用了简单的单值广义预测算法,有其自身的局限性,如控制精度不高。目前,应用较为成熟的是MPC算法,因此可以把PLC-MPC控制器作为今后研究的一个重点。
3.对于PLC模糊控制器的改进,主要是在算法上,为了提高控制效果,单纯的模糊算法是不足的,改进型模糊算法如模糊PID可以改善控制器性能,因此可以开发PLC模糊PID控制器。
4.进一步挖掘STEP?软件的功能,开发过程对象仿真模块,给出基于PLC建立仿真系统的方法和步骤,为工业实阮应用缩短调试时间,保证系统的可靠性。
7、预期的结果。
1.通过对先进控制各种算法的分析比较,对先进控制理论有了进一步认识,从中学到了不少解决问题的方法,理解了传统控制方法与先进控制方法的区别。
2.基于PLC实现先进控制与基于PC实现先进控制相比较,最重要的一个优势在于PLC实现先进控制不需要通讯协议,而基于PC实现先进控制,在系统设计和运行之前必须正确的配置PC与PLC之间的通讯协议,因此可以降低系统得开发时间。其次,在系统运行时,在下位机上完成先进控制算法比在上位机完成更具有实时性。在可靠性方面,由于基于PC实现先进控制,现场的数据和信号要经过通讯传给上位机,这难免会出现数据的丢失和信号的误差,从而使系统的控制精度下降,而基于PLC实现先进控制避免了这类现象的发生。
3.西门子57-300 PLC功能强、处理速度快、模块化结构易于扩展,被广泛的应用于自动化控制系统中;其相应开发软件STEP7采用模块化编程方法,提供多种编程语言,丰富的功能模块,能实现较为复杂的功能和算法。因此二者结合 起来,为先进控制的设计与开发提供了很好的软硬件平台。
4. PLC模糊控制器采用MTALAB离线设计和PLC在线查表的方法,把复杂的模糊推理过程交给计算机离线完成,得到模糊控制量查询表供PLC在线调用。此方法将复杂琐碎的模糊控制系统的开发工作变得简单明了,大大缩短了开发周期,同时也提高的PLC控制的实时性,是目前被广泛采用且效果良好的PLC模糊控制器的设计方法。
5. PLC单值广义预测控制器采用简单实用的单值广义预测控制算法,它需要调整参数少、在线计算时间短,可适用于PLC类控制采样周期较短的快速动态过程系统。仿真结果表明:PLC单值广义预测控制器保持了预测控制的性能,控制效果较PID控制有很大改善,同时具有计算量小,响应迅速的优点。
8、论文写作进度安排。
20XX.05-20XX.06 开论文会议
20XX.06-20XX.07 确定论文题目
20XX.07-20XX.02 提交开题报告初稿
20XX.02-20XX.06 提交论文初稿
关键词:不落轮镟床,NCU,闭环控制
1 概述
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,近年来,国家大力发展数控技术,数控技术在机床上得到广泛应用,铁路轮对的日常维修加工目前广泛采用数控不落轮镟床来完成,在不拆卸机车车辆轮对的情况下进行镟轮踏面加工,加工误差小,因此车轮的镟修效率得到大大提高,节约了维修成本和镟修时间。
2 不落轮镟床数控系统结构
2.1 硬件结构:
不落轮镟床数控系统硬件结构由数控单元NCU561.4及SIMODRIVE611D驱动模块; OP010C(MMC103和PCU50服务器)和MCP操作控制单元;S7-300PLC 模块;4个1FK7三相数字伺服电动机,micromaster440变频器,三相异步驱动轮电机等部件组成,系统的各个部件通过现场总线PROFIBUS联接。连接结构如图1:
图1:镟床硬件结构联系图
2.2 软件结构
SINUMERIK 840D软件包括Windows xp 操作系统,NC 软件和HMI软件,PLC软件。
2.2.1WindowsXP操作系统:
系统安装在PCU上,实际相当于单独的计算机,NC 软件和HMI 软件安装在Windows NT操作系统上使用。
2.2.2 NC 软件:
SINUMERIK 840D通过特殊处理, NC软件与PCU计算机WindowsXP 操作系统可以实时运行。从而使得操作PCU即可实时控制NCU程序,实现同步控制的功能。论文格式。主要用于切削轮对程序控制,其主要功能有:
控制机床各部件灵活协调工作
监测群组模式下各通道的状态
x,z坐标方向动态控制
可编写快速响应程序
可编写各部件同步动作程序
选择优化地址和时间
各种曲线插补方法
电子齿能
刀具,螺纹间隙,象限补偿功能
测量功能
高级编程语言的编译功能
2.2.3 HMI advanced软件
镟床采用HMI advanced软件进行操作,他是运行在Windows NT系统下的应用程序,为用户提供了友好的操作界面,用于编程控制。如图示:
图2:HMI advanced启动后界面
通过操作HMI advanced软件,可以实现镟床以下功能
编写轮对廓型加工程序
执行部件程序
手动控制操作镟床
读写程序数据
编辑程序数据
显示处理故障
设定镟床参数
建立与PLC,NC等控制系统通信
2.3.4 PLC软件
PLC用户程序通过安装在PCU上的STEP 7软件进行监控和操作,也可以使用专门的程序编程器来进行编程,PLC程序主要用于控制镟床驱动轮,轴箱支撑,液压系统等部件动作的自动控制。
3 不落轮镟床数字控制程序
3.1 不落轮镟床加工程序:
加工要求按照铁路轮对踏面廓型进行切削加工,车辆轮对通过轴箱定位,利用4个驱动轮对驱动轮对主轴旋转,伺服电机驱动轴线方向刀具走向,加工出符合国家TB的标准廓型。镟床主驱动轮采用PLC控制变频器,实现4个主驱动轮的调节。控制过程如图1:NCU是机床控制中心,包括PLC和NC两部分,通过PROFIBUS 与PLC ET200扩展模块和变频器进行实时通讯,通过MPI与NCU联接通讯,手操盘和测量探头直接联接在NC上。
镟床加工过程中,NC按照编写的数控加工程序执行指令,所有装载,测量,切削,卸载均采用NC程序自动执行操作,加工流程如图3示。
图3 :镟轮加工流程
车轮加工工艺:
3.2 闭环控制原理
不落轮镟床刀具进给控制和驱动轮电机速度控制采用闭环控制系统,使用用增量式光电编码器检测装置,该装置安装在伺复电动机上,用来检测伺服电机的转角,推算出工作台的实际位移量,编码器发出正弦/余弦模拟电平1Vpp (2048脉冲)的反馈信号,信号反馈到NCU装置的比较器中,与程序指令值进行比较,用差值进行控制,如图所示:此系统控制精度可以达到0.1mm.可以满足镟床切削加工的需要,此外该系统稳定性能良好,测试维修比较容易。论文格式。
图5:闭环控制原理
影响闭环控制加工系统精度的因素:
a 电机丝杆每转编码器采集到的信号数量,数量越多,精度越高。
b.安装调试编码器检测装置的工艺,
c.The multiplication of the encoder signals 编码器信号
d.电流和速度控制器取样时间,取样时间越短,精度越高。论文格式。
4 结束语
机床数字控制技术是国际先进机床生产技术,也是现代工业发展的基石。近年来,国内数控机床工业与世界数控机床工厂不断深入合作,研制出各种高精度,高技术含量的数控机床设备,数控机床制造业得到蓬勃发展。
参考文献:
1. SIEMENSE . SINUMERIK 840D/840Di/810D RemoteDiagnosis Description of Function .
2. Hegenscheidt. Operation Manual for the U2000Underfloor Wheel Lathe.
3. SCULFORT. Operation Manual for the TF 2000Underfloor Wheel Lathe.
关键词:自动控制系统功能,改进
1 前言
莱钢三座120吨转炉烟气净化及煤气回收采用干法除尘技术,干法除尘系统的设备在布置上基本分两部分:蒸发冷却器在转炉跨内,静电除尘器、风机、液压站、放散烟囱和煤气冷却器分布在厂房外。其中的每个设备都非常重要,哪个设备出现了问题都将影响整个系统的进行,而这些设备的维修需要一个漫长的过程,因此原有的控制系统已不能适应转炉炼钢生产的快速节奏和环保要求,为此我们通过研究,对其自动控制系统进行改进,对于三座转炉公用的斗式提升机和刮板输送机,增加一套备用细灰运输系统,蒸发冷却器部分增加一旁通管路,当主管上的水调节阀和切断阀出现故障时切换到主管,从而不影响烟气的冷却,新上一套4#静电除尘器系统,哪个炉子的静电除尘器出现问题时可以切换到4#静电除尘器,新上一套备用风机系统和4#风机切换站系统,哪个炉子的风机出现问题时可以切换到备用风机系统或4#风机切换站系统,从而不会影响生产的正常进行。
2 工艺流程简述
转炉炼钢过程中,氧气与碳反应生成具有高含量一氧化碳的尾气。由于与工艺相关的原因,加热期间的烟道气流量、烟道气成分和温度是不同的。在高热的转炉烟道气可被有效使用之前,必须对它进行冷却和除尘。离开转炉的主烟道气在余热锅炉中得到降温,出口可得到约为850℃的烟道气平均出口温度。水被直接喷入要被冷却的烟道气流中。应将喷水速率选择为能确保被转炉热烟道气完全汽化,同时借助于双介质喷嘴实现水的雾化。除了冷却转炉烟道气之外,由于烟道气速度减速和用水滴湿润粉尘的缘故,出现集尘。被收集的粉尘量取决于转炉工艺及在吹氧阶段添加石灰的速率和时间。从蒸发冷却器出来的200℃左右的烟道气进入静电除尘器。静电除尘器包括并排布置的集电电极和呈缺口的条状电极状的放电电极。在静电场的作用下,气体离子向地迁移,导致电流流动。这些负气体离子的一些依附在粉尘上,从而使它们依附在集电电极上。然后通过规定的间隔时间通过振打使粉尘沉积下来。为了防止粉尘沉积或湿度引起电飞弧,对静电场的绝缘子要进行加热。利用可调速的轴流风机实现烟道气的吸入控制,并根据气体分析仪检测的CO浓度来控制切换站将煤气送至烟囱或煤气柜,实现放散或回收的快速切换。论文参考,改进。图1简单的表示了干法除尘的工艺流程图
图1 干法除尘工艺流程图
3自动控制系统功能
3.1系统的控制功能和特点
整个干法除尘自动控制系统的一级自动化(基础自动化)采用SIMATIC S7-400PLC系统作为系统的中心,系统软件选择SIMATIC WINCC6.2和STEP7 5.4作为监控软件和编程软件,与转炉本体、余热锅炉等自动化系统进行联网通讯,组成以太网光纤环网,实现PLC与上位机之间的信号的传输、报警和数据采集等。根据干法除尘设备分散的特点,PLC按设备分布区域划分为主站和从站,从站为主PLC的远程扩展单元,主站放置在干法除尘电磁站内,控制蒸发冷却器及相应的排灰等的蒸发冷却器从站放置在主控楼的PLC室内,采用SIMATIC S7-300PLC系统,通过光缆与主站进行通讯,其它分站通过IM460-0和IM461-0接口模块与主站进行通讯。论文参考,改进。其中蒸发冷却器的旁通在PLC室的从站上,备用细灰运输系统、备用风机、4#静电除尘器、4#风机切换站系统在干法除尘公用PLC上,公用PLC亦分为主站和从站,均放置在干法除尘电磁站内,其中煤气冷却器部分的从站采用SIMATIC S7-300PLC系统,通过PROFIBUS电缆与主站通讯,其余两个从站通过IM460-0和IM461-0接口模块与主站进行通讯。另外三座转炉公用的斗式提升机和刮板输送机的控制在1#炉干法除尘PLC上,因此在进行1#炉干法除尘PLC维护时注意,只有在确认另外两个炉子都没有使用的情况下,才能对其PLC进行断电等操作。
3.2蒸发冷却器的喷水控制
首先应进入吹炼的准备阶段(加铁水或二次吹炼信号),在画面上反映为第三阶段(PHASE3)在第三阶段的基础上氧阀打开,开始吹炼,进入第四阶段(PHASE4)。氧阀打开后,蒸汽阀立即打开。论文参考,改进。同时因为炉内的碳氧反应,烟道气温度开始上升,当EC入口高于300度时,水阀打开,开始对烟道气喷水进行降温,此时调节阀的开度保持在默认值(开度50%,可调)。15秒后,水量调节控制器打开,再过5秒后,温度控制器(PID调节块)被激活为自动模式。吹氧结束后,一旦EC的入口温度低于预设值(默认为250度,可调),水阀关闭,温度控制器回到手动模式,水量调节控制器关闭。水阀关闭20秒并且停止吹氧120秒后,蒸汽阀关闭(为了保证系统中剩余的水被完全雾化)。进入第四阶段后(PHASE4),过90秒,自动进入第五阶段(PHASE5):吹氧。在氧气阀关闭以后,系统认为一个冶炼周期结束,自动进入第六阶段(PHASE6):吹氧结束。该阶段自我保持100秒后回到第一阶段(PHASE1):停止冶炼。等待加铁水信号或二次吹炼信号来到时,再次进入第三阶段,重新开始一个循环。
3.3转炉的烟气流量控制
为了适应炼钢工艺,将炼钢过程分为不吹氧、预热、开始吹氧、吹氧、吹氧结束、炉口清理等六个阶段,分别设定各阶段由轴流风机的变频器控制的烟气流量,根据该设定值和炉口压力来实现转炉烟气流量的控制。
将吹氧量与炉口压力控制器的输出信号相乘所得到的值,加到各阶段烟气流量设定的串级比例控制器上。论文参考,改进。如果吹氧速度发生变化,这种比例控制能够通过炉口压力控制器的输出信号,确保烟气的流速在相同的比例上立即得到适应。
炉况的变化以及炉气温度等所导致的余热锅炉中的压力变化通过压力控制器对吹氧速度和烟气流量之间的比例关系加以修正来进行补偿。测量的烟气流量根据标准的条件进行压力和温度校正。此外,将喷入蒸发冷却器的水蒸汽含量从校正后的烟气流量中扣除,使得受控变量能够代表标准条件下干态的烟气流量。
烟气流量控制器的输出信号经过变频器控制轴流风机的转速。
3.4 切换站的压差控制和钟形阀的位置控制
在炼钢过程中,烟气放散或回收是由CO的浓度条件来触发切换的,通过切换站的两个分别通往煤气柜和烟囱的钟形阀的开启来实现控制。论文参考,改进。
在放散转回收之前,首先通过烟囱钟形阀对风机下游的压力进行憋压,直到高于煤气柜一定的压力才能进行回收操作;当回收切换至放散时,也必须保持一个小的正压,以防止煤气从煤气柜倒流,因此针对这两种不同的切换方式,在程序中也必须由具有两个不同设定值的差压控制回路来控制切换过程,该控制器的输出信号控制烟囱钟形阀的开度调节,使煤气柜钟形阀前后的压差达到相应的设定值,从而保证煤气在正常切换或紧急快速切换过程中均能实现无压力扰动切换。LT系统的烟气切换所需时间仅为8秒,如在作业过程中发生事故,烟气流可在3秒内被迅速地从通往煤气柜切换到通往火炬的通道里。论文参考,改进。
3.5 原控制系统与备用系统的切换
蒸发冷却器系统当水切断阀或切断阀出现故障时,可以切换到旁通,通过点击蒸发冷却器画面上的主管/旁通按钮来实现,旁通管路上有水流量计,切换以后则旁通的水流量参与喷水流量调节。
当三座转炉公用的斗式提升机和刮板输送机出现故障时,可以切换到备用细灰运输,通过切换到备用细灰运输画面启动设备来实现。
静电除尘器系统出现故障时,可以切换到4#静电除尘器,通过在每个炉子的4#静电除尘器画面上点击选择/放弃4#静电除尘器按钮来实现。只能有一个炉子选择,某一个炉子选择时,其它两个炉子必须放弃选择才能正常使用。
风机系统出现故障时,可以切换到备用风机系统,通过在每个炉子的备用风机画面上点击使用/不使用备用风机来实现。也可以切换到4#风机切换站系统,通过在每个炉子的4#风机画面上点击选择/放弃4#风机来实现,同样只能有一个炉子选择,某一个炉子选择时,其它两个炉子必须放弃选择才能正常使用。切换到4#风机切换站系统后,则煤气回收通过4#切换站来实现。
4 抗干扰功能的设计与实现
由于供电系统中有大量高次谐波存在,严重威胁控制系统的正常运行和通讯网络的实现、安全、稳定、畅通.为此设计中根据各种干扰源的情况,采取了以下抗干扰功能.
4.1 接地措施
计算机系统单独接地,接地电阻小于1.0欧姆,与电气接地分开,以防形成接地环在接地线上产生接地电流引起PLC误动作。
4.2 模拟量输入信号滤波
对系统模拟量输入信号在进入PLC模拟量通道以前,先经过信号隔离器消除通道中的串模干扰,提高了通道的信躁比。
4.3 模拟量通道屏蔽
模拟量信号的输入导线采用有内外屏蔽线的多芯双绞线电缆,在桥架中分开敷设,单端接地,有效地衰减了高频干扰,降低了辐射干扰和电磁偶合干扰,保证了有用信号正常传输.
4.4 通讯电缆设置
采用光缆通讯,防止对设备进行干扰,保证了系统的稳定性。
4.5设备安装部置
PLC柜与动力柜分别安装在不同的地点,PLC柜安装在操作室,动力柜安装在电气室,这样有效地减少了强电磁干扰.
5结束语
系统投运至今运行可靠,抗干扰技术的合理应用,保证了PLC设备和通讯网络在恶劣环境下的安全运行,特别是控制系统改进后,提高了系统的自动化水平,为炼钢赢得了宝贵的时间,同时也为设计和维护人员积累了宝贵的经验。
参考文献:
(1)潘新民、王燕芳微型计算机控制技术人民邮电出版社1999年
(2)皮壮行等可编程控制器系统设计与应用实例机械工业出版社2003年
【关键词】全自动洗衣机;PLC;编程设计;步进指令;运行功能
Completely automatic washer control circuit PLC automatic control
Luo Jihong
(Hunan commerce professional technology institute,Hunan Changsha 410205)
Abstract:In view of the typical completely automatic washer actual control request,step-by-steps the STL instruction programming method using the Mitsubishi PLC sequential control,in the I/O assignment foundation,carries on the PLC trapezoidal chart programming,and analyzes the explanation to the procedure movement function.After the PLC hands-on simulation debugging,is completely consistent with the actual control request.
Key word:Completely automatic washer;PLC;Programming design;Step-by-steps the instruction;Movement function
1.引言
可编程控制器(PLC)是以计算机技术为核心的通用工业自动化装置,它将传统的继电器控制系统与计算机技术结合在一起,具有高可靠性、灵活通用、易于编程和使用方便等特点,近年来在工业自动控制、机电一体化以及改造传统产业等方面得到了广泛的应用,被誉为现代工业生产自动化的三大支柱之首[1]。本论文针对全自动洗衣机的实际控制要求,运用三菱PLC技术中的经验设计法,在I/O分配的基础上,将整个全自动洗衣机实际控制系统分解为进水、搅拌、排水和清洗四个部分[2],进行PLC梯形图程序设计和程序功能分析。
2.控制要求
全自动洗衣机分为洗涤和清洗两大工作过程,其工作周期和控制要求相同,故整个控制要求如下:
2.1 接通电源,开进水按钮,等待到达额定水位,关进水阀门;
2.2 正转洗3s停机1s反转洗3s停机1s,反复100次;
2.3 开排水阀门,排水1min;
2.4 继续开着排水阀门,高速正转2min;
2.5 关排水阀门,开进水阀门,等待到达额定水位,关进水阀门;
2.6 正转洗3s停机1s反转洗3s停机1s,反复100次;
2.7 开排水阀门,排水1min;
2.8 继续开着排水阀门,高速正转2min停机。
3.I/O分配
全自动洗衣机的I/O分配,见表1。
4.I/O接线图
5.状态转换图
6.程序梯形图
7.程序功能分析
7.1 洗衣机进水
当PLC处于等待状态S0时,按下进水按钮X0,计数器C1复位,同时状态继电器S20置位,输出继电器Y0得电,打开进水电磁阀;当到达额定水位X1时,状态继电器S21置位。
7.2 搅拌机正反转
STL S21闭合后,输出继电器Y0失电,关进水电磁阀;同时输出继电器Y1得电,搅拌机开始正转,3s之后,状态继电器S22置位,Y1失电搅拌机停止,1s之后,状态继电器S23置位,Y2得电搅拌机开始反转,3s之后,状态继电器S24置位,Y2失电搅拌机停止,计数器C0计正反转1次;当计数器C0未达到100次时,状态继电器S21置位,进入下一个搅拌正反转周期。
7.3 洗衣机排水
当计数器C0达到100次时,状态继电器S25置位,输出继电器Y3得电,打开排水阀门,1min之后状态继电器S26置位,输出继电器Y3、Y4得电,打开排水阀门,并启动高速正转电动机,2min之后,计数器C1计数1次,排水完毕,洗济周期结束。
7.4 洗衣机清洗周期
此时计数器C1未达到2次时,状态继电器S20置位,输出继电器Y0得电,打开进水电磁阀;当到达额定水位X1时,计数器C0复位,同时状态继电器S21置位,进入洗衣机清洗周期,完成搅拌机正反转100次之后,再进行排水,排水完毕,计数器C1达到2次,PLC返回等待状态S0。
8.结束语
以上全自动洗衣机的PLC程序经过上机模拟调试,与实际控制要求完全一致,方便实用。在程序设计上,本系统还可采用PLC基本指令编程法或经验设计法。另外,由于论文篇幅原因,没有绘制本系统的外部接线图,读者可对照I/O分配表进行设计(输入接PLC内部工作电源,输出接外部负载工作电源)。
参考文献
[1]孙振强,王晖,孙玉峰.可编程控制器原理及应用教程[Z].清华大学出版社,2008(1).
[2]吴存宏.浅谈PLC在全自动洗衣机中运用[J].家用电器科技,2000(8).
[3]蒋金周.全自动洗衣机的PC智能控制[J].机电一体化,2004(8).
[4]胡学林.可编程控制器教程(实训篇)[Z].电子工业出版社,2004,168.
[5]石玉明,张屏.基于PLC的自动洗衣机控制系统[J].机械工程与自动化,2007(3).
[6]王盛.用PLC实现洗衣机的“一键式”全自动控制[J].硅谷,2008(11).
Abstract: According to the requirement of 3D management automation up-down and parallel transferring garage, this paper designed a kind of 3D garage monitoring system based on Kingview software. According to the 3D garage control requirements, introduced the structure of the monitoring system, specifically introduced the method of design and realization steps of using Kingview software development 3D up-down and translation stereo garage control system.
关键词: 立体车库;组态王;监控系统
Key words: 3D garage;SCADA;monitor system
中图分类号:TP311 文献标识码:A 文章编号:1006-4311(2013)30-0189-03
0 引言
随着我国经济水平的提升,我们逐渐进入数字化和信息化城市,城市化进程发展效果明显,人民的收入水平也大大提高,所以很多人民在满足生活的水平下,就会购买汽车,因此汽车大量进入家庭。但是随之而来的问题就多了,其中最难解决的就是停车难的问题,这个问题成为现在困扰人们的一个社会问题。未来5年,从潜在的需求角度来讲,中国将成为世界上最大的立体车库需求市场,这就需要兴建立体车库。而立体车库的兴建,也能解决当前的问题,既能缓解城市停车难的矛盾,也能减少停车场因为占用土地面积产生的问题。
3D升降横移式立体车库监控系统作为系统运行、实时分析车库数据、实时监控车库运行状况的手段,是立体车库控制系统设计的重要组成部分之一。3D升降横移式立体车库控制系统采用IPC与PLC配合,就实现对现场设备的监控。现场器件与PLC直接相连,这样PLC就会接收光电开关、行程开关等器件反馈的实时信息,还可以根据IPC预先设定的指令来完成现成操作;IPC操作系统选用的是Windows XP并在IPC中安装(KingView)组态王软件作为监控软件平台,实时、动态地显示现场设备运行状态。前台软件的主要软件系统是对用户的操作系统的反应进行监控管理;后台软件是根据采集到的数据的性质,对其进行分类,然后分批进行处理[1]。从而实现IPC对整个立体车库控制系统的控制与管理,实现全自动化的控制水平[2]。
1 3D升降横移式立体车库的原理
立体车库的发展,在一定程度上大大缓解了停车难的问题。为了建筑物所处的位置以及不同方向的扩展,就需要以下形式来发展:升降横移式、垂直循环式、简易升降式、垂直升降式、平面移动式、巷道堆垛式等[3]。
其中升降横移式立体车库采用以载车板升降或横移存取车辆的机械式停车设备叫升降横移机械式停车库,一般为准无人方式[4]。升降横移式立体车库采用模块化设计,车位数从几个到上百个均可,能利用多种场地条件,运用多种组合方式,有效利用场地有限空间[4-5]。
改进后的立体车库为3D升降横移式的立体车库,如图1所示。3D升降横移式立体车库运行原理在于内层车辆只能升降进退、外层车辆只能升降横移,存取车辆时利用托盘的移动产生垂直和水平的通道,实现后层车辆和高层车辆的存取,全部逻辑过程均由PLC进行控制。该类立体车库要留一列作为空车位,供车辆进出的升降平移使用。
该种车库为X×Y×Z三维矩阵形式,可以设计为多层,多列,多纵。其中,X为三维矩阵的列,及车库的列数;Y为三维矩阵的行,及车库的层数;Z为三位矩阵的纵,及车库的纵数。Z为汽车进出方向。
我们以3×2×2为例,可以停放的车辆数为10辆。这样便更合理的利用了空间。
2 3D升降横移式立体车库监控系统结构
3D升降横移式立体车库监控系统采用“总站+分站+PLC+现场操作机构(按钮、行程开关、接触器、电动机等)”的典型结构,我们在分站中安装了KingView组态软件形成一个分站系统,通过这个分站系统来监控PLC的运行情况,并和PLC进行实时数据交换;利用分站系统来控制立体车库的车辆存取。3D升降横移式立体车库采用了多个车库,便用多个分站系统来分别控制。多个分站系统利用以太网将数据传输到总站中,实现数据的传递与交换[6]。见图2。
该控制系统采用计算机控制系统来控制车辆的存取。
3 立体车库监控系统的设计及运行调试
本系统选用的监控软件为北京亚控公司的组态王6.53。在上位机中运行组态软件,用于采集PLC的实时数据,同时提供给操作人员,方便监控与管理[7]。
3.1 通信设置 组态王可以通过编程电缆同多台PLC连接,由图2控制系统结构图可知,在住宅小区停车场模拟监控系统中,我们采用一台上位机控制一台PLC,所以在组态王分站与PLC的连接上,我们用串行口直接进行连接;而每个组态王分站之间通过以太网与系统总站相连接。
要实现组态王与PLC之间的通信,我们首先要通过设备配置向导定义一个串口类设备,我们选择与PLC相应的连接口,再按照向导完成设置。如图3所示。
当我们定义好一个串口设备后,我们还需要对定义好的串口设备进行参数设置,在这里以组态王与三菱FX2N系列PLC通信为例。组态王通讯参数的设置要与三菱FX2N系列PLC的参数设置保持一致。用RS232连接组态王与三菱FX2N系列PLC的情况下,要求PLC的波特率为9600bps,数据位长度为7,停止位长度为1,奇偶校验位为偶校验。如图4所示。图4为设置好的通讯参数。
3.2 建立变量库 我们为了通过屏幕用动画的方式来监控现场的生产状况,就需要启动组态王运行,而数据库是组态王核心的部分,而数据库是连接上位机和下位机的桥梁,能让工作人员的控制指令迅速送到生产现场[8]。
在整个系统中,主要使用除了电器、行程开关、光电开关以及一些按钮等外部设备,这些外部设备的数据主要通过通信线缆就传输到组态王系统中了,同时组态王系统通过这些向外部发送指令,所以这些外部设备的变量定义为I/O离散型变量。汽车及其托盘的移动不与外部交换数据,定义为内存实型变量。表1为本系统中组态王数据词典中定义的部分变量。
3.3 组态监控界面设计与编程 考虑到3D升降横移式立体车库监控系统的实际功能,设计了系统登录界面、监控主界面、报警界面,其中3D升降横移式立体车库主界面如图5所示。
监控界面主要包括状态显示区和动作仿真区两个部分,状态显示区包括立体车库工作模式选择按钮(全自动、半自动、存车、取车按钮)、车位选择按钮、及返回登录界面按钮组成。动作仿真区可以直观的显示整个立体车库存车或取车的工作流程。
完成整个监控界面的绘制后,我们需要进行动画连接。比如进行汽车的移动以及托盘的移动。这些动画效果都通过动画连接中的水平移动连接或者垂直移动连接来实现。汽车水平移动连接如图6所示。
完成监控画面中所有控件的动画连接后,还需要对系统进行命令语言的编写。在组态中,要让所设计出来的画面能够按照我们的语气方式动作来发展,这就离不开命令语言的编写。命令语言可以通过命令,实现汽车、托盘的移动,界面的调用,系统的登陆与退出等。我们可以打开组态工程浏览器中的“应用程序命令语言”对话框,设置程序扫描周期,同时在“运行时”车库相对位置移动的命令语言:
if(\\本站点\车位1前限位==0 &&\\本站点\车位4下限位==1)
{
\\本站点\车位7前进_Y=\\本站点\车位7前进_Y+10;
\\本站点\托盘7前进_Y=\\本站点\托盘7前进_Y+10;
if(\\本站点\托盘7前进_Y>=460)
{
\\本站点\车位4下限位=0;
\\本站点\光电开关7=1;
\\本站点\光电开关4=0;
}
}
3.4 调试运行 程序检查无误以及组态软件与PLC通信成功后,将编写好的PLC程序下载到PLC主机中,然后在上位机中打开组态王软件,并打开制作好的监控界面,切换到运行状态,输入登录名和登录密码,即可进入监控界面。观察监控界面与实际运行环境是否同步,如果出现错误,可返回开发界面,进行微调,直至运行正常为止[9]。
4 总结
3D升降横移式立体车库监控系统采用组态王6.53组态软件设计,实现了对立体车库工作情况的实时监控与管理,人机界面良好,可以保证系统正常运行。
参考文献:
[1]贺文华.升降横移式立体车库的控制研究与仿真实现[D].长安大学硕士论文,2006:18.
[2]阮文韬.基于组态软件的住宅小区停车场模拟控制系统设计[D].电子科技大学硕士学位论文,2012(05).
[3]机械式立体车库[J].物流技术(装备版),2011(7):68-69.
[4]王辉.机械式立体车库的特点研究及应用[D].硕士学位论文,2008:10-36.
[5]钱惠军,徐卫国.升降横移停车设备的选型[J].中国电梯,2004(23):53-56.
[6]薛迎成,何坚强.工控机及组态控制技术原理与应用[J].北京:中国电力出版社,2007:1-10.
[7]刘力.组态王软件在交通灯控制系统中的应用[J].装备制造技术,2012(4).
关键词:PLC控制;定时器;闪烁彩灯;循环
中图分类号:TM923.5 文献标识码:A 文章编号:1674-7712 (2013) 08-0000-02
一、引言
随着人们生活环境的美化,在许多场合可以看到彩色霓虹灯。彩灯由于其丰富的灯光色彩,低廉的造价以及控制简单等特点而得到了广泛的应用,用彩灯来装饰街道和城市建筑物已经成为一种时尚。但目前市场上各式样的彩灯控制器大多数用全硬件电路实现,电路结构复杂、功能单一,这样一旦制作成品只能按照固定的模式闪亮,不能根据不同场合、不同时间段的需要来调节亮灯时间、模式、闪烁频率等动态参数。这种彩灯控制器结构往往有芯片过多、电路复杂、功率损耗大等缺点。此外,从功能效果上看,亮灯模式少而且样式单调,缺乏用户可操作性,影响亮灯效果。因此有必要对现有的彩灯控制器进行改进。
采用PLC控制彩灯的优点是简单快捷,操作的程序也是不怎么复杂。在彩灯的工作运行中,彩灯能长久地不断地循环闪烁,节日彩灯也就由此产生。同时,给我们每个人的生活中带来了各式各样的彩色。当然,随着社会的进步,我相信在生活中所应用的彩灯PLC控制程序仍然会不断的深入更改,而且会变的更快捷便利,生活也随之变的更美,更绚丽。
二、系统总体设计
(一)控制要求
彩灯作为一种景观,安装在建筑物的适当地方一是作为装饰增添节日气氛,二是有一种广告宣传的作用,也可用在舞台上增强晚会灯光效果。实现彩灯控制的方案很多,不同的控制方案,其设计方法和思路也不一样。本设计为发射型闪烁彩灯:按下启动按钮后,L1亮,2秒后灭,接着L2,L3,L4亮,2秒后灭,接着L6,L7,L8亮,2秒后灭,再接着L1亮,2秒后灭…….如此循环下去,按下停止按钮后,所有的灯都灭。
三、系统软硬件选型方案
(一)模板上各彩灯代表的意义
根据控制要求,需要的输入为启动按钮和停止按钮,需要的输出为各个彩灯,即依次(如面板图中所示)为L1,L2,L3,L4,L6,L7,L8七个彩灯
(二)原理图说明
本论文为发射型闪烁彩灯:按下启动按钮后,L1亮,2秒后灭,接着L2,L3,L4亮,2秒后灭,接着L6,L7,L8亮,2秒后灭,再接着L1亮,2秒后灭…….如此循环下去,按下停止按钮后,所有的灯都灭。在梯形图中,利用了定时为20秒的定时器和启动按钮,停止按钮,输入及输出口相关开关定位控制,完成以上控制要求彩灯循环点亮。
四、系统PLC设计
五、系统安装调试
(一)硬件连线
(二)I/O分配
(三)程序说明
(四)按梯形图输入程序
在实验室中,调试前将以上设计梯形图输入在含有PLC编程S7-200的计算机内,以便在调试中下载,运行。
(五)调试并运行程序
参考文献:
[1]陈立定.电气控制与可编程控制器[M].广州:华南理工大学出版社,2000.
[2]廖常初.可编程序控制器应用技术(第三版)[M].重庆:重庆大学出版社,2000.
[3]廖常初.PLC编程及应用[M].北京:机械工业出版社,2002,9.
[4]王永华.现代电气控制及PLC应用技术[M].北京:北京航空航天大学出版社,2003,9.
[5]殷洪义,殷洪义.可编程控制器选择设计与维护[M].北京:机械工业出版社,2004.
论文关键词:电力线通信;设备
论文摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。
电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。
PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。
电力线通信主要优势:
电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。
电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。
电力线通信的缺点
传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。
衰减问题。与以太网接入或者ADSL接入不同,尽管PLC接入可以选择家庭内任意电力插座联接到Internet,但是就目前而言,由于衰减因素仍然存在,不同接入点的带宽是不一样的,如果家庭比较大,那么在最远处接入,带宽衰减将非常明显。其次大部分情况下,PLC数据需要通过电表传输,带宽往往在这里产生非常大的衰减,这成为PLC的技术瓶颈之一,有专家表示主要问题在于电表的设计,而不是PLC自身的技术因素,但由于电表是既有产品,不可能对其大规模换用,所以只能通过PLC产品自身技术来克服PLC衰减问题。
目前我国在沈阳及北京多个小区开通了多个PLC接入试验网络,主要以2M和14M带宽接入为主。由于法律、服务、技术指标等影响,还没有大规模的商用PLC系统投入使用。随着科技的进一步发展,相关技术将逐步得到有效解决。最近国电科技推出的200Mb/sPLC接入方案具有布线简单,电磁辐射低,价格便宜等优点,在接入带宽及稳定性方面有了重大突破,具有强大的市场竞争力和广泛的市场前景。电力线通信技术毕将得到广泛应用发展。
【关键词】PLC;立体车库;控制系统
1.引言
随着我国经济持续快速的发展和城市建设工作的不断进行,在许多城市,交通拥堵和停车难已经成了影响城市发展的重要因素,利用路边停车和传统的自走式停车方式己经远远不能适应城市发展的要求。随着我国汽车工业以及房地产行业的讯速发展和轿车数量的迅速上升,我国立体停车行业发展迅速。立体停车是解决许多城市出现的停车难问题的有效方法。机械式立体车库是指用立体化的方式,利用机构完成车辆存取的停车设施。也就是用机械停车设备将汽车存放到立体化的停车位或从停车位取出的停车设施。机械式立体车库是近期顺应市场经济发展,根据市场需求,在其迫切影响下应运而生的一种新型停车系统,它综合运用了机械、控制、液压以及光学等先进技术,属于技术密集型设备[1]。
本文主要以五车位升降横移式立体车库为研究对象,介绍其结构、工作原理及监控系统的构成。
2.立体车库的组成及原理
升降横移式立体车库指利用载车板的升降或横向平移存取停放车辆的一种机械式停车设备。主要由结构框架部分、载车板部分、横移系统、提升系统、控制系统、安全防护系统六大部分组成。这种立体车库结构特点是:底层只能平移,顶层只能升降,中间层既可平移又可升降。除顶层外,中间层和底层都必须预留一个空车位,供进出车升降之用。当底层车位进出车时,无需移动其他托盘就可直接进出车;中间层、顶层进出车时,先要判断其对应的下方位置是否为空,不为空时要进行相应的平移处理,直到下方为空才可进行下降动作,进出车完成后再上升回到原位置。其运动的总原则是:升降复位,平移不复位。
本设计为五车位停车库,系统由一台PLC对车库进行统一的管理和监控,通过PLC控制载车板纵横传动装置以完成对车辆的存取操作。各车位内车辆的调入调出由PLC根据当前各车位的车辆存放情况,按照相应的调度策略调度车辆进出。其工作方式为:二层三个车位可以升降,一层的两个车位只能横向横移,二层车位要想升降则必须让其下侧车移走,进而横移出空位,将载车板升或降到地面层。系统工作示意图如图1所示。
3.系统硬件单元设计
3.1 电气系统关键部分设计
PLC接线设计:在升降横移式立体停车库中,控制系统中主控单元的主要控制对象首先是车库内的横移电机和升降电机,控制系统就是使它们在不同的时间内实现正反转;其次是车库内的各种辅助装置,如指示灯及其各种安全设施等。为了保证载车板能横移到预定位置以及载车板能上升或下降到指定位置,采用了行程开关。为了判断载车板上有无车辆,采用了光电开关。同时在车库中还采用了一些传感器如烟温传感器以及安全预警装置。
电机控制及接线设计:在存取车时车位的升降不能同时进行,车位的升降和横移也不能同时进行,这两个动作必须是互锁的,即当上层车位在升降时,地面层车位不能移动,反之亦然,并且上层车位每次只能有一个车位进行上下升降运动。这些在程序中可采用联锁和互锁的方法来解决。
3.2 PLC型号的选择
根据系统设计要求进行需求分析,确定PLC的输入输出点。本系统共计26个输入,18个输出,系统选用西门子公司的S7-200系列的CPU226(加扩展模块)。CPU226共有24个输入,16个输出,扩展模块选择为EM223,它有16个输入,16个输出。该选择能够满足系统要求。系统I/O分配表见表1、2所示。
4.系统PLC程序设计
主程序设计参考程序见图2所示。
5.组态监控画面设计
5.1 MCGS简介
组态软件是在工业自动化领域兴起的一种新型的软件开发技术。开发人员不需要编制具体的指令和代码,只要利用组态软件包中的工具,通过硬件组态(硬件配置)、数据组态、图形图像组态等工作即可完成所需应用软件的开发工作。MCGS(Monitor and Control Generated System通用监控系统),是一套用于快速构造和生成计算机监控系统的组态软件,它能够在基于Microsoft(各种32位Windows平台上)运行,通过对现场数据的采集处理,以动画显示、报警处理、流程控制、实时曲线、历史曲线和报表输出等多种方式向用户提供解决实际工程问题的方案[2]。
5.2 系统画面设计
本文采用通用版MCGS组态软件设计了该控制系统上位机监控界面。系统运行画面如图3所示。
6.结束语
本控制系统以PLC为核心,实现了两层五车位立体车库的自动控制,同时采用计算机进行监控,实现了车库的智能化管理和实时监控,工作安全可靠,操作方便。本文的研究对PLC在计算机自动化控制系统中的应用,以及利用MCGS实现工业工程实时监控,提高工业的自动化水平,都具有很重要的实践意义[3]。
参考文献
[1]刘延利.后悬臂升降横移式立体车库虚拟样机设计[D].山东大学硕士学位论文,2012(9):1-10.
[2]北京昆仑通态自动化软件科技有限公司.全中文工控组态软件MCGS用户指南[M].北京:MCGS公司,2003.
关键词:TCA785,调压调功,感性元件,感应钎焊
1 引言
在感应钎焊过程中,为了适应负载随温度变化和加热工艺的需要,电源应能对负载功率调节。其中调功方式主要有以下几种:直流调压调功、移相调功、扫频调功和脉冲密度调功等。其中直流调压调功有以下特点:逆变器输出电压波形与负载无关,均为交变方波。在串联谐振负载下,利用锁相电路实现负载电流频率跟踪使负载始终工作在谐振状态,输出功率因数较高;逆变器中各个功率器件均在零电流方式下开通和关断,器件的开关损耗和应力都很小。其中调压调功电路采用晶闸管作为开关器件,利用相控方式调节输出电压。这种方式具有控制方便,价格便宜等特点,因而得到了广泛的应用。
2 直流调压调功电路的设计研究
目前国内外已经研制生产出多种用于晶闸管电路的集成触发器。其中TCA785集成触发器是由德国西门子公司研制生产的。它内部集成有同步检波、移相脉冲、过流过压保护等电路,是一种锯齿波移相触发器。与其它集成触发器相比,由它构成的晶闸管触发电路具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外部器件少、单一电源工作、调整方便等优点。论文参考网。本文所设计的直流调压调功具体电路如图1。
图1 直流调压调功电路图
图1中,220V交流电经过变压器T1、二极管D2、电容C1以及稳压管7815转变为+15V直流电,给该调压电路提供电源。TCA785的1和16端分别接地和+15V电源。5端是同步信号的输入端,该信号取自R6两端交流电压,同步信号经同步过零电路送至同步寄存齿波信号发生器,在每个正弦信号的过零点矩齿波发生器迅速放电并从0初始值开始充电,从而产生和同步交流信号一致的三角波,如图2。9端外接固定电阻R7和可变电阻RW1,10端外接电容C5,通过调节RW1可以调节锯齿波的斜率。6脚为脉冲封锁控制端,当检测负载电流过大时,通过控制辅助电路,使6端有由高电平变为低电平,封锁脉冲的输出,从而切断主电路,它是为系统过流过压或进行其它控制而设置的控制端。11脚外接控制电压,改变该控制电压可以控制触发脉冲的触发角在0-180°范围内移相,该控制电压可以有手工给定,也可以由PLC系统自动给出。论文参考网。12脚外接电容C4,可以控制触发脉冲的宽度。
图2同步交流信号和三角波
在一个周期内,TCA785的14和15端分别是正、负半周对应的脉冲输出端,如图3,图中“1”为触发脉冲,“2”为干扰信号。为保证在一个周期内正负半周均有输出,利用CD4017的或门逻辑电路,将14和15端输出脉冲或逻辑运算后,得到频率增加一倍的触发脉冲信号,如图4所示。再将该信号送到MC1413进行功率放大,以提供足够的功率触发脉冲来驱动整流模块,如图5,该信号电压为7.5V左右,持续时间约为75μs,可以满足整流模块的触发功率要求。
图314端对应的触发脉冲
图4或逻辑运算并功率放大后的触发脉冲
图5示波器时间轴调整后的触发脉冲
根据感应钎焊的使用要求,控制触发脉冲触发角的电压分手动和自动两种方式提供。手动控制方式的电压源来自于7810提供的+10V电压,调节RW3就得到所需的11脚控制电压。而自动控制方式时的控制电压源来自于PLC相关模拟端口的输出电压,该电压大小通过PLC的给定电压与所采集的负载电压大小的比较后得到的。脉冲变压器T2起到电气隔离的作用。
其中检测系统主要检测主电路电流,将检测电流转换为电压后,一方面给PLC自动控制系统提供采集电压,另方面给保护系统提供保护依据,当该电压大于设定保护电压时,就停止触发脉冲的输出,进而切断整个主电路。
3 直流调压调功电路使用中存在的问题
在该电路调试过程中,当晶闸管后边电路不存在滤波电感等感性元件时,整流后所得电压从零到最大值能够可靠调节。
而负载要求很平稳的直流电压,则需要在晶闸管后采用滤波环节,即电路中有较大电感。这时当电压调节到一定值时,会出现输出电压突然跳变为零的现象,使负载运行出现异常。如果该现象出现在感应钎焊电源中,则可能在钎焊尚未完成就停止加热,造成钎料熔化不完全,工件焊接质量不合格。
解决的办法是:首先测量出电压突变时TCA785的6端的电压U6,然后采取相应措施,比如串接分压电阻,使U6为6端电压的一端极限值,从而可以避免电压突变现象。论文参考网。
4 在感应钎焊电源中的应用
感应钎焊电源整体结构如图6。主要包括整流、滤波部分,逆变器部分,变压器部分,感应圈,调压部分以及控制部分等。主电路采取串联谐振电路,逆变部分采用半桥结构,逆变元件采用一个IGBT模块,整流部分采用的是半控晶闸管整流器件,触发脉冲通过控制其导通角的大小可以得到幅值大小变化的直流电压并供给其后的逆变环节,从而改变逆变器输出功率。
图6 感应钎焊机整体结构框图
图中直流调压调功方框内就是前面所设计电路,要想检测其功能是否正常,可以通过测量主电路中变压器原边电压或者副边电压波形加以判断。调节图1中TCA785的6端电压,测得其中两组对应的波形分别如图7和图8。图7中电压为50V且很平稳,电流较小,而图8中电压为100V左右且较平稳,电流较大。根据电流波形可以看出,两种电压下电路都可以起振并正常工作。所以所设计的直流调压调功电路可以进行电压调节且所得电压比较平稳,感应钎焊电路能够可靠起振,满足了对不同负载进行感应钎焊的要求。
图7 电压为50伏的电压和电流波形图
图8 电压为115伏的电压和电流波形图
5 结论
本文设计了一种直流调压调功电路,可以使所得电压从零到最大值之间连续稳定变化,不仅满足手动调节模式,也可以和PLC系统配合进行自动调节,并具有可靠的保护功能和相关的控制功能。通过试验,该电路已成功应用于感应钎焊电源之中,使其可以稳定起振,对于不同负载进行功率调节,可靠保证了逆变部分的IGBT元件,具有一定的实用价值和经济价值。
参考文献
[1] 潘天明.现代感应加热装置[M]. 北京:冶金工业出版社,1996,1-135
[2] 林渭勋.现代电力电子电路[M]. 杭州:浙江大学出版社,2002,34-35
[3] 张智娟,侯立群. 电力电子技术在感应加热电源中的应用[J].应用能源技术.2000,(5):41-43
[4] 龙飞,李晓帆,蔡志开等. TCA785移相控制芯片应用方法的改进[J]. 国外电子元器件. 2004,(3):25-28
关键字:PLC,模糊PID算法,称重配料系统,混凝土搅拌站
中图分类号:TP273 文献标识码: A 文章编号:
Based on PLC fuzzy PID Concrete batching plants design and implementation
Zhang Huihui, Zhang Min,Ma Jiaming
(Qingdao Technological University, Shandong Qingdao, 266033)
ABSTRACT: Concrete batching plants is the major place of concrete production. What’s more, weighting and burdening is the key part in the process of concrete production. The accuracy of the weighing batching system affects the quality of concrete directly. For the entire weighing batching system, the selection of control strategy determines the production efficiency and the accuracy of batching plant. Based on the above issues, this design with PLC as the control core, realize the design of weighing batching system based on fuzzy adaptive PID algorithm.
KEY WORDS: PLC; Fuzzy PID algorithm; Concrete batching plants; Weighting and Burdening System
0引言
近年来,随着经济的高速发展,一系列基础性工程的开工建设以及城市化进程的加快,人们对各种产品也不断提出了新的要求。本设计采用模糊PID控制,达到智能控制效果。本文的重点在于用PLC实现模糊PID控制。
1混凝土配料生产过程原理介绍
本论文以旧建筑物拆迁的废弃建筑垃圾为原料,配合相关辅助原料,混合充分后切块、加压生产建筑再生砖为例,来阐述动态配料系统所要求的快速性及精确性。
2混凝土搅拌站控制算法分析
2.1 模糊PID控制技术
由于自动配料控制系统是一个时变的、非线性的控制系统,在非时变模型下有较好调节能力的传统PID算法难以达到理想的控制效果。此外常规的模糊控制器控制精度比较低并且有无法消除的盲区。因此,采用基于PLC的模糊控制系统进行控制,不但可以使控制系统的控制更加可靠,而且得到了很好的控制效果。
由图2可以看到,模糊自适应PID控制器以误差e和误差变化ec模糊控制器输入变量,以PID参数变化∆Kp、∆Ki、∆Kd作为模糊控制器的输出变量,将模糊控制和PID控制结合起来形成模糊自适应PID实现相应参数的在线调整。
图2模糊自适应控制器
图 3 模糊自适应仿真框图
图4 模糊控制器封装图
图5 模糊PID相应仿真曲线
在图3、图4、图5仿真调试的过程中,传统PID控制算法存在过渡过程时间与超调量之间的矛盾,若要超调量小则过渡时间增长,如果要求过渡过程快则必然出现较大的超调二者难以两全。而模糊自适应PID控制算法过渡过程的快慢几乎与超调无关,因而可以方便灵活的改变参数,以最快速度无超调(或很小的超调)进入稳态。从常规PID和模糊自适应PID控制的阶跃响应对比曲线中可以看出,系统在阶跃信号的激励下模糊自适应PID控制系统超调量要小的多,响应速度快,稳态误差小,具有更好的动态和稳态性能。仿真说明采用模糊自适应PID方法控制配料系统是合理有效的具有较高的可行性。
模糊PID控制的 PLC实现
程序设计流程图
在设计中,我们使用了OMRON公司的 CP1H-XA40DR-A型号的PLC。利用A/D模块将输入量采集到 PLC 中,利用D/A 模块实现执行元件的输出,模糊控制算发流程图如图6所示。
图 6 模糊控制算法流程图
首先把量化因子置入PLC的保持继电器中,其次将采样进来的输入量送入PLC的DM区,做限幅量化后再根据其对应的输入模糊论域中的相应元素,查模糊控制查询表,求出模糊输出量,诚意输出量化因子之后便得实际输出量,经D/A输出进行控制。[4]
模糊控制查询表查询程序设计
在图6中,最重要的一步就是模糊控制表查询,须经过模糊推理与逆模糊化运算得到一个13× 13的二维矩阵。在表1的一个模糊控制查询表的实例中,矩阵元素Ui(论域范围为-7~7)是输出控制量U的量化值,其由e、ec的输入量论域元素确定。
表1
将查询表元素逐行一次存储在PLC的保持继电器D2000~D2168中。
查询程序设计利用变址寄存器V,采用“基址+偏移地址”的寻址方法控制。假如e、ec的论域元素分别为M、N,则输出控制量u的位置为:表的首地址+13(M+6)+(N+6)。对应的梯形图如图7。[5]
图 7 查表程序梯形图
4. 结束语
本文通过简要介绍混凝土配料系统生产过程的原理,以及在该系统下经过编程,将模糊PID的程序设计方法在PLC上得到实现,满足控制系统时变、非线性的条件下,充分利用了PLC 控制系统可靠性高、 抗干扰能力强的特点,又通过PID提高了控制系统的智能化程度, 具有成本低、 控制效果好的优点, 其应用前景广阔。
参考文献:
[1] 孙江, 齐向东. 基于PLC模糊控制调速系统的研究[J].华电技术,2009(31):22-25.
[2] 郭宗仁等编著.可编程序控制器及其通信网络技术.人民邮电出版社,1999.
[3] 闻新, 周露, 李翔等. MATLAB神经网络仿真及应用[M]. 北京:科学出版社, 2003: 147-160.
[4] 王志凯,郭宗仁,李琰.用PLC实现模糊控制的两种程序设计方法[J].工业控制计算机,2002年第15 卷第2期.
[5] 龙迎春.基于 PLC的模糊控制器的设计[J]. 微计算机信息,2006年第22 卷第4-1期.
[6] L.Wang,W.Du, H.Wang,H.Wu. Fuzzy self-tuning PID Control of the Operation Temperatures in a Two-staged Membrane Separation Process[J]. Journal of Natural Gas Chemistry, 2008, (17):409-414.
关键词:包装机 PLC HMI
1.1 概述
包装机外形如图2-1所示,药粒散料由存料桶,落到三级传输带,再经过十二通道后装入药瓶。本包装机的在包装过程中的要求为:
1、 包装速度较高,每分钟装瓶约50~60瓶;
2、 药粒计数精确,确保装入药瓶的药粒个数为设定的规格个数;
3、 已装药瓶的个数实施计数 ;
4、 对于不同药粒实施包装作业时,能够现场较简便地更改参数。
设计采取软硬件结合,对电气原理主电路图设计以及PLC程序的同步设计,
2.1 包装机整体设计
本包装机包装过程中,药粒由存料桶流入电振机一带,一带以较低振动频率振动,药粒被抖动流入二带,二带电振机振动频率加快,拉大药粒间距,药粒继续流入三带,三带频率大于二带,拉大药粒间距,药粒流入十二通道,通过十二通道后,最后进入药瓶,原理图如图2-1所示
图2-1 包装机整体设计原理
十二通道每通道入口装有阻挡药粒的插板以及对射型光电传感器(插板在上,光电传感器紧挨其下面),此处设计在于,药粒必须是在拉开距离的下落过程中才能实现检测计数,如果光电传感器在上,当插板闭合时,药粒堆积,当再打开时,系统即无法实现检测计数。
插板的作用是开闭十二通道,光电传感器检测通过的药粒,检测信号送入PLC处理;药粒直接流入药瓶,当达到预先设定的药粒个数,十二通告关闭,药瓶挡板打开,挡板上装有光电检测系统,可对已装药瓶个数进行计数。从而消除了药瓶计数的玛法。
对药瓶计数有两种工作模式,一种是直接流水式计数,可清零重新开始计数;另一种是设定装瓶个数,达到个数,停止运行。系统工作示意图如图2-2所示。
2.2 硬件设计
2.2.1主要器件清单
根据2.1设计要求,所需器件列表如下表(2-1)所示
2.2.2挡板、插板动作分析
挡板、插板动作流程图如图2-2所示,信号的获取来自十二个光电传感器,信号被送入PLC进行处理,当达到设定的个数时,PLC指令,关闭十二通道插板,间隔后打开挡板(此间隔短时间将在3、2.5作出计算),药瓶挡板打开,打开间隔时间后关闭,系统如此循环运行
2.2.3 HMI、PLC网络控制结构
HMI、PLC网络构成了本包装机控制的主机,根据分装控制工艺及对计数控制器的性能要求,控制系统结构图如图2-3所示,系统由输入、输出通道及主机三部分组成。
输入通道由光电检测系统,触摸屏HMI组成;主机PLC进行计数、分装控制;输出通道由固态继电器、接触器组成,固态继电器控制电磁铁使挡板、插板,翻板动作。
采用PLC控制使系统抗干扰能力提高了,并且采用的固态继电器与电磁式继电器相比,具有开关时间短、无火花、无噪音、电磁铁动作准等优点。西门子S7-200 CPU226PLC加装两个拓展模块EM232,增加四个模拟量输出,I/O口输入输出24V供电已经拓展模块24V共供电由PLC24V传感器电源提供,PLC220V供电由三相四线中的中性线和一跟相线提供。PLC输入口为光电开关的接受端,执行机构为固态继电器和接触器。■
参考文献
【1】 王永华 .现代电气控制及PLC应用技术(第2版)【M】.北京:北京航空航天大学出版社,2007
【2】 王仁祥.常用低压电器原理及其控制技术【M】.北京:机械工业出版社,2006
【3】 PLC编程理论算法及技巧【M】.北京:机械工业出版社.2006
【4】 张运刚,宋小春.触摸屏技术与应用【M】,北京:人民邮电出版社. 2007
【5】 范思冲.机械基础【M】,北京:机械工业出版社. 2006
【6】 阎石.数字电子计数基础【M】,北京:高等教育出版社. 2005
【7】 贺素良,陈兴国,张昌凡.包装设备数字控制技术【M】,湖南长沙:国防科技大学出版社. 2002
【8】 王征,基于变频器离心调速系统设计【D】,上海三易电气设备控制公司.中国工控网专业论文,2007