时间:2022-07-30 20:42:48
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇现代无线通信技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:无线通信;起重作业;沟通
前言
目前,刘家峡水电厂厂房安装间安装有两台400吨桥式起重机,作用是承担水轮发电机组各部件分解检修及安装间各种起重吊装任务。其作业方式为现场指挥人员手势及哨音发令,天车司机受令执行操作的方式。这种方式为单方向发令并执行的操作,并没有反馈环节,造成指挥人员与天车司机相互间无法沟通。由于厂房安装间环境复杂,而且指挥人员与天车司机相距直线甚至达到30米, 并且环境嘈杂,经常出现受令司机错误理解指挥人员指令,或者两台天车同时作业时两组作业人员相互产生干扰的情况。随着科学的进步,设备的更新,指挥人员与天车司机的及时沟通显得尤为重要。
1 无线通信技术
无线通信,顾名思义就是利用无线电波(非线缆)来实现与设备位置无关的人机信息交互。在工作现场。一些环境下禁止、限制使用电缆或很难使用电缆,有线通信系统很难发挥作用,因为无线通信效地弥补了有线通信的不足。
2 无线通信技术在使用时的特点
2.1 无线通信的优点:
(1)无线通拓扑更适合工业网络应用,支持点到点的连接以及广播拓扑;
(2)不需要布线,省去施工的麻烦,保证通信安全性。
2.2 无线通信的缺点:
(1)由于工作环境为发电厂,所以内场电磁场非常强大,无线通信会受到干扰;
(2)作业现场并排摆放发电机励磁系统控制柜,无线通信会干扰励磁系统正常运行。
3 无线通信在起重作业中的应用
从前面的介绍不难发现,无线通信技术具有着非常明显的优点及缺点。本文以现场实际生产情况为出发点,探讨无线通信技术在两台桥式起重机人机系统的应用。如图1所示。
3.1 现场总体控制
现场总指挥可以直接向两台天车指挥人员下达吊装命令,以实现整个吊装过程的总体控制,以及总体吊装方案的实施。
3.2 单台天车人机交互
天车指挥人员接到吊装命令后,在具体作业过程中可以直接向天车司机下达明确指令。而天车司机自身或天车遇到问题时也可以反馈给天车指挥人员,从而有效的避免了单向信息流造成的不可控现象。而且由于天车指挥人员直接看到被吊装设备的实际情况,如果被吊装设备出现问题可以及时果断的进行紧急停车操作,从而极大地降低了现场发生事故和误操作的概率。
3.3 双天车联动系统
水轮发电机组分解过程中,分解起吊发电机转子时需要双天车联动动作,而且发电机定转子线棒之间间隙很小,此时两台天车联动动作过程中的平衡性及同步性显得尤为重要。而两组天车操作组在正式起吊前的钢丝绳预紧及寻找平衡点的工作最重要的沟通协作可以方便的实现。
4 无线通信在应用中缺点的克服
无线通信实际是电磁波来传递信息,所以在发电厂这个强磁场特殊环境中有自身的缺点。
从原理上出发,只要所在磁场与无线通信的电磁波不是同一个频率就可以有效克服它在使用过程中的缺点。所以我们在采用无线通信时,可以使用无线信号数字加密、解密方式,这样不仅无线通信自身不会受到感染,而且无线通信电磁波也不会影响发电机组的自动化原件工作。
结束语
随着科学的进步,设备的更新,在多工种协同作业过程中对起重操作要求越来越严格的情况下,我们使用无线通信技术对整个作业过程“可控、在控”成为可能。并且它适用于各种工业环境,即使在极恶劣的情况下也能够保证安全性和可靠性。无线通信在起重作业的发展空间十分巨大!
致谢
在本次论文写作过程中,感谢各级领导予以的大力支持,同时感谢机械分场起重班各位同事为本文提供建议及信息反馈。
同时由于专业知识有限,诚恳地请各位领导对本论文多加批评指正,使我们及时完善论文的不足之处。
谨此致谢!
参 考 文 献
[1] 纪越峰等.现代通信技术.北京邮电大学出版社,2002年3月
【关键词】无线通信;技术;测绘工程;应用
1前言
计算机技术的广泛应用和信息数字化的高新技术的不断进步,促进了当代测绘工程的迅猛发展,同时带来了巨大且富有现实意义的发展前景和发展空间,测绘工程在理论方面或者是在实际操作上发生了翻天覆地的改变,由图纸化的传统测量技术向电子化的现代测量技术迈进,这将对采样收集空间数据方面有着非常重要的积极影响,这不仅是时代潮流变化的发展要求,也是创建科技中国的首要任务。当然,关于常规化的通信技术运用在测绘工程上是无法满足测绘工程发展的时代要求,所以我们要探究更为完美的无线通信技术,无线通信技术不仅能提高测绘工程的工作效率,使得在室外也能进行通讯并完成作业,解决了传统上图纸化作业的难题,降低了测绘人员的工作难度,减少了人力资源和时间的浪费,增强了测绘工程的准确度,这对测绘工程的改革与发展有着重要的积极作用。
2无线通信技术的概述
无线通信(Wirelesscommunication)是一种通过电磁波等信号媒介进行信息交换的通信方式。无线通信系统由多个移动站与一个基准站组成。移动站主要包括了电源、主机、GPRS等,另外基准站则包括GPS天线、电源、网管服务器等。
3无线通信系统两大模块的特点及表现
3.1无线通信系统中的硬件部分
硬件在选择设备方面最重要还是单片机的选择。单片机作为硬件部分的轴心,选择符合要求的单片机对准确传送原始数据和整个无线通信系统的正常工作有着极其重要的影响。单片机应该要符合数据传送速度快、精确率高、稳定性能好、传送长度长且具有语音传送功能和能够缩短数据处理时间的透明传送功能等要求。同时也要考虑单片机的便携性、占据空间的大小和损耗能量的多少。处于无线通信系统硬件部分的重要位置的部件———天线,能在辐射无线信号和接受无线信号的过程中正常安全在电磁波与高频率电信号之间实施相互转换反应。在选择天线时,天线的指向图要符合无线通信系统的电磁波覆盖的标准,天线自身的功能特点要满足无线通信系统的设计需求。例如,天线的长度大小要根据实际操作情况来选择适合的天线,为了提高便携性,天线接受信号的一端应选择螺旋式;为了便于工作人员的安装,天线辐射无线信号的一端应选择较短的天线。移动站与副站应该选择定向天线辐射集中程度的参数小的天线,相反,基准站与主站则选择定向天线辐射集中程度的参数大的天线。由于信号在传输介质中传播时,将会有一部分能量转化成热能或者被传输介质吸收,从而造成信号强度不断减弱,因此在馈线的选择上要选择大直径的馈线,避免信号强度的发生过度耗损。因为馈线越长,其自身损耗的能量也越大,因此,在安装过程中要尽可能地缩减馈线的长度,保证通信的正常运行。作为硬件部分中不可或缺的部件———电源,它的作用是不可忽视的,在选择电源的时候,要在确保无线通信系统能够正常运行的基础上尽可能选择电波较小的,这样才能防止干扰电台接收的现象发生。无须手持挂在肩上即可对讲的对讲机———肩咪,是由扬声器和话筒构成的,是无线通信系统硬件部分的构成部件。不同信号台之间的沟通交流可以通过肩咪来实现,在测绘工程的实际操作现场中,现场观测人员在测绘中或者进行检查工作时发现问题可以及时利用肩咪与设计绘图员进行沟通,克服困难,解决问题,从而保证测绘工程顺利进行。
3.2无线通信系统的软件部分
当无线通信系统的硬件部分完成将获得的原始数据传送到终端,系统的软件部分就开始发挥其自身作用,处理原始数据,给工作人员在测绘过程中带来了方便。在当前有关测绘的通信软件中,GIS处于极其重要的地位。数据通信是将通信技术与计算机技术结合起来从而产生新的通信方式。要在不同地区之前实现传输信息的目的就一定要有传输信道,按照不同的传送媒介,分为无线数据通信和有线数据通信。它们都是利用传输信道使得数据终端和计算机相联结,从而实现数据终端各种资源共享。在软件部分的设计编写方面,要创建一个普遍适用各个客户终端的挂载办法是首要任务。来自微软公司设计开发的ActiveX模式,有着能够摆脱详尽的编程语言,并能很好的使用到大部分的软件开发环境中,而且可以对原来存在的软件进行直接升级。在这种模式下开发运行,使得无线通信系统中的软件部分在连接网络的条件下实现交互的目的。软件部分的设计开发一旦设计了符合标准要求的框架,增强软件自身的通用性、可嵌入性、可植入性,就能保证无线通信系统在测绘工程中的合理运行和使用。
4无线通信技术在测绘工程中的应用分析
论文主要分析了GPRS无线通信技术在测绘工程中的应用情况,与传统的测绘方式相比较,GPRS无线通信技术应用十分广泛,具有实时性和准确性。利用网络使得移动站中的GPRS无线数据终端与基准站的网管服务器连接起来,同时保证网管服务器的连接口与主机保持连接状态,与此同时,在基准站的作用下数据会不断进行修正,利用网络连接使得GPRS无线数据终端能接收到数据,从而传送到移动站,并通过主机精确计算出所在的位置,测绘工作人员才能知道具体的基准站位置。在无线通信技术的实际操作与应用中,要创建标准的测绘工程管理体系,才能保证数据传送的稳定性与准确性,才能保证测绘工程作业的有效顺利进行。在传统的测绘工程中,工作区的建立都伴随这临时基准站,其工效和信息传输接收效率都非常低,随着经济建设的迅猛发展,城市化也逐渐发展成型,测绘工程量也越来越大,内容也越来越繁杂,传统的测绘方式已经不再满足时代潮流发展的需求,使用新兴的无线GPRS无线通信技术,不仅能够提高测绘工程的工作效率和信号发射接收效率,增强数据传输的稳定性、可靠性、安全性,确保测绘工程的顺利进行。
5结语
总的来说,新型无线通信技术在测绘工程中的应用,不仅能够打破传统的空间测绘模式,达成室外随时随地通讯的目的,还能推动无纸化测绘方式的发展,提高测绘作业的工作效率,降低测绘人员的工作压力,减少在时间和人力资源上不必要的浪费。无线通信技术在测绘工程的发展应用,给测绘产业带来了不可估量的发展前景和发展空间,推动了测绘行业的迅猛发展。
参考文献
[1]陈刚,羌铃铃.如何实现智能网双平面容灾[J].通信技术,2011,44(03):103~105.
[2]何寿福.无线通信技术在测绘工程中的应用研究[J].通信技术,2012(7)
关键词:无线网络;军队;安全;物理层安全;可见光通信
中图分类号:TN 929.3
文献标识码:A
DOI: 10.3969/j.issn.1003-6970.2015.08.004
0 引言
进入二十一世纪的第二个十年以来,信息已经成为人类社会文明进步的要素资源,成为现代社会持续发展的基本条件。信息网络空间已经成为继陆、海、空、天之后的第五大国家疆域,成为世界各国战略竞争的重要领域。信息安全已成为与国防安全、能源安全、粮食安全并列的四大国家安全领域之一。
近些年来,以美国为代表的信息技术强国利用自身所垄断的全球信息技术优势,加紧构建信息安全保障和攻击体系,以进一步巩固其在网络空间的统治地位。在美国现有的国家信息安全体系中,政府、IT企业和社会团体分工协作,相互配合,共同推进美国国家和军队的信息安全体系建设。当前,美国政府部门作为信息安全战略制定、网络和信息安全项目策划、网络情报侦查、网络防御以及网络进攻的主导者,引领了整个美国信息安全领域的发展和规划。其主要部门包括国土安全部、国防部、美军网电司令部、商务部、联邦调查局以及中央情报局;美国的IT企业则是网络攻防的具体实施机构和重要支撑单位,是美国政府和军队海量情报数据的来源,同时也是实施网络作战的实施主体;而美国及其盟国中一些非营利性团体和学术组织则为美国政府和军队提供了舆论和技术层面的支持,同时进行了人才的输出,以支撑日益强大的美国信息作战部队。
随着无线与移动通信技术的高速发展,抛开有线束缚的无线通信技术为国家和军队的指挥和作战带来了极大的便利性,然而也埋下了极大的安全隐患。截至2014年年底,美国情报和军队相关部门在无线网络中侦收和攻击获得的情报已经占到美国情报总量的约57.6%,凸显了当前国家和军队无线网络安全的严峻态势。美军网电司令部2015年战略规划指南显示,未来美军网电部队将把无线领域作为网络攻防作战的重点,这对我国国防和军队网络安全体系和技术提出了新的考验。本论文从历史出发,对交换技术进行了简要的回顾,指出了当前交换网络发展的瓶颈以及问题,并基于前沿的下一代智能网络以及大数据交换网络提出了展望和设想。
1 军队无线网络安全现状
我国的互联网、电信网、广电网和各类专网(包含军网)组成的国家基础网络是国家和军队信息安全防护的重要对象,但是这些基础社会建设过程中普遍存在着重建轻防,甚至只建不防的问题,造成网络信息安全体系构建的极大障碍。
当前,我军无线网络通信手段主要包含战场卫星通信、短波电台通信、水下潜艇长波通信等战时通信手段,以及军队日常办公所使用的蜂窝网移动手机通信、单位无线局域网(Wi-Fi)以及家庭使用的宽带及家庭无线局域网等非战时通信手段。由于战时通信技术具有较强的应用层加密以及物理层跳频和扩频保障,传统的窃密和攻击手段并不能很快奏效,反而是和平时期工作用无线局域网、个人手机、家庭Wi-Fi等上网和通话极易被侦听和窃密,导致无意识泄密。据不完全统计,2014年以来军队、军工企业等军事相关单位因手机、家庭宽带/Wi-Fi等被攻击及窃听的事件约470起,造成不可估量的军事、经济以及国家核心技术损失。
美国凭借其在信息领域的绝对优势,不断将其技术和设备输出到中国,而国产化设备的低性能、高价格等不足进一步导致了党政军系统中日常无线网络通信设备国产化程度极低,使得日常无线网络的安全防线处于近乎失灵的状态。在美国IT跨国公司和美国网络部队等诸如“棱镜”项目面前,我军的基础网络和重要信息系统几乎完全处于不设防状态。诸如思科、微软、英特尔、IBM等IT企业几乎完全控制了我国高端IT产品的生产及应用。据Gartner数据显示,Windows系列操作系统在我国市场占有率超过9成,英特尔在微处理器市场上占有率也超过8成,谷歌的安卓操作系统在我国市场占有率达到8成。即使是国产的联想、酷派等手机,其核心芯片和操作系统也多是国外生产,使得我国无法从技术层面根除安全隐患。
2 解决方案:物理层安全技术和可见光通信技术
针对目前日常军队无线网络安全性的问题,本文提出了两种可行的改进方案,能够在现有技术的基础上,从防止无线信号被侦收和泄漏的角度实现日常状态下部队营区无线通信的安全保密。
在现有的通信系统中,通信的保密性主要依赖于基于计算密码学的加密体制,早在20世纪初就已有人提出将传输的信息与密钥取异或的方法来增强信息传递的安全性。这种基于密钥的加密方法首次由Shannon于1949年给出了数学的理论分析。假设发送者希望把信息M秘密地发送给接收者,称M为明文信息。则加密的过程为,在发送端,发送者通过密钥K以及加密算法f对所要传输的明文M进行加密,得到密文S。在接收端,接收者通过密钥K以及与加密算法相应的解密算法,我们用f-1标记,来进行解密,从而得到明文M。通过对加解密过程的观察,可以得知,有两个方法防止窃听者从窃听到的S中获取明文M: 一个是窃听者不知道密钥K,另外一个是解密算法非常困难,窃听者难以在有限的时间用有限的资源进行解密。基于这两个方法,延伸出了现代通信系统中非常常见的两种加密形式,一个是对称密钥加密,一个是非对称密钥加密。
现代密码学的加密体制主要是在物理层之上的几层来实现的,譬如MAC层、网络层、应用层等等,故有时也称基于现代密码学的安全为上层安全。物理层对于现代密码学加密体制来说是透明的,即物理层安全与上层安全是独立的。下面分别介绍物理层安全的两个基础知识,分别是:窃听信道模型和安全传输速率。窃听信道模型是物理层安全所研究的基本信道模型,安全传输速率是衡量物理层安全系统性能的重要指标。
物理层安全主要是利用特殊的信道编码和无线信道的随机特性使得秘密通信得以进行,它与现代密码学不同之处在于,其安全程度并不依赖于Eve的计算强度,而是依赖无线信道环境的随机特性。但是,从保密环节上来说,物理层安全与传统的计算密码学的安全却有着本质的相似之处。如图1所示。物理层安全中的编码调制环节和信道的随机性是安全通信的必要条件,正如现代密码学体制中的加密算法和密钥。编码调制环节是指Alice根据Alice-Bob和Alice-Eve信道的信道条件,通过独特的信道编码来保证Alice与Bob之间安全又可靠的通信。从安全的角度来说,编码调制环境可以被看作现代密码学中的加密过程,信息加密后生成的密文记为Xn。密文经过无线信道和解调译码可以等同为现代密码学中的解密环节,其中信道信息{h,g}可以看作公共密钥,而Bob接收端的噪声可以看作Bob的私钥,Eve是没有办法获得的。因此密文通过Bob的无线信道和解调译码,可以被Bob正确地译码解密;而此密文通过Eve的无线信道和解调译码,Eve是不能获得任何信息的。由此可见,虽然物理层安全与传统的基于现代密码学的加密原理是完全不同的,但是它们在实现框架上却也能够找到共同点。物理层安全可以看作是以调制编码等发送端的技术为“加密算法”,充分利用Alice-Bob和Alice-Eve之间无线信道的差异性,把无线信道看作“加密密钥”,从而使得Alice与Bob之间形成了安全可靠的通信。
物理层安全技术由于可以独立于上层而单独实现秘密通信,因此在无线通信系统中,可以在保证现有上层安全措施不变的情况下,补充物理层传输的安全。这使得通信系统的安全性能得到额外一层的保护。另一方面,将物理层安全用来传输现代密码学中的密钥,也是增强系统的安全性的一种方法。
从实现的角度讲,当前传统的无线路由器等均使用了全向天线进行传输,有可能导致无线信号泄漏至营区外部造成泄密。由于物理层安全技术方案的存在,除了进行传统的上层密码和传输加密以外,考虑利用物理层定向天线和波束赋形技术使得无线信号定向的向营区内部辐射,使得窃听者获取的信息量近乎为0,从而进一步降低失泄密的风险,这是物理层安全技术在现有无线网络中的应用改进。
根据香农公式,假设发射端信号表示为:y=hx+z,那么正常接收者bob收到的信号可以表示为:
此时人造噪声设计对Bob没有产生干扰的方向上均匀分布,从而实现了对目标用户的正常信号发送,但是使得窃听用户获得的干扰最大化,可用信息最小。
可见光通信(Visible Light Communications)是指利用可见光波段的光作为信息载体,不使用光纤等有线信道的传输介质,而在空气中直接传输光信号的通信方式,简称“VLC”。
普通的灯具如白炽灯、荧光灯(节能灯)不适合当作光通信的光源,而LED灯非常适合做可见光通信的光源。可见光通信技术可以通过LED灯在完成照明功能的同时,实现数据网络的覆盖,用户可以方便地使用自己的手机、平板电脑等移动智能终端接收这些灯光发送的信息。该技术可广泛用于导航定位、安全通信与支付、智能交通管控、智能家居、超市导购、灯箱广告等领域,特别是在不希望或不可能使用无线电传输网络的场合比如飞机上、医院里更能发挥它的作用。可见光通信兼顾照明与通信,具有传输数据率高、安全性强、无电磁干扰、节能、无需频谱认证等优点,带宽是Wi-Fi的1万倍、第四代移动通信技术的100倍,是理想的室内高速无线接人方案之一。
据美国DAPRA报道,美军已经生产出军用可见光网络及相关设备,用于国防部等军事机关和设施的高速无线网络通信。由于可见光室内传输光源直接指向用户且传输距离远小于传统的微波无线通信,在不考虑人为主动泄密的情况下,可见光通信信号是无法截获的,从技术上为通信的有效性和可靠性提供了强有力的支撑。
图2给出了微波无线通信和可见光通信之间的比较。对于手机、Wi-Fi等微波无线通信手段,除了目标用户能够接收到无线信号以外,由于无线电波是全向发射的,窃听者完全可以收到相同的信号,从而进行破译或者攻击,带来安全隐患;而可见光通信依赖于室内的LED灯具,通常灯具会直接部署在工位上方,而照明具有定向发射的特点,因此位于营区外部的窃听者无法收到任何信号,不能进行窃听。从实现上讲,可见光通信可以方便的利用LED台灯、屋顶灯等照明灯具,通过加装调制解调模块即可使得灯具具有高速数据传输功能,可供营区内台式机、笔记本电脑、平板电脑等高速无线上网,满足高清视频会议等高带宽需求。
目前,关于可见光通信在室内外各种复杂环境下的信道测量与建模的工作还很欠缺,只有少量的研究结果。尤其是在有强光干扰、烟雾和灰尘遮挡的环境下的信道干扰模型,更是需要亟待解决的问题。
3 结论
军队作为国家的武装力量,其信息安全问题尤为重要。在和平时期,如何从技术手段保证军队手机、Wi-Fi等无线通信安全,防止和平时期敌对势力进行的无线网络信号侦收和网络攻击,是当前要重点关注的问题。
论文摘 要:消防通信规划是城市消防规划中的重要内容,本文论述了目前我国消防通信规划的现状及编制中存在的问题,详细介绍了消防部队信息通信体系建设的现状和未来发展趋势,分析了当前消防通信规划编制和实施中的重点问题,为消防通信规划编制工作提供参考建议。
1、前言
随着我国应急救援体系的发展,消防部队已逐步成为城市主要的应急救援力量,广泛参与到自然灾害、事故灾难、社会安全事件等公共突发事件的应急救援处置中,并承担了部分非紧急的社会救助任务。消防通信是消防部队开展灭火救援行动的根本保障,是未来城市应急救援体系中信息通信的主要组成部分。美国911恐怖袭击事件中警察和消防员未建立统一的通信手段而造成的惨痛教训凸现出城市消防通信规划的重要性,所以在城市消防规划编制过程中合理规划和部署消防通信的建设和发展,在规划方针的指导下逐步建立和完善城市消防通信体系,是消防部队在执勤备战和灾害救助中全面发挥应急救援能力的根本保障。
2、消防通信规划的现状
消防通信规划的编制主要由城市规划设计单位和消防部门共同完成。由于城市建设和通信技术的高速发展,各地消防通信系统也在不断的扩展和升级,消防通信建设所依据的《消防通信指挥系统设计规范》等规范文件的要求与目前的应用现状相差较大,内容滞后且不全面,对规划编制的指导意义不够充分,一些通信指挥系统虽已达到火灾报警、火警受理、灭火救援通信调度等应用的基本要求,实际中却不能满足新形势下消防部队应急救援通信指挥的需求。并且由于消防通信规划的专业性较强、技术要求高、涉及的领域广泛繁多、基础设施建设发展不均衡等方面的原因,使消防通信规划的编制工作难以有效和深入开展,造成部分城市消防通信规划的内容空泛、缺乏深度、可操作性较差,不能切实有效的指导城市消防通信建设和发展。此外我国的应急管理体系建设起步较晚,部分消防通信规划内容仅片面集中于火灾事故方面,缺乏城市应急救援总体发展的综合考虑,造成消防通信建设与城市应急救援体系建设脱节。
3、消防通信建设现状
消防部队的信息通信建设按照公安部消防局信息化建设的总体规划部署和具体要求展开,实施主要依靠当地政府财政拨款、当地公安部门和电信部门的通信网络建设以及消防部队自身的信息化装备建设来完成,目前各级消防部队均已形成了相对独立的消防信息通信体系。以下将从基础通信网、消防通信指挥中心、消防综合业务信息系统等几个消防规划中涉及的重点方面具体展开论述。
3.1 基础通信网络
基础通信网络是消防通信和城市应急通信的基础设施,网络的建设直接决定了消防部队的信息应用能力,所以基础通信网络的发展是消防通信规划的重点。目前消防部队依托公安信息网、公众电信网、无线超短波通信网、卫星通信网等多种通信网络传输语音、图像和数据,形成了一套较为完整的消防通信网络体系,以下归纳为计算机通信网、有线通信网、无线通信网、卫星通信和短波通信网等几部分介绍。
3.1.1 计算机通信网
目前消防部队各级单位均已接入了以公安信息网为基础的计算机通信网,这一网络是消防部队数据通信的基础网络,承担灭火救援指挥调度、消防综合信息管理等大部分信息系统的数据传递,并可实现ip语音电话和视频传输等多媒体应用。为保证调度指挥等重要信息的可靠传递,部分节点间还建立了指挥调度专线和备份网路。在消防通信规划中应按照当地公安信息网和消防部队自身信息通信的建设情况以及各级消防部队的信息通信需求,合理规划消防计算机通信网,确保网络的全面接入和可靠畅通。
3.1.2 有线通信网
有线通信网包括报警电话接入和报警信息查询专线、指挥调度专线、办公市话网和公安专线网等通信网络,是城市各级消防队站获知灾害事故发生和传递调度指挥命令的基础信息通信网络。其中报警电话接入专线是用于接受公用电话网的报警和城市消防远程监控系统的火警信号及相关信息的通信线路。报警信息查询专线是用于获取报警电话的位置、装机人身份等信息的数据专线。指挥调度专线是用于连接火警受理终端、各消防站以及各相关联动单位的通信专线。办公市话网和公安专线网是消防部队内部各级部门之间和与公安机关之间通信的办公电话网。有线通信网是传统的消防通信基础网络,目前各城市基本完成了消防有线通信网的建设,在消防通信规划中应以未来网络容量和性能的改进及发展等内容为主,确保消防有线通信网的完备可靠,保证消防部队对灾害事故快速响应和出动调集命令的有效传达。
3.1.3 无线通信网
无线通信是消防部队在灭火救援展开和进行过程中用于灾害现场信息传递的主要通信方式。目前各级消防部队普遍配备了用于现场通信的350mhz超短波无线常规通信设备,并利用转信台扩展网络覆盖的范围。大部分城市还依托当地公安无线集群通信系统建立了消防集群通信网,北京、上海等地还建设了具备网络容量大、通话质量高、应用功能多等特点的数字集群通信网。消防部队以超短波无线通信为基础构成了由城市消防通信指挥网、现场指挥网和灭火救援战斗网组成的三级无线通信网络,并且利用gprs、cdma、3g等公众移动通信技术以及超短波、微波数传设备等多种手段建立无线数据通信网,用于传输灭火救援现场的图像和数据信息。此外公众移动电话网也是消防部队重要的辅助通信手段。合理规划城市消防无线通信网,构建可靠的无线通信体系是消防部队在灭火救援过程中战斗力有效发挥的根本保证。
3.1.4 卫星通信和短波通信
在地震、泥石流等大型自然灾害救援或野外应急救援中,依赖中继站的常规无线通信网往往会受到传输距离和范围、电力供给、极端环境影响等方面的局限,不能满足消防部队信息通信的需要,此时卫星通信和短波通信等应急通信方式成为救援现场最有效的信息通信手段。目前公安部消防局已对消防卫星通信体系做出总体的规划和部署,并推进消防卫星通信网的建设,一些城市的消防部队先后配备了“动中通”卫星通信设备、便携卫星站、短波电台等应急通信装备,在玉树地震和舟曲县特大泥石流等自然灾害救助和部分大型跨区灭火应急救援中显现出极强的应急通信保障能力。消防卫星通信和短波通信是应急通信体系中的重要部分,是城市有效抵御极端灾害的基础保障设施。
3.2 消防通信指挥中心
消防通信指挥中心是消防部队信息通信和作战指挥的中枢,具有受理报警、灭火救援指挥调度、信息情报支持等功能,负责火灾及其它灾害事故的接处警受理和消防救援力量的调度指挥。按照公安部“三台合一”的要求,目前我国大部分地级以上城市均已设置了包括治安、交通、消防在内的接处警指挥中心,建立了统一的集中受理和多部门联动的接处警平台,一些城市还进一步将医疗救护、安全生产等应急救援相关的领域纳入其中,并形成城市综合应急救援指挥中心。部分通信指挥中心还具备使用手机定位技术和gis技术确定报警人的位置、使用短信平台受理报警、即时监控救援力量的行动状态、通过图像监控系统获取灾害发生区域的现场状况和交通状况等功能。在消防通信规划中应针对本地的实际情况,综合考虑未来城市应急救援体系的发展,确定消防通信指挥中心的建设发展方案。
移动消防通信指挥中心是设置在专门的通信指挥车中并集成了消防通信指挥相关功能的移动指挥平台,通常包括调度指挥台、辅助决策信息系统、多种无线通信系统、火场图像系统、视频会议系统、现场广播、供电及照明等其他辅助设备,是众多救援力量参与的复杂灾害事故处置现场中通信指挥的关键因素。按照城市规模和应急救援体系的建设情况,配置不同功能组件和不同移动及通信能力的消防通信指挥车是消防通信规划中的重要问题。
3.3 消防综合业务信息系统
消防综合业务信息系统是包括了灭火救援指挥、消防监督管理、部队管理和消防公众服务等多种应用功能的信息系统集成,是消防通信中应用软件的主要部分。按照消防部队信息化建设总体规划和部署,各级消防部队将逐步推广和应用包括消防基础数据平台、消防公共服务平台及各消防综合业务信息系统等部分的一体化业务平台。目前各地统一按照公安部消防局部署方案的要求,逐步开展了消防监督管理、部队管理和公众服务等信息系统的推广和应用,而对于消防基础信息平台、灭火救援指挥系统等面向灭火救援指挥和管理的信息系统,因受到基础信息数据库和通信基础设施建设情况的局限,各地的应用程度差异较大。在消防通信规划中,应将建立和完善城市地理信息、火灾风险信息、危险源信息、水、电、生产、医疗救护信息等内容的城市应急救援基础信息数据库,以及按照城市应急救援的具体需求开展消防指挥调度系统、消防指挥决策系统、重大危险源评估系统、模拟演练等系统的应用纳入到消防通信规划中重点建设。
4、未来发展趋势
随着信息通信技术的高速发展,众多高性能的通信技术将逐步应用于消防通信领域中,不断推进消防通信的发展。目前第四代移动通信技术已进入实验性应用阶段,在不久的将来势必将成为消防通信体系中高质量传输数据信息的重要手段。信息通信硬件设备的发展,使信息通信装备的通信性能和移动性能不断提升,设备成本将更加低廉,未来随着多媒体单兵信息装备的深入应用,使灾害救援现场各级指战员具备强大的信息通信能力,数字集群通信、卫星通信、微波数据通信等通信设备也将广泛装备到各级消防部队中,逐步成为普遍配备的常规通信手段。随着城市灾害联网监控系统的建设,消防通信指挥中心可以智能感知火灾等灾害事故的发生并及时获取相关灾情信息,极大的提高消防部队对灾害事故响应能力。此外物联网、遥感技术、传感器技术、ad hoc网络等应用于消防领域,可以即时、全面、深入的获得灭火和应急救援现场的灾情状况和救援实力状况,实现天空地一体的消防通信体系和数字化指挥调度体系。在消防通信规划中,应结合未来通信新技术的发展,合理规划和部署城市消防通信建设。
5、问题和建议
消防通信的发展应与城市应急救援体系各方面的发展情况及相关领域的具体情况协调统一。由于通信技术的发展速度较高,消防通信规划编制中应准确预见未来城市消防通信的需求,在首先确立适合消防通信发展总体框架基础上灵活的选择兼容性好、生命力强并具备开放和统一标准的技术和设备,有效避免重复建设,并尽量降低系统升级换代和改造的成本。发展中还应重视基础通信设施建设,切忌盲目追求新技术和热点技术。可靠度和抗灾能力是消防通信系统中不能忽视的问题,应充分考虑应急状况下缺乏电源供给、设备损坏、大量用户占用等特殊情况的系统运行,合理划分系统中紧急与非紧急应用的分工、采取冗余和备份设计、增设应急状态的专用模式等手段提高系统可靠程度和对灾害的抗击能力。此外消防通信系统设计中还应充分考虑到互联网、公安网、公众话务网、政务网等多个独立通信网络中各种系统间数据的融通,设计中应尽量将系统各具体应用建立在统一的平台和网络中,并采用一些安全稳妥的连接手段,共享和交换各网络间的信息数据。
参考文献
[1] gb50313.防通信指挥系统设计规范[s].
张昊.论重特大灾害消防应急通信技术[j].消防科学与技术,2011,30(2):132-136
莫晓漪.现代城市消防规划的若干问题[j].广西民族大学学报,2007,(8):117-121.
论文关键词:扩频通信原理特点发展应用
论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
论文关键词:车辆实时动态监控系统,邮件揽投,车辆管理
1、引言
现阶段,邮政EMS的邮件揽投和车辆管理依然是粗放式生产和管理,无法和国外大型快递公司进行竞争,现代科学技术并没有引入其中,采用的仍是传统的生产模式和管理方法,管理没有精细化,缺乏先进的生产技术和管理经验。就此,笔者将车辆实时动态监控系统引入EMS邮件揽投和车辆管理中。
随着无线通信技术和计算机技术的发展,为各个行业中交通物流的管理提供了新的技术手段,从而可以有效提高现有的行业管理与服务效率,GPS车辆监控系统充分利用了现代科学技术的最新成果,综合利用计算机网络、全球卫星定位(GPS)、无线通信、地理信息系统(GIS)等多学科的前沿技术,与行业的应用特点紧密结合,提供基于GPS位置服务的车辆监控管理平台。
车辆实时动态监控系统是以GPS车载导航技术为依托,针对现场特点而开发的系统。GPS车载导航技术由GPS、地理信息系统及无线通信技术构成。GPS接收机接收GPS卫星的导航信号,获取运动体的实时位置;无线通信技术把运动体的实时位置及附加信息传送到监控中心;地理信息系统(GIS)则把计算机技术、图形技术、数据库技术融合于一体,在调度中心对监控物体的空间位置及用户赋予的属性信息进行管理、显示和分析,达到实时动态监控的目的。
这一技术又称为智能交通(ITS),如把该技术应用于中国邮政EMS揽投中,将增强EMS揽收和投递能力,降低人力资源的管控成本,提高企业管理水平,避免车辆的闲置,让其得到充分使用,对保障车辆安全都能起到积极作用。
2、EMS车辆管理现状
2.1、揽投工作
每天早上各个揽投部将邮件派揽给各个揽投员,让其进行投递。揽投人员对邮件派投以后,把投递局留存联交给收班人员,收班人员再依次把妥投信息录入微机,邮件的实际妥投状态和上网查询的妥投信息至少存在半天的时差。而顺丰快递,在邮件妥投以后,就能即时地将相应的妥投信息传递到网络平台上,供客户查询,为企业赢得美誉度。
2.2、车辆归集
每天下午在邮件揽投工作结束以后,EMS车辆必须停在指定的地点,进行归集。但是有部分揽投人员在收班以后,对车辆并没有进行归集,收班后印有EMS标识的车在大街上随处可见,直接导致部分车辆油耗量较大,并带来安全隐患。
3、EMS车辆实时动态监控系统介绍
将车辆实时动态监控系统引入EMS中,可对邮件揽收和投递生产过程进行可视化管理,同时将EMS车辆纳入信息化管理,对人、车、物进行有序地调度管理,保证EMS安全、快捷生产。GPS车辆监控系统一方面利用GPRSCDMA等信道,将车辆的位置信息、报警信息和服务信息实时传送到监控系统; GPS监控平台是车辆监控系统的核心,提供GPS信息的采集、格式转换与分发服务,响应用户的各种命令请求,提供数据库应用与存储服务,完成用户身份识别与安全控制。它包括:用户服务(UAS)、派发中心(EGF)、数据库应用服务器(DAS)、通讯接口(CI)及系统信息管理(MIS)软件包等。
各监控分中心根据相应权限安装监控端,通过INTER网络接入GPS车辆监控系统,也可通过专线方式接入。为保证系统的安全性,可在客户服务器上加上防火墙以保证系统不受外部侵入和损害。
GPS综合服务平台是车辆调度服务中心的核心,提供GPS信息的采集、格式转换与分发服务,响应用户的各种命令请求,提供数据库应用与存储服务,完成用户身份识别与安全控制。它包括:用户服务(UAS)、派发中心(EGF)、数据库应用服务器(DAS)、通讯接口(CI)及系统信息管理(MIS)软件包等。系统采用模块化设计,运行平台为UNIXLINUXWINDOWS操作系统,数据库采用目前最流行最稳定的ORACLE数据库。GPS综合服务平台与各种车载终端相连接的接口为独立的通信接口(CI),可以实现专网终端、公网终端并网运行,并可以任意扩充终端种类,无需修改服务程序。其另一个重要部分是GPS专用GIS控件,专注于快速、形象、生动的显示GPS信息。在每一个模块快速、高效、稳定运行的基础上,各模块间可实现无缝连接,完成不同监控应用;不同GPS移动单元,不同通讯方式在同一个系统上的统一运行。
由于GPS定位派发的特殊性,要求系统能够尽可能快地将GPS定位数据分发到不同的监控端,而丢失一两个定位数据是可以容忍的。在应用中,监控用户向系统发出的登录、呼车、车辆控制等命令相对有限,而网络中最大流量的数据是GPS定位数据包,所以系统间各个部分之间相连采用TCP/IP网络,并大量采用UDP协议传输数据。由于UDP是无连接传输,系统开销小,适合于大数据量的传输,而对于系统中命令的传输,采用命令确认机制,使保证命令正确传输,这样使系统以最高的效率转发GPS定位数据包,同时能够保证命令信息的正确传输。
由于科技发展的日新月异,特别是无线通讯发展迅速,而GPS定位派发系统要与无线通讯系统连接,所以系统的可扩展性也影响到了系统的使用,只有方便升级和扩展的系统才能适应当前的用户需求,因此系统采用服务器分布模块式设计,以不同的服务器实现不同的功能,使系统功能的增加不需要对整个系统做修改。
3.1系统拓扑结构
监控系统的拓扑结构是由监控中心和移动端构成,如图1所示。移动端即EMS车辆,监控中心设置在网运部,通过无线传输方式进行数据通讯。
图1
1)、软件平台
软件平台包括以下软件:
windows操作系统;
VB6.0;
MapX5.0;
Access数据库管理系统。
2)、通讯方式
无线上网进行数据通讯。
3)、移动目标配置
配PDA采用无线上网,EMS此前购置的一批PDA可以采用。
3.2系统功能
利用有效方式实现多终端分级管理模式。系统包括基本GIS功能模块、移动目标(车辆)跟踪模块、数据库管理模块。
关键词: 全球定位系统;填筑工程;质量控制;集成系统;面板堆石坝
介绍
目前,管理填筑施工面板堆石坝的质量主要采用"双重控制"的质量控制方法,其中一种是手动控制碾压参数,参数包括厚度、充填层的粗糙度、和压实机的滚次和轧实速度;另一种是在该区域对孔取样进行手动测试。该方法对国内混凝土堆石坝的发展具有积极的推动作用。然而,随着混凝土面板堆石坝规模的扩大,传统的手工管理机制不再满足当代机械化施工和进度的需要。位于中国湖南省清江流域的水布垭混凝土面板石堆大坝,在所有相同类型的大坝中,以233米的高度排名世界第一。该工程总充填量为1.6?07立方米并且一个月的最多灌装量超过6?05立方米,所以需要更多的量来控制大坝填筑施工的质量。为了及时地监督大坝的填筑施工质量,为灌装工程开发一个碾压方面的工程质量监督系统是非常重要的,这个系统具有实时、连续、自动化和高精度的特点。监督系统对于提高水布垭工程的工程质量具有很大的意义。
作为一种全新的当代空间卫星导航和位置定位系统,GPS已经在越来越多的领域逐渐代替了普通光学和电子测量仪。自从20世纪80年代,特别是在90年代以后,GPS技术已经结合现代通信技术引领空间定位技术进行一次革命性的变革。通过GPS技术同时确定三维坐标的方法已经从具有近海安的陆地至整个海洋和外层空间,从静力学到运动学,从单点定位到网区分,从后处理到实时定位和导航改变了传统技术,并且由于绝对和相对点位精度已经达到米级、厘米级、亚毫米级,GPS的应用和影响领域已经扩大到各行各业。现代数据通讯技术、计算机技术、电子技术、代表GPS的空间定位技术的快速发展和完善使实时连续地、自动地监督高精度具有可行性。根据在灌装工程中对于碾压方面的工程质量管理的要求,利用GPS技术、无线数据通信技术、计算机技术、数据处理和分析技术,并结合碾压机,在2004年,武汉大学和清江水电开发责任有限总公司共同研发了一种在灌装工程中适于监督碾压方面质量问题的实时监控系统,也就是填筑施工质量的实时监控系统(后来简称为GPS)。这个系统具有实时、高精度、连续性、自动化等综合功能,所以能应用于对大坝、公路、保护堤、飞机场等的灌装压实实时监督,因而成为一个确保工程的施工质量的行之有效的助手。结合工程的要求以及此系统的特征,本论文主要讨论此系统的构成、关键技术、方案设计,分析GPS系统的高精度问题,并且对GPS系统的初步应用进行了研究。
1 GPS实时监控系统的构成和特征
1.1构成
该系统的硬件装置主要包括以下三个方面:
1)GPS卫星信号的接受系统
2)无线网络的数据通信系统
3)计算机系统
图1.系统的网络结构的介绍
根据在灌装和捣打工程的压实需要和工程管理对此系统的要求,系统由监控中心、网络中继站、现场亚控制站、GPS参考站和移动终端(包括碾压机和交通质量监控工作)组成,移动终端是对于地形环境对无线通信的影响。图1是灌装工程中工程质量监控系统的介绍。如果地形环境好,并且现场的灌装工程与系统的监控系统不是很远,那么网络中继站可以去掉。
1.1.1监控中心
监控中心是此系统的心脏,它将GPS参考站的微分数据输入到GPS移动电台,同时,通过无线数据传输连续实时地接受由移动电台反馈的位置信息。结合施工的需要,装备在监控中心的电子显示屏能够实时地显示碾压机械以及在水坝压实平面上的质量监管工作车辆的精确移动位置和状态信息,远程监视灌装工程压实质量的状态,并且提供给领导者基本信息以做出决定。系统数据的处理、分析、储存等等也在监控中心操作。
1.1.2现场次监察站
现场次监察站系统控制中心的延伸,而且为现场的监察人员提供了便利。通过访问监控中心的信息,监察人员就能够在监察办公室实时掌握工程施工和施工质量的现状。一旦出现质量偏差,监察人员就能够应对施工现场的施工人员,提醒工作人员并要求他们整顿。
1.1.3 GPS参考站
GPS参考站为了利用差分GPS技术提高系统的监控精度而设置的。我们在一个已知点上设置GPS接收机作为参考站进行GPS观测工作,然后实时向GPS移动电台输出GPS观测数据和参考站的已知位置信息,然后利用载波相位的差分处理方式处理连同移动电台的GPS观测数据,最后计算出移动电台的空间位置信息,而且定位精度可以提高。以上的方法叫做差分GPS技术。一般来说,为了方便提供支撑力量,管理和维护,GPS参考站设置在监控中心。为了确保监控精度,必须强调的是GPS监控站和施工区域之间的距离要少于5-6千米,并且这个距离控制要求要在实践中满足。
1.1.4 移动终端
移动终端包含安装在工程监控车里和碾压机里的系统需求装备。
1)安装在碾压机里德移动终端
安装在碾压机里的移动终端主要包括集成系统单元,GPS接收机天线和无线通信天线。系统单元结合计算机工业平台的主要设备,GPS接收机,无线通讯等等。移动终端是像GPS移动站似的移动监控装备进行GPS移动观测。它的控制项目主要包括碾压机的轧制轨迹、轧制速度和轧制次数。移动终端会连续实时地向监控中心反应有效的观测结果。同时,利用在碾压机的司机的系统单元里的数据和表,计算机的工作平台实时反应了碾压机的工作状态。碾压机的操作者要检核他或她的工作是否满足显示屏上的质量需求。
论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
四、结语
扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。
参考文献:
[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.
关键词:物联网,智能家居,控制器,单片机
0.引言
物联网智能家居系统是通过互联网,构成集家庭通信、设备自动控制、安全防范等功能于一体的控制系统,即把家庭中各种家用电器、保安装置和计量设备连接到一起组成家庭内部网络,由家庭智能控制器(中央控制器)进行统一管理。使用该系统,用户可通过短信及互联网等方式实现家居智能无线监控。
1.物联网简介
物联网的英文名称为'TheInternet of Things” 。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。论文参考网。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
这里的“物”要满足一定条件才能够被纳入“物联网”的范围:本方案可以满足物联网条件。1、有信号接收器,2、利用GSM无线通信技术。3、CPU自带存储功能。4、使用单片机与DSP芯片微控制器。5、操作系统界面是手机或者电脑。6、拥有专门的单片机和DSP应用程序。7、数据发送器是模拟启动器。8、遵守互联网协议。9、 唯一编码就是电子标签上唯一的代码,也可以是小型远程控制器的程序编码序列。
2.物联网智能家居系统的工作原理与功能
物联网智能家居系统有四部分组成,分别是信号接收器、中央控制单元、模拟启动器和远程遥控控制器四部分组成,下面分别介绍。
2.1 信号接收器
由单片机控制的软件程序的单元,用来接收主人发来的指令。
2.2 模拟启动器
指令的执行者,通过各种智能家居小型远程遥控器的接口和相关指令来控制各种智能家居的相应功能,类似于电脑中的主板,通过它与各种各样的智能家居相连。模拟启动器是执行单元,它需要按不同家电的要求,执行相应的功能。
2.3 小型远程遥控器
可嵌入手机中的信号收发芯片,通过它将主人的指令发送到信号接收器。
2.4 中央控制器
中央控制器是由单片机和DSP芯片以及其他相关器件组成的控制单元,它内部集成了四大系统:室内环境控制系统、安详生活系统、梦幻灯光系统和安全家居系统,所有对智能家居的操作指令都是由中央控制器发出的。论文参考网。
具体工作图原理为:
解释为:用户将要所达到的效果以文字的形式发送出去,信号接收器接收到信息后,转化为可识别的代码传送到中央控制器,中央控制器进行必要的处理和分析后,一面将指令传送到模拟启动器,一面将指令传递到实时显示模块进行显示,模拟启动器根据指令,分别启动相关的远程控制器,从而达到对相应智能家居的控制与操作。完成相应操作后,远程控制端口会返回一条完成指令,再由中央控制器通过信号接收器反馈给使用者,用户可根据反馈信息决定下一步操作。
用户不操作的情况下,中央控制器会自动接受、监控各类传感器,根据不同的设置要求,实时监控各类环境数据,一旦变化超出设定范围,中央控制器会自动产生指令,模拟启动器会控制相应的智能设备进行调节,从而营造安全舒适的家居条件。
3.具体应用
本系统采用的是GSM无线通信技术,将手机或者电脑信号转换为具体的发送指令,来远程控制室内的家居,中央控制器则要按照具体的指令来启动模拟启动器,让它在预定的步骤下,准确、及时地控制各种智能家居的工作。在本系统内部集成了四大系统:室内环境控制系统、安详生活系统、梦幻灯光系统和安全家居系统,以安全居家系统为例说明其应用。
安全家居系统组成:
功能特点:
将系统中的防盗装置装在门窗上,当盗贼靠近门窗时,传感器检测到人体信号,门窗(窗帘)控制器发出指令,门窗自动关闭,如果盗贼滞留不走或强行突入,智能主控器会发出报警声阻吓盗贼并自动循环拨打15组报警电话,通知您和小区报警中心有盗贼入侵,以便及时采取相应措施。
在门上安装报警器,当主人离家时,在遥控器上启动设防状态,如遇盗贼强行撬门,智能主控器便会发出报警声阻吓盗贼,同时还会自动循环拨打多组报警电话,通知保安人员或户主及时应对。
若遭遇坏人入室,可即时发送报警信号,方便求救,也可用于家中老人、小孩意外事故和急病呼救报警。论文参考网。
当遇到大风来临或雨雪将至,窗门还会自动关闭。窗户立即自行关闭,令您出门无忧无虑。
当燃气监测器检测到煤气、液化气.等有害气体,智能控制器自动发出相应的指令,将窗户、排气扇自动开启,同时发出警声并将警情传递给主人手机或者电脑和保卫处。
一旦有火灾发生,传感器会第一时间检测到烟雾信号,智能控制器发出指令 ,将门窗打开,同时发出警声并将警情传报警中心或给主人手机或者电脑上。
具体执行如下:
4.结束语
当今快速发展的时代,人们对生活快节奏的要求越来越迫切,对生活质量的要求日益提高,尤其在发展比较快的大都市里,人们对时间的利用也越来越合理,而科技在迅猛发展,手机和电脑的普及率又达到了前所未有的水平,这样就为物联网的兴起创造了先机。所以基于物联网的智能家居系统,必然会成为现代人生活中不可缺少的一部分。
参考文献
[1] 艾红.基于ARM 的嵌入式远程监控系统[J].工业控制计算机,2008.2l
[2] 王永初著,最佳控制系统设计基础[M].科学出版社.2000
[3] 韩江洪.智能家居系统与技术[D].合肥工业大学出版社,2005.
[4] 赵继春.基于GPRS无线智能家居安防系统的研究与实现[D].邯郸:河北工程大学,2007.
关键词: ZigBee技术; 人员定位; 无线通信; mesh网络; 模块化
中图分类号:TP277 文献标识码:A 文章编号:1009-3044(2016)26-0238-02
Application of Operator Patrol System Based on ZigBee in the Cabin
LI Yan-sheng,SUN Lin,WANG Ya-kun
(College of Communication and Electronic Engineering, Qingdao University of Technological, Qingdao 266033, China)
Abstract:The cabin internal structure of large ship is complex, and the positioning problem of cabin operator should be solved urgently. The operator patrol system in the cabin takes the ZigBee technology as the core, uses the modular design. The whole system is divided into: ZigBee terminal equipment, ZigBee router equipment and ZigBee coordinator equipment. This system transmitted data by the mesh network, and displayed personnel location information in the host computer. By the simulation experiment, this system could realize the function of real-time positioning, disaster warning, and host computer display, and realize the application of operator patrol system based on ZigBee in the cabin.
Key words: ZigBee; personnel positioning; wireless communication; mesh; modularization
1 概述
大型舰船体型、规模、承载量巨大,其船舱内部结构更是复杂多变,这给舰船指挥员对船上人员的掌控和舱内紧急事故的处理增加了很大的难度。因此,在船舱控制中心实时观测船舱内部操作人员的位置和状态,实现对舱内人员的考勤和精确定位,并能够及时收发报警信息,对于大型的、结构复杂的舰船内部的操作人员的安全及工作效率的提高有着重要的意义。
目前,常见的人员定位技术中,全球定位技术(Global Positioning System,简称GPS)应用于室外定位,在室内由于建筑物遮挡无法完成精确定位[1];红外线定位技术在传输过程中很容易受障碍物的影响且仅能进行视距内的定位[2];射频识别系统(Radio Frequency Identification,简称RFID)应用于区域识别,无法在区域内部实现人员的实时定位,且RFID读卡器造价偏高[3]。
ZigBee技术是一种新兴的低功耗、低复杂度、近距离的无线通信技术,适用于短距离无线通信[4]。它制定了新的通信标准,在无线传感器网络中随机放置数个微型传感器节点,构成一个无线传感器网络,节点之间相互通信交换数据来完成定位,每个节点之间通过路由的方式把数据信息从一个节点传递给另外一个节点[5][6]。 ZigBee 技术最重要的特征是低能耗和低成本[7]。因此,本研究选用ZigBee技术来完成船舱内部操作人员安全巡检系统的方案设计。
2 船舱内部操作人员安全巡检系统设计方案
本论文设计的船舱内部操作人员安全巡检系统方案如图1所示。船舱安全巡检系统根据每个模块的功能和位置不同,由三个主要部分构成:ZigBee终端模块,ZigBee路由器模块和ZigBee协调器模块[8]。根据各模块的要求和具体任务,分别进行了硬件电路设计。
图示说明:上图九宫格中,每个格子代表一个船舱;每个船舱内放置固定位置的ZigBee路由器设备,同时,每个船舱内有数量不等的携带ZigBee终端设备的人员,ZigBee协调器接收ZigBee路由器设备发送的信号,并上传至上位机进行数据处理和显示。
该船舱巡检系统中,在每一个船舱放置一个或多个固定位置的ZigBee路由器,这些路由器组成无线网格网络(Mesh网络)进行数据传输,可移动的ZigBee终端设备与ZigBee路由器组成星型网络。本系统的核心问题是判断人员进入哪一个ZigBee路由器的识别范围。
当携带ZigBee终端设备的人员进入某一船舱后,ZigBee终端设备会每隔5s将自身的静态、动态信息主动发送给附近的ZigBee路由器,发送完成后进入低功耗模式。船舱内的ZigBee路由器检测到该定位终端,并进行数据传输。然后,ZigBee路由器将自身的地址信息和接收到的若干ZigBee终端设备的信息一起打包发送给ZigBee协调器,经过上位机的数据处理和传输显示,判断并确认终端设备所在的位置。当然可以在较大的船舱内部放置多个路由器,进行精确定位。
由于ZigBee路由器的信号向四周辐射,因此当人员从一个船舱到了另一个船舱时,其终端设备可能仍然和上一个船舱内的ZigBee路由器相连,这样就不能和刚进入的船舱内的路由器相连。为了解决该问题采用以下方法:
1)终端设备需要检测ZigBee路由器信号的强度,通过接收到的ZigBee路由器信号的强度来判断是否切换路由。
2)控制ZigBee路由器的发射信号,适当的减小路由器的发射功率,避免出现上述情况。
3 各模块硬件电路设计
3.1 ZigBee终端模块
ZigBee终端模块需要每位船舱内操作人员随身携带,这就要求其体积小,功耗低,成本低,灵敏度高,可充电。这为终端模块的设计提出了要求:能够实时发送携带有ZigBee终端设备人员的个人信息和位置信息以实现定位功能;支持报警功能,当舱内安全操作人员发现险情(漏水、火灾等)时,可通过ZigBee终端设备上的报警按钮及时向主机发出报警信息;当携带有ZigBee终端设备的工作人员由一个船舱进入另一个船舱时,ZigBee终端设可根据ZigBee路由器发出的信号强弱判断是否切换连接,并自动完成切换。
根据上述设计需求,ZigBee终端模块主要由四部分构成:CC2530主控芯片、电源管理模块、终端按键、无线通信模块。其系统设计如图2所示。
考虑到电源模块供电的可靠性、经济性,ZigBee终端设备选用锂电池作为电源。同时,为了更直观地显示ZigBee终端设备的工作状态,终端设备设计有LED指示灯,当设备开启并且存有电量时,LED指示灯闪烁;否则,无任何指示。
3.2 ZigBee路由器模块
ZigBee路由器模块设计要求:ZigBee路由器需接收周围若干ZigBee终端设备信号;ZigBee路由器能够将接收到的多个终端设备的信号强度信息和自身的地址信息汇总后发送到ZigBee协调器;ZigBee路由器能能够确定终端设备是否报警,并采集自身电池电压,上传至ZigBee协调器。
根据以上设计要求,ZigBee路由器采用芯片CC2530+CC2591模块控制,CC2591芯片进行功率放大。同时,采用了STM8系列单片机,以采集路由器电池电压及发送报警信号。另外,还包括LED显示模块,无线通信模块等,其系统设计如图3所示。
3.3 ZigBee协调器模块
ZigBee协调器模块与ZigBee路由器模块采用相同的模块设计,通过CC2591芯片将信号功率放大,扩大信号传输范围。
ZigBee协调器模块设计需求:ZigBee协调器模块需接收各舱内ZigBee路由器发送来的数据信息,并上传至上位机,由上位机进行数据处理并显示;另外,当ZigBee终端模块发出报警信号时,ZigBee协调器模块能够识别报警信号,并向ZigBee路由器设备发出报警信号,使路由器设备进行声光报警,提醒周边船舱内部操作人员抓紧时间撤离危险区域。
ZigBee协调器模块主要由CC2530芯片及CC2591芯片控制,同时设计有接口转换电路、复位电路、稳压电路等。
4 船舱内部操作人员安全巡检系统测试
为了更好的检测船舱内部操作人员安全巡检系统的功能和完整性,本文组建了一个简易的无线定位仿真系统,进行定位测试,并选用了MyComPort V 4.1.1串口调试软件进行串口调试。ZigBee路由器地址配置直接由拨码开关控制,不使用单片机进行配置,更加方便、简单。
为使同一信道不同网络能同时工作,应更改ZigBee各模块的PANID值,只有ZigBee各模块的PANID和CHANNEL值均相同的模块才能组成一个网络,每个网络都应该是1主机N路由的方式。
经各模块组网运行,系统测试效果如图4所示。经测试,船舱内部操作人员安全巡检系统能够实现在相对封闭空间内对人员的定位功能,并能实现ZigBee终端设备发送报警信号,上位机控制附近ZigBee路由器设备进行声光报警等功能。
5 结论
ZigBee技术作为无线通讯领域的后起之秀,在短距离无线控制、数据传输领域都具有广阔的应用前景。本文基于ZigBee技术构建船舱内部覆盖的无线传感器网络,使系统在成本、功耗以及综合使用效果上有了很大的突破。本系统采用模块化设计,并利用AD 09软件进行了PCB制版制作。通过对该系统在模拟环境中的测试,验证了本系统的可行性和实用性。通过测试,本系统能够实现对ZigBee终端设备携带人员的舱内实时定位,灾害报警,上位机显示等功能,实现了ZigBee技术在船舱内部空间的定位应用。
参考文献:
[1] 秦晓静. 基于ZigBee技术的井下人员定位系统的研究[D]. 长春:长春理工大学,2012.
[2] 吕文婷. 基于ZigBee技术的无线定位系统的研究[D]. 哈尔滨:黑龙江大学,2009.
[3] 陈峰. 基于ZigBee的井下人员定位系统的研究[D]. 焦作:河南理工大学,2012.
[4] 胡柯,郭壮辉,汪镭. 无线通信技术ZigBee研究[J]. 电脑知识与技术,2008(6):1049-1051.
[5] 张朋. 基于ZigBee的室内人员定位监控系统的设计[J]. 信息技术,2010(10):34-37.
[6] 刘洋,杨洁明. 基于CC2431的井下人员定位方法研究[J]. 煤矿机械,2010,31(6):49-51.
论文摘要:针对目前通信技术的发展状况及就业形势,并结合我院实验室现状,提出了建设综合通信网络实验平台的必要性;给出了综合通信网络实验平台的拓扑结构;论述了SDH传输系统、程控交换系统及EPON光接入等系统的详细配置情况。
随着通信技术的发展及信息业务量的剧增,社会对通信专业人才的需求不断加大,从近几年的就业情况来看,企业需要的是既有较好的理论基础,又有较强的实践能力,并且了解通信行业技术的综合应用型人才。因此,高校必须不断完善通信实验室建设,改进实验模式,才能适应市场对人才的需求。我院于2009年提出了建设综合通信网络实验平台的计划,并获得了中央地方共建专业特色实验室项目的资助。
1实验室现状及建设综合实验平台的必要性
2000年以来我院先后建设了计算机技术、电子技术、通信原理、高频电子、EDA等基础实验室及检测与控制专业实验室。2004年通信专业开始招生,为满足教学要求,筹建了通信专业实验室。由于当时学校经费紧张,制定了通信专业实验室的建设在现有基础上分两步走的计划:第一步,建设以满足教学需求的基本型专业实验室,主要完成光纤、程控、通信网、移动通信等专业课程实验。该实验室建设方案以各种实验箱及相关的仪器设备组成,基本1人1箱,其特点是:技术成熟,投资少,维护方便。第二步,建设综合通信网络实验室。第一步建设方案已于2006年完成。
2006年以来,通信专业实验室在实验教学工作中发挥了其应有的作用。但这些设备各自独立,没有形成网络,系统性不强,实验内容多以演示、验证为主。随着通信技术的迅猛发展,这类实验室条件局限性较大,没有通信全程全网的系统性,学生对所学的专业课程缺乏系统整体概念,无法满足对通信技术的深入研究及市场对人才的需求。因此建设综合通信网络实验平台是非常必要的。
2综合通信网络实验平台的建设思路与目标
随着通信行业的不断发展,电信领域正在向着移动化、宽带化的方向不断融合。因此,综合通信网络实验平台建设的基本思路是建设一个集传输、交换、宽带接入及有线、无线通信为一体的综合现代通信网络,是一个类似于电信系统的全真式网络。该系统能够实现模拟网络运行,各个网络对接,并能够完成每种设备平台的实训与研究。通过该实验系统,让学生从软件到硬件全方位感受现代通信的真实环境,对所学专业有直观的认识及深入的了解,提高专业素质,锻炼动手能力,把学生培养成符合社会需求的综合型、应用型通信技术人才。
3综合通信网络实验平台的建设方案与内容
建设方案既要技术先进,又要经济合理,通过反复多次的论证,提出了适应现有资金条件,适合当代通信技术发展的综合通信实验平台。整个平台由SDH传输网、程控交换网、移动无线接入网、EPON光接入网、网规、网优等系统构成。
3.1 网络拓扑结构网络拓扑结构如图1所示。
图1 综合通信网络实验平台拓扑图
3.2 光传输系统
光传输系统是整个实验网络的核心,沟通了各模块之间的通信联络。系统采用SDH技术,由3台STM-1设备构成环形网络。SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足宽带数据及视频图像等多业务的传输需求,自愈功能强。掌握传输技术对通信工程专业的学生来说,是非常重要的。
传输系统选用华为公司的Optix155/622HMetro1000型设备,主要功能及配置如下:
(1)系统高阶交叉能力为136×136VC4,低阶交叉能力1638×1638VC12。
(2)单台传输系统配置STM-1光接口2个,E1接口21个,FE接口数量为4个,支持155M至2.5G光速率的在线升级能力。
(3)具备多业务处理能力,提供多路E1,T1,E3和T3业务及各种音频接口,数据接口功能。
(4)系统采用MSTP第三代技术,支持以太网信号的汇聚、二层交换和VLAN。
(5)传输系统配备了设备级管理软件,在提供完备的网元级管理功能的同时,提供了网络层管理功能,支持传统业务的端到端管理。
(6)整个传输网络保护机制健全,交叉、时钟、电源均采用1+1保护措施,具备强大的告警分析和故障自动诊断功能,提高了网络系统的安全性和可靠性。
3.3 程控交换系统
程控交换系统采用华为公司C&C08程控交换设备,通过传输网络及其他配合设备构建一个完全模拟实际应用的,具有局间交换、远端接入功能的完整交换网络。主要配置为:
(1)系统交换能力为16K×16K,配置模拟电话用户96路,数字中继120DT(最大可扩充至50000线模拟用户及10000线数字中继)。
(2)提供中国1号信令、7号信令,满足局间通信的要求;提供语音业务及其他综合接入业务,配置各种接口。
(3)提供设备级网管软件,可对硬件设备进行设置、配置, 进行信令的观测、跟踪等。
3.4 TD-SCDMA移动通信无线网络系统
TD-SCDMA技术是目前广为使用的新技术,大幅提升了数据传输速率,实现了移动宽带,能够处理图像、音乐、视频等多种媒体形式,提供网页浏览、电话会议、电子商务等多种信息服务。
系统由TD-SCDMA无线侧基站控制器单元(RNC)、无线侧基带处理及射频单元(Node B)及无线网络操作维护中心(OMC-R)等主要设备及相关系统软件组成。
TD-SCDMA无线侧基站控制器单元(RNC)采用华为公司新一代基站控制器DRNC820型设备,该设备集成度高、容量大、可靠性好,可以满足未来高速分组业务发展,大大提升TD-SCDMA全系统的带宽和容量。系统采用MAIO(Multiple Access To I n One)技术,统一ATM,TDM和IP交换体系,既支持对2G传输资源的前向兼容,也支持向全网IP的演进。设备采用模块化设计,支持单框解决方案与平滑升级;采用双平面GE Star交换网,可提供最大120Gbps的交换容量;接口丰富,可提供多种组网方式。
TD-SCDMA无线侧基带处理及射频单元采用业界技术领先的多形态统一模块设计,具有体积小、容量大、功耗低、安装灵活的特点,最大可支持36载扇的TD-SCDMA基带处理能力。
操作维护系统主要完成软件管理、故障管理、性能管理、测试管理、传输管理等功能。
3.5 EPON光接入系统
EPON光接入系统采用华为公司MA5680T型设备,具备多种丰富的功能特性,可提供大容量、高速率、高带宽的语音、数据和视频业务接入。设备为GPON/EPON一体化设备,满足用户扩容升级需要;系统能力满足背板交换容量为275Gbps,业务交换容量双向为68G;单框可支持ONU/ONT数为7168;支持3层特性,支持RIPV1/V2和OSPF路由协议;满足多种FTTx组网应用,满足基站传输、IP专线互联、批发等业务组网需求。
3.6 网规网优系统
无线网络测试系统选用鼎利公司的测试软件,具备完善的GSM/GPRS/TD-SCDMA/HSDPA网络测试功能。能够提供多种测试方法。
3.7 专用e-bridge实验软件
由于本次实验平台选用的硬件设备均为商用设备,所以要考虑整个网络系统如何适合于学生进行实验,一般来说,实际商用设备的管理终端数只有一个,这样对于有40名学生的班级来说,需要分40组,显然不现实。讯方公司研发的专用e-bridge实验软件,解决了多人操作的问题,满足每个系统平台可以40名学生进行实验操作,把商用设备转化为适合高校教学的实验设备。
专用e-bridge实验软件具备实验过程控制功能,实验教师可灵活分配实验项目和实验时间,可以调整每组学生的实验时间,软件能同时满足多人多次上机实验的要求。
综合实验平台系统组成除配置以上设备、软件外,还考虑设置了通信电源设备、光纤配线架、数字配线架、音频配线架等其他配合设备。
4实验项目内容
整个实验系统通过通信网管软件,可满足40个学生终端进行实验操作,可开展的主要实验项目内容如下:
关键词:WISHBONE;FPGA;片上系统;IP核
中图分类号:TP302.2; TP338.1文献标识码:A文章编号:1009-3044(2009)31-0000-00
Design of Sensor Control System on Chip Based on Wishbone
HUANG Wang-hua1, LIU Yi-jun2
(1.Guangdong Textile Polytechnic,Foshan 528041,China;2.Guangdong University of Technology,Guangzhou 510006,China)
Abstract: The paper has designed a sensor control system IP core based on the analysis of traditional sensor node structure,which is under WISHBONE standard.This IP core has been carried out in Xilinx's Spantan 3 series FPGA chip successfully. First of all the paper designs the sensor node control system frame,in which SHT7X is a sensor module and CC2420 is a wireless communication module, and then it inrtoduces the detaile design of sub modules, including the MCU, interface modules and the system connecte module, all these modules are under WISHBONE Bus standard. Finally, after synthesizeing ,implementing and programming,the result shows that the IP core only uses 625 Slices, and its highest frequency is up to 78.740MHz.
Key words: WISHBONE;FPGA;SoC;IP core
无线传感器网络是当今国内外研究的热点之一,它是计算机技术、通信技术和传感器网络技术相结合的产物[1]。目前,传统的传感器节点由传感器、信号调理、ADC、微处理器、电源、无线通讯和天线组成。这种传感器节点最大的特点是电路模块化、体积较大、功耗也不低。近几年来,随着FPGA和SoC技术的发展,嵌入式系统逐渐由板级向芯片级设计过渡。本论文就在FPGA芯片上传感器控制系统进行了设计,设计采用了WISHBONE总线标准,通过调试功能达到了设计要求。
1 传感器网络节点和WISHBONE总线简介
传感器网络一般是由一定数量的传感器节点通过网络搭建起来,根据业务应用要求的不同选择监测不同数据的传感器。目前,传统的传感器节点由传感器、信号调理、ADC、微处理器、电源、无线通讯和天线组成。传感器主要完成数据采集,其类型由被监测的物理信号的形式决定。ADC主要完成模拟信号到数字信号的变换,通常市面上的传感器模块都集成了数模转换功能。微处理器主要完成数据处理和操作控制,通常采用低功耗的,如MicroChip公司的PIC系列等。通讯单元主要负责数据的网络传递,一般由低功耗、短距离的无线通信模块组成。
Wishbone[2]总线是一种开源的片上总线标准,现由OPENCODES组织维护。该总线采用了主/从结构,由主部件发起每次与从部件之间的数据传输,支持常见的四种IP核联接方式,包括:点对点、数据流、共享总线和交叉开关。
2 结构总体设计
因该设计所涉及的传感器节点主要以监测大气温度和湿度为目的,为了提高数据采集的准确度和减少功耗,节点采用了瑞士SENSIRION公司开发的数字温湿度传感器SHT7X系列传感器。该模块为插针型,方便传感器的安装和系统调试。同时为了方便自适应组建网络,本传感器节点采用CC2420作为无线通信模块。该无线通信模块可以通过4线SPI总线(SI、SO、SCLK、CSn)设置芯片的工作模式,并实现读/写缓存数据、读/写状态寄存器等。通过控制FIFO和FIFOP管脚接口的状态可设置发射/接收缓存器。
传感器节点控制模块的设计直接影响着整个无线传感器网络的质量。该文利用FPGA技术设计了节点的控制模块,模块系统结构图如图1所示。
该片上系统主要由一个8位的MCU,片内存储器数据RAM,WISHBONE总线控制器和各外设控制器IP核组成。其中MCU IP核主要负责整个片上系统的控制和数据处理,该MCU采用PIC16C5X系列的33条经典控制指令[3],根据FPGA芯片的特点和应用的需求设计相应的体系结构。RAM IP核主要用来存放监测数据,该IP核由FPGA芯片的RAM块组成。各外设控制器IP核,主要负责根据外设接口类型,将内部平行数据格式转换成相就的数据格式,比如LCD-WISHBONE接口IP核,将内部数据总线的数值根据数码管进行编码;UART-WISHBONE接口IP核将内部数据总线的平行数据转换成相应波特率的UART串行数据,等等。以上IP核不管是MCU IP核还是接口控制器IP核都用WISHBONE片上系统总线标准进行规格化。最后通过WISHBONE总线将各功能IP核模块连接起来,各IP核访问总线由总线控制模块控制。
3 系统各模块的设计
3.1 微控制器IP核
该IP核采用传统的LOAD/STORE结构,即指令操作数基本来自寄存器,运算结束后结果也放回寄存器中,指令执行前要先提取数据,指令结束后要结果存储好。整个系统由控制器根据指令控制其它单元的操作,如取址、取数,ALU运算等。
MCU IP核在Syscon模块时钟的驱动下,首先指令寄存器根据PC值取出指令,这就是取指阶段。接下来是译码器对指令进行译码,并从存储器中取出操作数。然后ALU根据译码结果对操作数进行运算,最后写回存储器或输出结果。IP核接口采用WISHBONE标准,其中地址标志位用于选择外设。
3.2 IIC-WISHBONE控制器IP核
IIC(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线标准,用于连接微控制器及其设备[4]。该控制器IP核主要用于连接湿温感应器SHT7X,通过本IP核将感应器的串行数据转换为8位并行数据。转换过程中,通过对一系列寄存器的操作,可以设置器件速度,控制操作,接收传输数据等。该IP核采用了字节传输控制模式,在感应器时钟的触发下,从感应器中读取采集的数据,当数据缓存器满时,即锁定,并通过命令寄存器,请求占用总线,直到MCU响应。这样就完成了以次数据采集。
3.3 SPI-WISHBONE接口
SPI(Serial Parallel Bus)总线是由Motorola公司提出的,可以允许外设以串得方式与MCU进行通信的一个总线[5]。总线是一种高速的、全双工、同步的通信总线,并且只由4条信号线组成,分别是:SCLK(时钟线)、/CS(片选线)、SDO(数据输出线)和SDI(数据输入线)。该IP核主要用于连接无线模块CC2420,将经MCU处理后的数据通过该IP核传递给CC2420。
3.4 UART-WISHBONE接口
UART(即Universal Asynchronous Receiver Transmitter 通用异步收发器)是广泛使用的串行数据传输协议。UART允许在串行链路上进行全双工的通信。在嵌入式系统设计中经常会用到UART接口来进行通信,将UART功能集成到SoC设计中从而简化了电路,缩小了面积,还充分利用芯片剩余逻辑单元。UART主要由UART内核、信号监测器、移位寄存器、波特率发生器、计数器、总线先择器和奇偶校验器总共七个模块组成。主要部分功能介绍如下:UART内核主要完成控制周围其它部分在收发数据时的操作;信号监测器对输入信号进行实时监测,一有新的数据立即通知UART内核;总线选择用于选择奇偶校验的输入是数据发送总线还是数据接收总线。
4 系统集成
通过前面个IP核的设计、测试和电路优化,接下来主要是将各IP核集成起来。在IP核设计过程中已对IP核接口进行WISHBONE标准化。为了将多个WISHBONE总线接口标准的各IP核连接成一个片上系统,WISHBONE总线标准主要有四种联接方式,包括端对端、数据流、共享和交叉总线。本设计主要考虑到系统外设数量较少,同时系统对数据的实时性要求不高,为了设计的简便,本设计采用共享式互联方式[6]。
总线控制模块根据主设备(MCU)输出的地址高四位进行选择从设备,在本系统中,从设备可以扩展到16个。主设备输出的低四位地址为各接口控制器IP核内的寄存器地址,用于暂存操作命令和数据。
5 系统综合/实现/调试
在完成系统集成的功能测试后,就可将设计进行综合实现。综合是指将电路的高级语言(VHDL、 Verilog、 SystemVerilog等)或原理图转换成低级的,可与CPLD/FPGA相映射的网表文件,就是按照某种规定描述电路的基本组成和如何相互连接的文件[7]。
综合前主要是设定设计的约束,包括引脚和时钟等。然后在ISE自带的高性能的综合工具中进行综合,最后综合结果显示该系统IP核只占用了625各Slice,仅用了器件3%的资源,同时时钟也达到了约束要求,具体情况如图2所示。
综合后占用FPGA资源情况如下:
Number of Slices: 625 out of166403%
Number of Slice Flip Flops:510 out of332801%
Number of 4 input LUTs:1115out of332803%
Number of bonded IOBs: 20 out of 519 3%
Number of BRAMs:3 out of84 3%
Number of GCLKs:4 out of2416%
IP核时序情况如下:
Minimum period: 12.700ns (Maximum Frequency: 78.740MHz)
Minimum input arrival time before clock: 5.166ns
Maximum output required time after clock: 11.848ns
随后进行实现,通过ISE自带工具查看布局布线情况,可以发现主要分布在BANK2,且较集中。然后利用Generate Programming File命令生成BIT位流文件,最后用编程工具iMPACT将位流文件直接下载到FPGA芯片中,通过对运行情况的分析,设计达到了预定要求。
6 小结
该文主要完成了基于WISHBOEN总线的片上传感器控制系统的设计,设计的内容包括MCU、IIC接口、ISP接口和URAT接口,以及对采用WISHBONE总线标准对其进行规范化。然后通过共享式总线控制模块将各IP核联接起来。最后将系统IP核下载到Spartan-3A DSP 1800A开发板进行了调试,设计基本达到要求。
参考文献:
[1] 敦旭峰,田丰,孙小平.无线传感器网络节点的研究与设计[J].沈阳航空工业学院学报,2007,24(5):61-64.
[2] Microchip Technology Inc.PIC16C5X Datasheet[Z].1998.
[3] 陈穗光,葛建华.I2C总线接口协议设计及FPGA的实现[J].山西电子技术,2006(6):37-38.
[4] 孙丰军,余春暄.SPI串行总线接口的VERILOG实现[J].现代电子技术,2005,16(20):105-107.