时间:2022-12-15 10:43:19
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇隧道工程论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键字:隧道覆盖覆盖规划铁路隧道公路隧道
一、概述
对重要的公路、铁路实现全线覆盖是运营商提高网络质量的一个重要环节,是提高综合竞争力的一个有力手段。从交通角度来看,目前大多数隧道的目的是覆盖盲区,因此需要结合交通线路的覆盖设计来制订专门的隧道覆盖解决方案。
隧道覆盖主要分为铁路隧道、公路隧道、地铁隧道等,每种隧道具有不同的特点,一般来说公路隧道比较宽敞,对隧道里面的覆盖状况,有车通过与无车通过时差别不大。车辆通过时,隧道内剩余空间较大,可根据实际情况选择尺寸大一些的天线,以获取较高的增益,使覆盖范围更大。而铁路隧道一般来说要狭窄一些,特别是当火车经过时,被火车填充后所剩余的空间很小,火车对隧道的填充会对信号的传播产生较大的影响,且天线系统的安装空间有限,使天线的尺寸和增益受到很大的限制。另外,不管是哪种隧道,都存在长短不一的状况,短的隧道只有几百米,而长的隧道有十几公里。在解决短隧道覆盖时,可采用灵活经济的手段,如在隧道口附近用普通的天线向隧道里进行覆盖。但是,这些手段可能在解决长隧道覆盖时不起作用,对于长隧道的覆盖必须采取其它一些手段。因此,对于每段隧道的解决方案可能都会有所区别,必须根据实际情况来选定覆盖解决方案。
在进行隧道覆盖规划之前,一般需要知道以下数据:
隧道长度、隧道宽度、隧道孔数(1、2)、覆盖概率(50%、90%、95%、98%、99%)、隧道结构(金属、混凝土)、载频数目、隧道中最小接收电平(一般为-85dBm到-102dBm)、隧道孔间距、AC/DC是否可用、墙壁能否打孔、隧道入口处的信号电平、隧道内部已有信号电平等。
二、隧道覆盖的信号源选择
为了提供隧道覆盖,一个GSM信号源与一套分布式系统是必要的。信号源的选择,需要根据隧道附近的无线覆盖状况和传输、话务、现有网络设备等情况来决定。隧道覆盖所采用的信号源包括宏蜂窝基站、微蜂窝基站、直放站等。
对于铁路、公路隧道覆盖来说,由于其话务量小,宏蜂窝基站作为信号源较为少用。但是,在城市地铁隧道中,人流量大,话务量也高,这种场合不仅要覆盖站台,而且还要覆盖铁路系统出口等地方,可采用容量较大的宏蜂窝基站。
使用宏蜂窝基站的优点是可以提供更多的信道资源、扩容较为容易、单个基站覆盖能力强;缺点是需要用电缆从BTS设备所在的机房引入信号覆盖隧道、增加了馈线损耗、需要较大的机房等配套设备、总的投资费用高。
对容量要求不是很高的隧道覆盖,可采用微峰窝基站。使用微蜂窝基站的优点是所需设备空间小、所需配套设备少、总的投资费用低。
如果附近有信号源可以利用,则可采用无线直放站来作为隧道覆盖的信号源。采用直放站往往是网络拓展的第一步,在网络容量上升后再用GSM基站来替换。采用直放站作为信号源的优点包括:无需传输、综合成本低、可将远处的话务带给施主小区,使小区的信道利用率更高、安装速度快等。无线直放站有宽带直放站和选频直放站两种,采用无线直放站会使得网络管理复杂度增加,不便维护,另外在采用选频直放站时,施主小区的频率发生变更后,直放站的频率也要进行调整,不利于整网规划和优化,施主天线和重发天线需要有足够的隔离度,造成安装空间上有些困难等缺点。除采用无线直放站以之外,也可采用光纤直放站作为信号源对隧道进行覆盖。
在实际工程之中,必须根据隧道长度、隧道附近的覆盖状况、基站分布、话务分布、建站条件等因素选择信号源,微蜂窝基站和直放站是隧道覆盖建设常用的信号源。
三、隧道覆盖的天馈系统选择
在选择好了GSM信号源之后,则必须根据实际情况配置天馈系统,对隧道进行覆盖。通常有三种不同配置的天馈系统:同轴馈电无源分布式天线、光纤馈电有源分布式天线、泄漏电缆。
1、同轴馈电无源分布式天线
这种覆盖方案的设计比较灵活、价格相对低、安装较方便。同轴电缆的馈管衰减较小,天线增益的选择主要取决于安装条件,在条件许可的情况下,可选用增益相对较高的天线,来提高覆盖范围。该方案的简化版就是采用单根天线对隧道进行覆盖,对于较短的隧道来说,这种方案确实是一种低成本解决方案。
2、光纤馈电有源分布式天线系统
在某些复杂的隧道覆盖环境中,可采用光纤馈电有源分布式天线系统来替代同轴馈电无源分布式天线系统。它更适用于覆盖地下隧道(地铁隧道)和站台。采用光纤馈电有源分布式天线系统的主要好处包括在室内安装的电缆数减少、可适用更细的电缆、采用光缆可降低电磁干扰、在复杂的网络中设计更灵活等,缺点是成本高。
3、泄露电缆
采用泄漏电缆进行隧道覆盖,是一种最为常用的方法,这种方法的好处在于:
可减小信号阴影和遮挡,在复杂的隧道中采用分布式天线,手机与某特定天线之间可能会受到遮挡,导致覆盖不好;
信号波动范围减少,与其它天线系统相比,隧道内信号覆盖均匀;
可对多种服务同时提供覆盖,泄漏电缆本质上是宽带系统,多种不同的无线系统可以共享同一泄漏电缆,考虑到在隧道中经常使用某些无线系统(寻呼系统、告警系统、广播等),采用共享一条泄漏电缆的方法,可省去架设多条天线的工程。
泄漏电缆覆盖设计是一项非常成熟的技术,其设计方案相对简单,本文不作重点分析。下面重点分析采用普通同轴馈电无源分布式天线进行隧道覆盖的设计方案。
四、隧道的无线传播
无线电波在隧道中传播时具有隧道效应,信号传播是墙壁反射与直射的结果,其中直射为主要分量。华为公司基于ITU-R建议,根据试验数据对传播模型进行了修正,得出一简单实用的隧道传播模型,用于进行隧道覆盖设计,该传播模型为:
Lpath=20lgf+30lgd―8dB
其中:
1施工管理原因分析
(1)施工现场技术管理缺位是大部分量问题普遍存在的重要原因。部分施工单位对个别隧道存在以包代管的现象,施工技术方案的编制、复核、审批程序流于形式,方案内容缺乏针对性和可操作性,施工现场过程控制流于形式。(2)工序验收把关不严是造成大部分质量问题重复发生的主要原因。部分施工、监理单位现场技术管理人员业务素质不高、责任心不强,对工序的自检、互检、交接检制度落实不到位,现场检查验收过程中未认真核对设计文件和现场实际情况签署质量验收文件,部分检验批验收资料与实际情况明显不符。(3)勘察设计工作不到位。由于前期勘察工作不细,地质资料不详细,造成部分隧道开挖工法和支护措施不合理;施工现场设计配合不到位,部分隧道围岩状况变化后设计变更不及时,尤其是在围岩变弱的情况下支护措施明显不足。(4)教育培训流于形式。部分施工单位的三级安全、技术交底资料仅为应付上级检查、未落到实处,部分作业指导书和技术交底编制内容缺乏针对性和可操作性,技术交底未做到“横向到边、纵向到底”,造成部分作业人员不清楚各工序的施工质量标准和作业要求,甚至存在部分现场作业人员违章蛮干的现象。(5)考核机制落实不到位。部分参建单位内部考核的激励约束机制未有效运转,部分管理人员对施工质量问题的重视程度不高,对施工现场存在的质量安全问题“视而不见”、“习以为常”。个别建设单位对施工、监理、设计单位企业信用评价未能严格按照相关文件要求对标考核。
2预防控制措施建议
(1)建设单位要充分发挥建设管理龙头作用,以标准化管理为抓手,强化源头、过程和细节控制,积极推进机械化、工厂化、专业化、信息化等现代化施工管理手段的应用,认真落实安全风险和质量控制关键环节的监管,强化隧道工点的围岩监控量测、超前地质预报的管理,切实提高参建各方的质量安全意识和管理水平。在工厂化方面,建议在指导性施工组织设计中明确要求组建钢结构加工厂,对隧道模板台车、型钢钢架、钢筋网片、超前小导管等钢构件集中加工制作、统一配送,有效卡控偷工减料、质量不达标等问题发生。在机械化方面,组织研发防水板铺设机,大力推广使用移动栈桥、喷射机械手等先进设备,提高工序施工质量和效率。在专业化方面,全力推行架子队管理,坚决清理违法分包、转包、以包代管等行为,强化过程控制和现场管理的标准化。在信息化方面,推广应用工地试验室压力机、万能材料试验机等检测数据的在线实时监控,混凝土拌和站计量偏差、拌合时间等数据的在线实时监控,隧道围岩量测断面数据采集和围岩收敛情况的实时报告、分析等,及时防范和消除质量安全隐患。(2)强化勘察设计工作在隧道施工质量安全管理的源头作用。在前期勘察过程中,工作要细致,在遇到不良地质及软弱围岩隧道时要加大地质钻孔的频率,选择合理的开挖工法和支护措施,确保工法适应现场;在隧道施工过程中,设计配合工作要及时、到位,遇到围岩状况发生变化时要及时核实现场地质情况,及时出具变更设计文件,及时指导现场施工。(3)强化质量安全“红线”管理,施工现场存在擅自改变设计工法和安全步距超标时必须暂停掌子面掘进,上道工序未验收合格严禁进入下道工序施工。(4)超前地质预报和围岩监控量测,要严格纳入工序管理,选择专业队伍实施。实施过程中确保预报成果和监控量测数据的真实、有效,及时指导现场施工。(5)强化第三方检测管理,必要时超前地质预报和围岩监控量测可实行第三方监测管理,做到及时发现问题、及时整改,强化过程控制。(6)按照工程质量终身负责制,各建设单位要对隧道工程的施工、监理单位管理人员和检验批等验收签字人员的资格情况进行逐一登记、审核,按规定程序进行变动人员审批管理,确保责任落实的可追溯性,严把检验批、分部分项工程、单位工程验收关。(7)强化教育培训制度,不走过场,真正落到实处。一方面对作业层要坚持安全、技术交底,让每一名作业人员都清楚各工序的作业内容、作业标准、工艺要求以及安全注意事项,做到简明扼要、有针对性和可操作性,有条件可实行班前安全交底和现场实作过程交底;另一方面对管理层要将项目部制定的标段、单位工程施工组织设计以及分部分项施工专项方案传达至各级管理人员,让管理人员明确各自的工作内容、验收标准,并有针对性的进行现场巡查。(8)建立长效考核激励约束机制。一方面建设单位要对各参建单位在铁路建设中的合同履约、质量安全管理行为、工程实体质量、现场施工安全等方面加强检查,对发现符合不良行为条件的应及时进行记录、公示、确定并上报相关部门和单位,严格企业信用评价,并将评价结果与招投标挂钩;另一方面各参建单位要建立内部考核机制,落实岗位职责,将建设项目管理目标层层分解,逐级落实至每一岗位、每一管理人员,对质量安全管理做到分工明确、各负其责。
3结语
随着铁路隧道工程施工的工厂化、机械化、专业化、信息化的持续推进和不断强化、完善,以建设单位为龙头的建设项目参建各方继续以标准化建设为抓手,进一步强化隧道施工过程控制,矿山法隧道施工质量安全问题将会逐步减少,逐步消除重特大安全生产责任事故的发生。
作者:李良单位:铁道部工程质量安全监督总站广州监督站
1ANFO铵油炸药装药工作原理及在实际中的应用
1.1ANFO铵油炸药装药工作原理利用空压机提供的高压气体,通过气压调节阀门,使装药器内形成低压区,颗粒状ANFO炸药从进药管被吸入到装药器,并随高压气体从输药导管喷出,将设计的炸药量通过输药导管吹入钻孔,并在高压气体的作用下达到密实。装药器主要由高压进气管、气压调节阀、进药管、半导体输药软管等组成,具体如图1所示。
1.2ANFO铵油炸药装药在隧道工程中的实际应用2006~2007年间,智利一家矿山公司在进行地下铜矿开采时就使用了ANFO炸药,装药工艺和现在我隧道内使用的类似。该工艺得到了智利公安部门的认可,在智利运用相当普遍。ANFO铵油炸药装药施工工艺如图2所示:掘进和辅助眼用半卷直径25mm或者32mm的硝铵炸药做起爆体(放入孔底),装药时将输药软管插入孔底,打开气压调节阀门,开始装药,根据装药的速度边装药边向外移动输药导管,当钻孔装满药后,关闭气压调节阀,完成一次装药。起爆点的设置,无论用电雷管起爆,或用导爆索,均能保证稳定爆轰。使用电雷管,掏槽眼一般设上、下部两个起爆点,主要是防止作业过程中脚线损坏而采用的保险措施。总的来看,使用导爆索价格略高,但装药进度快,施工简单,节省人工,国外施工中,人工工时费高,因此,两种起爆方式在经济上均是可行的。(ANFO铵油炸药爆破施工工艺)关于ANFO炸药在使用过程中会产生静电不安全的说法在实际使用过程中是可以避免的。在隧道内潮湿的施工环境一般是不会产生静电的,再者静电是在不导电的情况下才能积聚电压,而隧道内潮湿的环境几乎全是导体,台架亦和大地接通,所以即使产生轻微的静电也会流失,不会积聚产生静电反应。伊朗的雷管在生产过程中两根导线的尾部是包在塑料皮里面的,在装药过程中是安全的,连线是由伊朗专业爆破人员来完成的,连线过程和使用硝铵炸药的工艺是一样的,该工艺亦获得伊朗爆破工程技术人员的认可。
2ANFO铵油炸药在使用过程中采取的措施
2.1使用ANFO铵油炸药一般要求(1)隧道施工应严格按《公路隧道施工技术规范》,《爆破安全规程》等相关法律法规执行。(2)电力起爆时,爆破主线,区域线、联接线,不应与金属管物接触,不应靠近电线、电线信号、铁轨等,应在洞内检测杂散电流且其值不应大于30mA,否则应采取相应措施。(3)电力起爆网路洞内导线应使用绝缘性能良好的铜芯线,所有穿过填塞段的导线、导爆索、导爆管,均应采取保护,以防填塞时损坏。(4)洞内光面爆破均应采用不耦合装药,缓冲炮孔可采用不耦合装药和间隔装药;现场验孔、装药应在技术人员监督下由熟练爆破员操作。(5)洞内爆破后,应充分通风,保持洞内爆破作业场所通风良好。
2.2使用ANFO铵油炸药使用注意事项(1)钻孔过程均采用水钻工艺,整个工作面都处在潮湿的工作环境中,凿岩台架和大地接通,以利装药过程中潜在的静电流散,不至积聚。(2)装药过程中,装药现场的施工及照明用电全部处于断电状态,在离工作面20~30m处采用探照灯或矿灯照明;加强洞内施工用电的日常维护巡查工作,特别是在潮湿的作业点和作业台架附近,要求所有照明线路必须安全可靠,防止出现漏电隐患。(3)输药管采用专用的防静电半导体软管,体积电阻应符合产品标准。(4)ANFO炸药装药器使用时必须接地(用铜心电线),且接地电阻不应大于105Ω。(5)装药现场空气相对湿度不应小于80%,装药前及装药过程中采用湿度仪随时对空气湿度进行检测,如达不到规范要求应采取人工喷水措施。(6)装药器的工作压力不应大于6×105Pa。(7)静电电压测试,采用Monroe281型静电测试仪对由装药工具喷出的ANFO炸药进行测试炮孔内静电电压不应超过1500V,在装药过程中随时对静电电压进行检测。(8)拔管速度不易太快,每孔(深3.2m~3.8m)装药速度控制在40s~45s内,即装药速度不超过0.08m/s;拔管要均匀,严禁在炮孔内反复抽动输药管。(9)采用ANFO炸药进行装药时,作业人员必须佩戴专门防护口罩、穿着全棉工作服;以防摩擦静电产生。(10)掌子面有渗水或炮孔内有渗水的不得采用ANFO炸药。(11)装药结束,必须严格按照爆破安全规程进行安全警戒,疏散影响区域内的人员并撤离机械设备。同时应安排炮工及监炮人员(洞内作业必须2人以上)配合爆破公司技术人员完成爆破作业。(12)连线要在装药完成之后进行,整个连线过程由爆破公司专业人员及炮工或监炮员共同完成。
3ANFO铵油炸药使用过程中的优点
ANFO炸药使用过程具有可靠的实用性、高效性和良好的经济性等优点,具体表现在以下几个方面:(1)实用性强,可广泛用于浅孔、深孔、平巷等掘进爆破,同样适用于水平钻孔的隧道爆破。(2)装药过程操作简单,2人即可实现装药的机械化,大大提高了装药效率,作业安全性和作业环境条件得到改善,降低了工人的劳动强度。(3)装药速度较快,比传统的人工炮棍装药提高2~3倍以上,缩短了作业周期,加快了工程进度。(4)装药用风由空压机提供,只需增加装药器,成本低廉,总成本不超过300元。但相对传统的硝铵炸药,可节约10倍成本(硝铵炸药30.4元/㎏、ANFO炸药2.3元/㎏,考虑ANFO炸药使用率是硝铵炸药的1.3倍,则每个工作循环将节约10倍的炸药成本)。结语5#隧道使用ANFO炸药顺利完成了多次爆破,实践证明该装药工艺是安全可靠的,而且在装药效率、爆破效果和经济效益等方面较其它炸药有着显著优势。因此,只要使用及防护措施得当,ANFO炸药用于隧道爆破施工较之其它炸药更安全更经济。
作者:宋占辉单位:中铁三局集团西南工程有限公司
一、地质雷达测试原理
地质雷达一种利用电磁波信号在不同介质中传播运动特性的宽带高频电磁波信号探测方法。地质雷达探测系统发射机将高频电磁波以短脉冲、宽频带的方式,通过发射天线将其定向发射至地下,经过不同特质的地下岩层或目标体反射回地质雷达并由接收天线接收。高频电磁波在岩层中传播时,由于岩层所含介质的差异,导致其传播路径、电磁场强度及波形呈不同几何形态,通过对时域波形的采集、数据整理及分析,可确定地下岩层界面或异常岩体的空间结构及其位置。隧道结构地质岩层具有明显的电性差异,这是地质雷达应用的前提;这些界面可以形成良好的电磁波反射形态,是地质雷达在隧道衬砌质量检测中应用的主要原理。
二、砼厚度的地质雷达探测试验
试验目的是分析地质雷达对钢筋砼构件的检测精度。试件尺寸为2m×2m钢筋砼方柱,强度为C25,配合比(kg/m3)为水∶水泥(标号为325)∶粗骨料∶细砂=195∶464∶551∶1170。其中粗骨料为19~31.5、9.5~19、4.75~9.5mm,经筛分试验确定3种规格的掺量分别为30%、60%、10%,形成连续级配。经检验,碎石为同颜色,不带杂物,含泥量0.5%,压碎值10.4%,符合规范要求。钢筋主筋为直径16mm二级螺纹钢,间距93mm;箍筋为直径10mm一级圆钢,间距90mm。保护层厚度统一设置为40mm响了检测精度,实际检测精度可能更高,地质雷达对于不同介质界面的探测具有较高的精度,检测结果较为可靠。
三、工程应用案例
工程概况某隧道位于赣南山区,为小净距短隧道。隧道纵坡为单向坡,左、右线纵坡坡率分别为2.125%、2.1%。洞门均为1∶1.6削竹式。按新奥法原理设计为复合式支护衬砌结构。根据地质勘察揭示的围岩情况,将洞身(包括紧急停车带)划分为FS3b、FS4a、FS4b、FS5a、FS5b、FS5c及明洞FSM等衬砌结构类型。试验主要采用地质雷达对浅埋一般段FS4a衬砌施工质量进行扫描检测。FS4a型衬砌的结构如下:初期支护为22药卷锚杆(单根长3.0m),锚杆环距×纵距为1.0m×1.0m,喷射23cm厚C25砼,6@20×20cm双层钢筋网片,工字钢(拱架)纵距1.0m;二次衬砌结构为40cm厚C30钢筋砼拱圈,40cm厚C30素砼仰拱。检测结果分析为地质雷达检测10榀钢拱架纵向间距的结果,为地质雷达扫描检测初期支护砼喷射厚度的结果,为地质雷达扫描检测二次衬砌砼钢筋网片保护层厚度的结果。从表2来看,2#、5#、7#钢架间距超过规范的允许偏差,施工方需在后续施工过程中严格控制钢筋间距,确保钢筋榀数满足设计要求。
四、结语
利用地质雷达检测钢筋砼结构试件的保护层厚度,检测结果精度较高,具有较高的可靠性,在工程实体无损检测中具有较广阔的应用前景。将地质雷达应用到隧道工程中,可真实反映隧道工程的施工质量缺陷,及时提醒施工单位加以修复或加固处理,为确保隧道施工质量提供技术保障。
作者:余辉王吉庆肖钦单位:江西省高速集团赣州管理中心
雷达探测技术最早于1985年由美国对已运营80年的纽约地铁隧道进行了全面的质量检测,同时取得良好的检测效果。Holub采用地质雷达对瑞士一条长2km左右的引水隧洞的严重渗水段进行了探测,查明了空洞和渗水部位,并经钻孔得到了证实。Cardarelli使用地质雷达层析成像技术,对意大利中部的一条隧道进行探测,围岩的不连续性和弹性特性采用200MHz天线和层析资料进行分析,松散区的范围确定采用450MHz天线进行探测,查明了隧道围岩坍塌的主要原因为混凝土的废退和岩石的碎裂。我国探地雷达的研究工作开始于上世纪70年代中期。以煤炭科学研究总院重庆分院高克德教授为首的探地雷达研究小组,针对煤矿生产的特点自主创新,研制开发出了具有自主产权的探地雷达系列产品-KDL系列矿井防爆探地雷达仪,开创了我国在探地雷达技术使用的先河。由钟世航同志通过分析提出若干提高探地雷达探测精度的措施,周黎明、王法刚同志通过分析认为只要探地雷达波速测定相对精确的情况下,衬砌混凝土厚度检测误差的能控制在2~4cm以内,但对脱空宽度和高度只能给一个概值,另外,李晋平、冯慧民、刘东升、葛增超、杨缄鑫等都在探地雷达隧道衬砌检测中做过理论研究与实际应用。
2地质雷达检测方法与检测技术
隧道后期质量检测应考虑隧洞结构完整性要求,结合隧洞工程检测目的与工程实际情况,检测工作应主要以测绘、裂隙调查等方法配合洞外地表与洞内进行地质雷达探测的综合无损检测技术。在隧道混凝土衬砌施工质量检查过程中,由于其隐蔽性较强,属薄壁结构,施工困难,施工容易造成衬砌混凝土厚度不符合设计要求、衬砌混凝土与岩体结合不密实等质量事故。在后期检测过程中采用常规的检验方法如局部开孔等,其方法效率低下且代表性较差,同时对衬砌混凝土结构的整体性有较大影响。故采用在洞外地表与洞内进行地质雷达探测的综合无损检测技术,可以对隧道衬砌混凝土的结构、裂缝分布及延展进行检测,同时还可对浅部围岩变形进行检测。
探地雷达对地下目标体的探测采用的是高频电磁波,其在地下介质中的传播过程实际是一个褶积滤波过程,由于地下介质的物性和几何性质的不均匀性及地下介质的电性的不均一性,电磁波在地下介质中的传播相当复杂,各种噪声干扰严重,同时,探地雷达在接收地下介质的反射波的同时,也会接收到地面以上的各种噪声和干扰信号。因此,实际接收的探地雷达信号不再是发射信号的简单叠加,附带了一些波形畸变的子波,这些子波都有不同尺度变化使得探地雷达信号具有非平稳性,脉冲信号非线性衰减等特点。探地雷达回波信号不能直接准确清晰地反映目标体,必须经过适当的数据处理,以改善数据质量,为图像判释和地质解释提供清晰的反射波信号。探地雷达数据处理的目的就是压制各种噪声和干扰,提高分辨率,使探地雷达图像剖面上显示最大分辨率的反射波,收集反射波的各种有用参数(包括电磁波速度,振幅和波形资料),以便对探地雷达图像做出准确可靠的地质解释。
3引水隧道衬砌检测方法
引水隧洞质量控制的关键是要控制好开挖及衬砌混凝土的质量。衬砌混凝土施工首先应对原材料、中间产品等的质量进行严格的检测与控制,其次对关键工序的施工质量进行严格的过程控制。对于衬砌混凝土质量的后期检测,根据以上分析,可优先采用以测绘、裂隙调查等方法配合洞外地表与洞内进行地质雷达探测的综合无损检测技术。隧道衬砌探地雷达检测时,应先合理布置测线,测线可能布置在远离电缆线、金属物等,一般采用纵向布线方式,在左右边墙、左右拱腰及拱顶位置布置五条测线,特殊情况下可布置环向测线,以辅助纵向测线检测,初期支护厚度一般较薄,表明不平整,为满足分辨率要求,保证探测数据质量,一般用800MHz屏蔽天线,若800MHz屏蔽天线探测范围不足以覆盖初期支护后的缺陷时需换用500MHz屏蔽天线,对于二次衬砌,由于厚度相对较厚,一般采用500MHz屏蔽天线,初期支护检测和二次衬砌检测均按5m或10m一标记打标。探地雷达检测过程需要注意以下几点:①检测前应全面了解检测任务,充分做好检测前的准备,如根据需要正确设置探测参数等。②严格控制测区内的金属构件或无线电发射源等产生较强电磁波干扰设备。③应选用绝缘材料为探测天线的支撑器材,天线操作人员不应佩带含有金属成分的物件,注意人员和仪器安全。④检测过程中,应保持工作天线的平面与探测面密贴或基本平行,距离相对一致。⑤做好现场记录,记录标记位置,测线范围内是否有障碍物、障碍物的确切位置,准确的测线位置等。
4结论
1)地质雷达应用于浅埋深小断面引水隧道具有极其广阔的前景,地质雷达技术可有效地对隧道混凝土的密实度、与岩体的接触紧密度等进行连续、全面、快速、精确的无损伤检测。
2)利用地质雷达进行引水隧道衬砌检测时,应先合理布置测线,根据衬砌厚度合理选用地质雷达天线。
勘测期间勘测深度内未见地下水及地表水,隧道洞身含少量第四系及第三系孔隙潜水,雨季洞身含少量第三系孔隙潜水。
2刘家梁隧道工程的设计方法
2.1隧道建筑界限及衬砌内轮廓①建筑限界:建筑限界采用“隧限-2B”,曲线地段考虑加宽。②衬砌内轮廓:隧道为单洞双线隧道,标准线间距为4米,除曲线处按要求加宽外,接触网关节根据要求考虑加宽、加高。
2.2轨下基础类型隧道采用60千克/米钢轨(重车方向预留75千克/米钢轨条件),区间无缝线路。采用有砟轨道,轨道结构高度1.107米。
2.3洞门及洞口工程①隧道进口采用偏压式明洞门(W=0),明洞13米;出口采用直切式洞门(W=60),明洞48米。明洞回填高度应大于2米,并施作50厘米厚粘土隔水层。②进口边仰坡坡率:新黄土1:1.0,老黄土1:0.75,粉质黏土1:1.0,并加强防护及排水措施。③洞顶截水天沟排水与路基天沟顺接。
2.4衬砌支护设计①暗挖隧道按新奥法设计与施工,采用复合式衬砌,复合式衬砌由初期支护、防水隔离层与二次衬砌组成,Ⅳ—Ⅴ级围岩隧道均采用曲墙带仰拱的衬砌结构形式。②DK29+377~DK29+390、DK29+850~DK29+876、DK32+465~DK32+513段采用整体式明洞衬砌。③隧道DK29+545~DK29+690、DK30+780—DK30+945、DK31+950~DK32+115段,采用锚段关节衬砌。
2.5结构耐久性设计①隧道结构应具有足够的耐久性,主体结构按满足100年正常使用的要求设计。②氯离子渗透能力<1500库仑。③严格控制混凝土碱骨料反应和水泥中的碱量。④衬砌结构混凝土原材料品质、材料使用量等耐久性指标要求,根据环境作用等级,按相关规范标准执行。⑤衬砌结构钢筋外侧混凝土净保护层最小厚度按相关规范标准执行。⑥衬砌施工控制要求、跟踪检测要求以及养护维修按相关规范标准执行。
2.6隧道防排水设计隧道防排水采取“防、排、截、堵结合,因地制宜,综合治理“的原则。在地下水发育且水文环境有严格要求的隧道,防排水采用“以堵为主,限量排放“的原则。无法满足过水要求的,应适当加宽、加深水沟。
2.7辅助工程措施①大管棚超前支护。隧道进、出口暗洞进洞地段DK29+390—DK29+420、DK29+820~DK29+850、DK29+876—DK29+906、DK32+435~DK32+465拱部140°范围内施作覫108毫米大管棚超前支护,环向间距为3根/米,长度为30米。②超前小导管支护。隧道Ⅳ级、Ⅳ级加强、Ⅴ级、Ⅴ级加强地段,拱部140°范围施作超前小导管支护,采用外径覫42毫米热轧无缝钢管,t=3.5毫米,环向间距为30根/米,纵向每两榀格栅施作一环。③锁脚锚管。台阶法开挖时,台阶底部两侧每个的钢架脚部打设3根锁脚锚管,锁脚锚管采用外径覫42毫米热轧无缝钢管,t=3.5毫米,锁脚锚管应与钢架焊接牢固。
2.8洞内附属构筑物
2.8.1电缆槽①隧道内设置双侧电缆槽,电缆槽设盖板,能开启维护;电力电缆槽位于线路大里程放线左侧,通信、信号电缆槽位于线路大里程方向右侧,通信、信号电缆槽合设。②隧道内电力电缆槽尺寸:宽×深为320×300毫米,槽道内用粗砂填实。③通信、信号电缆槽尺寸:宽×深为320×300毫米,槽道内用粗砂填实。
2.8.2避车洞隧道按要求设置避车洞室,小避车洞单侧间距为60米,深1.0米,洞室沿隧道两侧交错布置;大避车洞单侧间距300米,深2.5米,洞室沿隧道两侧交错布置。隧道共设置15个大避车洞,83个小避车洞。
2.8.3综合接地①隧道信号电缆槽内通常设置贯通地线。②通信机械室内预留出供通信设备接地用的接地端子两处,接地端子设在高出地面约200毫米,与防静电地板基本平齐。
2.9施工方法隧道Ⅳ级围岩、Ⅳ级围岩(粘土)采用台阶法施工;黄土Ⅳ级及加强采用台阶法施工;深埋Ⅴ级围岩采用短台阶法,并增设临时仰拱,每两榀设置一道;浅埋、断层破碎带Ⅴ级围岩结合超前预加固措施采用短台阶(临时仰拱)法;黄土Ⅴ级围岩采用三台阶法施工,并增设临时仰拱,每两榀设置一道;隧道开挖采用光面爆破,严格控制超欠挖,初期支护喷射混凝土应采用湿喷工艺。
3总结
(1)在路线勘察设计时,合理地确定隧道的修建位置,应避开或保护储水结构层和蓄水层,保护地下水径流和地表植被。隧道防排水设计应遵循以排为主,防、排、截、堵相结合的原则。
(2)加强隧道洞口的景观和绿化设计。①遵循“早进晚出”的原则,即早进洞,晚出洞,合理确定隧道洞门的位置,尽量与周围山体的地形相适应,在满足地质条件的情况下,避免大填大挖,以减少对地表植被的破坏。②设计时确定合适的边仰坡坡率和洞口高度,使隧道洞口的纵面线形与洞外的路线有机的连接,以保证施工安全和正常运营时的安全,尽量使洞门建筑融于自然环境之中。③在条件许可的情况下采用削竹式洞门,削竹式洞门适用于洞口埋深较浅,且有条件进行刷坡,周边地势比较开阔的洞口。削竹式洞门在景观上能起到修饰周围景观的作用,能够真正做到洞门与周围生态环境有机结合。配合洞口防护采用植物绿化,实现洞内外光线的均衡过渡,更显得洞门区域环境的优美,洞口绿化以恢复性绿化为主,可以选择与周围山体原有植被相近的物种,或当地常见物种,在被隧道开挖破坏的区域内进行自然搭配种植。建昌至兴城高速公路灰窑子隧道位于建昌县灰窑子村,属于低山区,地形较简单,两侧洞口处为坡积地貌,坡度较缓,在设计时两侧洞口均采用削竹式洞门,削竹坡度依山体自然坡度而定。对于地形较为陡峭偏压较大的洞口,无法采用削竹式洞门,可以考虑采用传统的端墙式洞门,端墙式洞门给人的外观感觉是结构过于厚重、体量大、人工痕迹重、景观效果差,设计时一般采用对端墙式洞门进行硬质景观处理,采用去棱角化、修建人文景观、色彩搭配等手法,可以达到与周围景观和谐一致的效果。
(3)在选线设计时,使隧道路线平纵面线形更加合理,尽量在土石方数量上做到填挖平衡,合理地移挖做填,减少废方的数量,这样不但可以节省工程造价,同时也减少了处理废方所占用的土地资源。
(4)加强隧道建设中的料场管理。隧道采石场应远离隧位布设,集中取料,对料场四周进行适当的坡面处治,防止水土流失。
(5)隧道路面采用沥青复合式材料,或多孔隙沥青混合料的低噪音沥青路面,通过降低轮胎与路面之间的摩擦噪声来有效地减少隧道内行车造成的噪音污染。
2隧道施工阶段的环境保护措施
2.1隧道施工过程中对周围水环境的保护
(1)施工时隧道洞内涌水量不大时,采用地表截水管截流,直接排出洞外并加以利用,避免与洞内污水混合后沿水沟排出,污染周围环境。
(2)在隧道口设置沉淀池、蓄水池或小型过滤池等污水处理设施,施工废水需进行沉淀处理,尤其对于含有油污等碱性水,要先进行化学处理,之后再加以利用或直接排放。经处理后的水质,应符合污水综合排放标准的要求。
(3)隧道工程在材料选用中应注意避免使用对环境有危害的材料,尤其有些建筑材料含有会与水发生反应的物质,从而造成水污染。
(4)当隧道内的渗漏水情况比较严重时,会引起地表水位降低,从而影响当地农民的农业生产、生活用水,这时要对围岩采取必要的堵水措施,比如在衬砌背后压注水泥—水玻璃双液浆,或喷抹砂浆防水层法,以减少隧道内水的渗漏。
2.2隧道施工过程中尽可能降低施工噪音
隧道工程施工噪音会影响工人的听觉,诱发多种疾病,降低工作效率和影响安全生产。噪音的污染源主要由钻孔、开挖出碴、材料运输、爆破等主要施工工艺产生的,在施工过程中应注意采取降噪措施。
(1)施工时合理分布动力机械的工作场所,合理安排噪音较大的机械作业时间,尽量避免同一位置同一时间运行较多的动力机械设备。
(2)在洞内对施工机械,如空气压缩机、混凝土搅拌机、送风机等噪音超标的机械设备采取装消音器来降低噪音。
(3)在爆破时规定放炮时间,增设隔音设施,同时进行周密的爆破管理。
(4)当噪声不能降至容许标准以下时,工人应采用个人防护用具,如防声耳塞、耳罩、隔声棉和隔声帽等,以保护人体健康。
2.3采取适当的防尘措施,改变恶劣的施工环境
(1)采用湿式凿岩机,严禁使用干式凿岩机。
(2)采用湿喷法喷射混凝土,取消干喷法,因其会产生大量的粉尘。
(3)采用水封爆破、水幕降尘、高压射流等施工工艺,对爆破后及出渣过程中的降尘有明显的效果。
(4)采用机械通风。加强工作面的通风,使粉尘和有害气体浓度降低,给施工人员提供足够的新鲜空气。
(5)施工人员要做好个人防护,主要是防粉尘污染,按规定佩带防尘口罩,在凿岩、喷混凝土等作业时还要配带防护眼镜等安全防护用品。
(6)当采用汽车运输时,应在隧道路面上定期洒水、垫平路面,对岩帮也要不时加以冲洗,防止车辆行驶时或爆破产生的冲击波而造成烟尘颗粒再次飞扬。
2.4采取有效措施避免隧道施工开挖时引起植被破坏
(1)设计和施工人员应尽可能多地了解当地珍贵物种的分布,便于遇到这类物种时可及时主动地采取保护措施,并且在施工中严格管理,对需迁移树木尽量迁移。
(2)合理设置施工临时用地,施工便道、施工工棚及作业场地应尽量顺应地形布设,避免开挖山体,尽量少砍伐树木,保护植被,施工人员的生活区多利用荒坡、荒地、滩涂等荒芜土地;临时用地在竣工时应尽可能复耕还田。
(3)在清理表土时,腐植土应先在附近集中堆放,待到工程结束时,可将其利用以恢复植被。
(4)隧道主洞和辅助坑道的洞口应减少开挖面,少开挖切削,对必须开挖的坡面应采用适宜的植被恢复原地貌,植草绿化。
2.5开辟专门的施工通道,设置专门的弃渣场
(1)施工便道的设置应避免大填大挖、破坏环境。
(2)隧道出渣难以随出、随运、随进,在隧道进口和出口处分别设立临时堆渣场,并采取防护设施,但临时堆渣场要避免随意占地。
(3)弃渣场应顺应山体填埋,避免设置在平坦开垦地,并设置人工支挡结构,弃渣场表面应进行坡面处治,防止水土流失。
2.6采取适当的措施,改善施工生活环境
(1)生活区的设置要相对集中,设置必要的公共卫生设施、废水净化池、化粪池,并应定期清理,避免生活垃圾污染周边环境。生活固体垃圾集中堆放、适时运至指定地点填埋,保持驻地清洁。
(2)临时生活设施的修建、拆除时产生的固体废弃物要妥善堆放并应保护。
2.7洞口及明洞工程应尽早完成
洞口绿化应尽早完成,改善隧道施工期间对洞口周边自然环境的不利影响。
3隧道运营阶段的环境保护措施
3.1烟尘和尾气污染防治
如隧道为长大隧道,隧道通风主要靠机械通风对CO、烟雾等汽车尾气进行稀释,同时将外界新鲜的空气压入隧道内,使隧道内的空气质量达到较好的品质。
3.2噪声污染防治
(1)加强隧道内路面的养护管理工作,对路面发生的损害适时地进行整修,保持路面平整性,既可以减少行车的噪声,又可以增加行车的舒适性;
(2)加强车辆交通管理,限制车鸣。由于隧道的封闭作用,声音在隧道内会产生共振、叠加等物理现象,这样就使得在相同的行车环境下隧道内的噪声比隧道外面的更大。
3.3污水污染防治
隧道在运营期间会进行日常的清洗,如果隧道内发生火灾或污染物泄漏等事故时进行消防救援,这些活动都会产生污水,这些污水不允许直接排放到自然环境中去,必须进行一定的物理或化学处理。
3.4隧道内危险品的运输
严格执行危险品运输的相关法律法规,实行危险品运输的准运证制度,同时运输车辆应有明显标志,增强危险品运输车辆驾驶员的安全意识,严禁超速行驶,严禁车辆在隧道内停靠,以防止和杜绝有毒有害危险品运输过程中的恶性事故发生。
4结语
1工程实例及分析
某高速公路拟建隧道位于浙江省东南部,地貌为低山丘陵区。地质资料表明,丘陵表部分布薄层残坡积含黏性土碎石,灰黄色,稍密。下伏基岩为晶屑玻屑凝灰岩,紫灰色,全风化呈砂土状~碎石状,厚度一般较小。本次物探工作的主要目的是查明隧道围岩断层破碎带的位置、分布特征和富水状态,为隧址区的工程评价和设计施工提供科学依据。断层的总体特征是二维板状体,向下延伸很深。相对于围岩介质的电阻率,断层可表现为高阻断层或低阻断层,这取决于断层的性质、破碎带宽度、胶结程度、含水特征、岩脉侵入等特性及围岩电阻率特性。一般来说,新活动断层,电阻率值较低,断层越老,胶结程度越强,电阻率值越高;断层破碎带越宽,越破碎,电阻率相对较小;地下和地表水越丰富,电阻率越小;张性断层少水,则为高阻,张性断层富水,则为低阻;有岩脉顺断层侵入,多为高阻。因此,断层与隧道周围岩体的电阻率差异为开展高密度电法工作提供了良好的前提条件。根据隧道埋深及分辨率要求,采用工程中最常用的温纳装置,该装置受地形和地表不均匀体的干扰小,是公认的最稳定的装置,10m电极距,沿隧道线位布置了一条高密度电法测线。
高密度电阻率法的数据处理是将野外观测采集到的数据通过仪器自带的传输软件,传送到计算机上,再采用RES2DINV二维反演软件处理。在处理中首先对少数畸变点进行剔除,主要是剔除一些受接地不好电极影响的坏数据和采集系统自带的随机高斯干扰数据,然后进行地形校正,最后利用圆滑约束最小二乘法进行二维反演计算,迭代次数3~5次,最终获得电阻率等值线剖面图。这些图件形象直观地反映出地电断面的电性分布和构造特征,大大提高了分析解释效果和精度。在等值线图上根据视电阻率的变化特征,结合相关地质资料,做出地质解释,绘出地质解释图。图2为经过反演处理后得到的高密度电法电阻率断面图。从图2中可以看出,电阻率值从上至下逐渐变大,上部相对低阻为第四系覆盖层及全强风化晶屑玻屑凝灰岩,下部相对高阻为中风化晶屑玻屑凝灰岩。其中在地表位置110~166m及255~303m两处存在明显的条带状低阻异常,其垂向延伸大、不闭合,而两侧均为高阻,结合相关地质资料,推测此两处异常为断层破碎带,带内岩体破碎,完整性差。具体地质解释如图3所示。根据高密度电法解译的断层破碎带位置,布置了一个验证钻孔ZKS19-1。钻探结果显示:岩芯破碎,多呈碎块状,局部短柱状,呈压碎构造,局部具构造角砾特征,隐伏裂隙发育,裂隙面有绿泥石化现象。图4为ZKS19-1部分岩芯照片。由此可见,钻探结果与高密度电法解译结果相吻合,高密度电法取得了良好的地质效果,准确地划分出了断层破碎带分布范围,为进一步划分隧道围岩级别,指导隧道施工奠定了良好的基础。
2结语
断层破坏了岩体的连续性和完整性,是一种不良地质体。在隧道工程建设中,断层的存在不仅影响施工安全,还会影响隧道稳定性。因此,必须需采取有效的手段查明隧道区的地质情况,为隧道设计与施工提供准确可靠的地质资料。一般而言,仅用钻探方法调查断层,不仅勘察的费用大,而且有可能“漏”掉断层,存在很大的工程隐患。本文在隧道勘察过程中,通过高密度电法资料,并布置了相应的钻孔验证,较为准确地查明了隧道围岩断层破碎带的位置、分布特征和富水状态,弥补了钻探以点代面的不足,提升了勘察效率和质量,降低了勘察成本,起到事半功倍的效果,为隧址区的工程评价和设计施工提供科学依据。 实例表明,高密度电法具有效率高、能够快速获取测线下方电阻率分布,地电信息丰富、直观、成本较低等优势,可准确划分出断层破碎带分布范围,能有效指导隧道施工,是隧道地质工程勘察中一种行之有效的方法。
作者:周志军 单位:浙江省交通规划设计研究院
1.1地形地貌
剥蚀低山丘陵区,海拔标高一般为136~314m,最高点位于王家山,标高为+314.6m,最低点位于隧道进口东侧沟谷地带,标高为+136.0m,地形起伏较大,地形地貌总体表现为剥蚀丘陵与丘间谷地相间;剥蚀丘陵自然坡度15°~40°不等,丘坡绝对高程136.0~314.0m,相对高差40~180m,植被较发育,多为杂草和松树、杉树及油茶林,靠近坡脚较平缓处多辟为村庄及水田。
1.2地质构造
根据《福田幅区域地质说明书》及本次调绘结果综合分析,该隧道总体构造形迹强烈,以倒转褶皱为主,各次级褶皱、褶曲发育,并伴有断层。具体勘测结果如下:(1)褶皱。本隧道基岩出露少,岩层总体倾向隧道大里程方向,隧道处于福田倒转背斜,褶皱轴向总体走向为东北—西南,与线路大角度相交。岩层总体倾向西北,地层倒转,倾角较大;(2)断层。DK810+430附近为F1断层,断层走向约40°,南东侧为P1x炭质灰岩夹页岩,北西侧为P2l细砂岩夹炭质页岩和煤层。物探EH-4存在低阻带,震探反映不明显,断层宽度不大;(3)节理裂隙。本区岩体节理发育,测区岩体围岩较破碎易造成隧道洞身坍塌。因此施工时应加强隧道地质素描工作,及时掌握洞身岩体节理裂隙状况。
1.3地层岩性
表层为第四系残坡积粉质黏土、黏土,黄灰色,硬塑,夹碎石,细角砾土。下伏基岩主要为二叠系下统小江边组(P1x)和茅口组(P1m)地层,由老至新叙述如下:二叠系下统小江边组(P1x):炭质页岩、炭质灰岩,灰黑色,强~弱风化,岩石软、硬不均。分布于DK810+162~DK810+440段。且地表出露形式多以灰黑色页岩、钙质泥岩强风化,呈片状。炭质灰岩岩溶较发育,钻探揭示层中有溶洞发育。无填充或角砾填充。岩层倾向西北,地层倒转,置于P1m硅质灰岩上,震探波速为3755~3774m/s。二叠系下统茅口组(P1m):以深灰色薄层状硅质页岩为主,夹有灰岩,局部夹少量炭质页岩。硅质页岩钻探易呈碎块状,上部覆盖层较厚且灰岩溶蚀发育,分布里程为进口~DK810+162,震探波速为2156~2600m/s。
2隧道水文地质条件
地表水主要为季节性溪沟,靠大气降水补给,汇集于沟谷,调绘时水量不大,隧址区内无大的地表水体通过。剥蚀丘陵区地下水埋深受地形控制,隧道轴线附近第四系残坡积层内地下水沿丘陵坡脚雨季有水渗出,一般季节呈湿润状态。隧道基岩裂隙水主要赋存于风化裂隙和构造裂隙。风化裂隙水赋存于硅质页岩风化层中,岩体受风化影响而破碎,透水性强,含水层厚6~35m;残积土层中存在上层滞水,受季节性影响明显。构造裂隙水赋存于断层、节理等构造裂隙中,具有不均一性。补给来源主要接受大气降水补给。隧道碳酸盐岩溶裂隙水主要分布于P1m、P1x中,含水层地层岩性为炭质灰岩。地表岩溶覆盖严重,经隧道洞身钻孔发现,洞径达3.0m,无填充或角砾填充。大气降水是岩溶地下水主要补给来源,通过分散于地表的溶蚀层裂隙渗入地下,以下降泉的形式散漫排泄,或者隐伏于溶洞中。隧址附近DK810+320左85m于P1m与P1x分界线附近有一降泉,形成一水井,直径约3m,水深约1.5m,流量较小,间歇有水泡冒出。隧道南侧约400~600m发现多处泉水,多发育于丘坡谷地中,出露高程不超过隧道路肩标高。泉流量最大0.001~1.000L/s不等,雨季变化较大,暴雨过后流量达2~3倍,泉水常年不干且水量大,能满足基本用水需求。
3隧道围岩分级
根据沿线构造地质特征,可以对隧道洞身围岩进行等级划分。
4施工地质变更分析
除了前期勘测之外,后期对明挖段及塌方段进行了地质补勘,变更段围岩分级情况如表2所示,其勘测结果及相关分析如下所示:
4.1DK809+625~+705边仰坡开裂段
该段地质条件与原设计基本一致,围岩等级仍为V级。本段以硅质页岩为主,少量炭质页岩,部分为灰岩。洞身主要穿过以上几种岩性组合的强风化层,部分穿过弱风化层。表层为坡、残积层(Qdl+el)粉质黏土、含碎石黏性土,细角砾土,围岩为P1m地层,岩性有硅质页岩、炭质页岩和灰岩,呈互层状、夹层状或透镜体状分布。由于该段地下水较发育且以裂隙水为主,岩性软弱多变,因此在施工中应加强边坡防护并采取止排水措施,从而确保施工安全。
4.2DK809+790~DK810+081.6围岩变更段
围岩为P1m地层,含有硅质页岩、炭质页岩、灰岩。洞身主要穿过以上几种岩性组合的强、弱风化层。DK809+790~DK810+040段围岩受地下水影响较大,围岩级别由IV级调整为V级为主,仅DK809+915~+935段地下水不发育,围岩级别维持IV级。DK810+040~+081.6段施工裂隙发育、围岩松动,该段围岩级别调整为V级。
4.3DK810+081.6~+168塌方段
根据施工开挖揭示、掌子面素描及超前预测预报显示,围岩为炭质灰岩与炭质页岩互层,夹少量灰岩及硅质页岩,弱风化,岩体较破碎,有少量裂隙水,围岩级别为IV级。而塌方后经深孔钻探显示:0~11.5m为第四系覆盖层,以粉质黏土为主,局部夹粗角砾,砾石成分主要为硅质岩和砂岩;11.5~18.4m灰黑色弱风化炭质灰岩,18.4~42.4m为灰黑色弱风化岩质灰岩与炭质页岩互层,42.4~45.9m青灰色弱风化灰岩,45.9~54.6m为灰黑色弱风化岩质灰岩与炭质页岩互层,54.6~59.6m为黑色弱风化炭质页岩,较破碎,59.6~62m为坍落空腔,62~87.8m为松散坍落堆积物,主要成分为灰黑色弱风化炭质灰岩、炭质页岩。经物探资料分析,建议DK810+081.6~+168塌方段围岩级别变更为VI级。
5结语
1 地质雷达探测技术的原理分析
地质雷达设备主要由控制主机和天线两个部分构成,主机的功能为提供控制信号,天线的功能为发射或接收超高频电磁波天线发射电磁波后,电磁波在衬砌和围岩内传播,一旦遇到内部裂缝、衬砌边界、孔洞、围岩时就会发生电磁波反射,由天线接收反射的信号,并将其传送至主机,主机负责全程记录、存储、显不反射信号的强度、走时等信息反射信号的强弱与反射界面面积、平整度以及两侧物性差异有关,反射信号往返时间长短则与反射界面距离有关通过分析反射信号的相关信息,可以判定反射界面的位置和两侧介质的性质,获取围岩结构状态,衬砌厚度、劈裂、孔洞的形状与位置等参数,实现无损探测。地质雷达探测技术的工作原理如图1所示:
图1 探测原理示意图
2 某隧道工程实例地质雷达无损探测技术的应用分析
论文以某隧道工程实例为依托,对地质雷达无损探测技术的具体应用进行论述。该隧道是基于新奥法的原理进行设计施工,衬砌形式为复合式衬砌,为确保隧道工程的整体质量,决定在施工过程中,采用地质雷达无损探测技术对关键工序进行质量检测。
2.1 雷达设备的选择及参数的设置
在应用地质雷达探测技术对隧道工程进行质检的过程中,应当结合工程实际情况选择地质雷达,并对相关参数进行合理确定基于本工程的特点,经过多方面综合考虑,最终决定选用RAMAC/GPR型地质雷达,配以500mHz屏蔽天线该雷达的特点如下:高集成化、真数字式、体积小、重量轻,是目前唯一一款能够由单人进行操作的探地雷达其功耗较低,主机功耗仅为25W,系统耗电量较低,无需电瓶供电,给野外工作提供了极大的方便在质检过程中,需要重点控制的参数如下:采样频率设置为7005mHz;采样点为483个;叠加次数为8次;触发方式为时间触发。
2.2 检测项目及检测要点
2.2.1 支护厚度检测。在不考虑其它影响因素的前提下,由地质雷达天线发射出的雷达波中,空气直达波是传输速度最快且最先抵达接收天线的,次之的是表面直达波,反射波居于最后在影响反射波能量的各种因素当中,隧道围岩与混凝土的物性差异是关键性因素,研究结果表明,两者之间的差异与反射波的能力成正相关的关系,雷达波经由隧道围岩和混凝土界面反射至雷达中的。反射信号在图像中的具体表现为强振幅和连续同相轴,基于这一特性,便可在地质雷达中准确读取出混凝土的厚度。
2.2.2 二次衬砌厚度检测。隧道内的围岩与一二次衬砌间存在着非常明显的差别,具体体现在物性和成分上,正是因为这此差异造成了围岩、一次衬砌和二次衬砌三者间的介电常数不同,尤其是在衬砌与围岩间当电磁波经衬砌进入到隧道围岩当中时,通过观察能够发现如下现象:即反射波的振幅增大、视频率降低相关研究结果表明,电磁脉冲在结构层的各个界面当中均会发生一定程度的反射,并且不同结构层中的电磁脉冲速度均不相同,按照反射的速度与时间,再借助相应的计算公式,便可求出隧道结构层混凝土的具体厚度。通常情况下,电磁脉冲在混凝土当中的传播速度可预先获知,基于这一前提,采用地质雷达对隧道衬砌混凝土的厚度进行检测时,关键环节是准确获得电磁脉冲在各个结构层当中反射时间。
2.2.3 脱空区检测。由于空气与混凝土的物性差异较大,从而导致了两者之间的介电常数存在很大的差别。在隧道工程施工时,若是衬砌混凝土的背后回填密实度未达到设计要求,便会使混凝土与围岩之间形成缝隙,此时电磁波在经过空气与混凝土界面时,就会出现较强的反射信号。相关研究结果表明,脱空区的区域越大,在雷达图像当中的围岩界面就越清晰通过观察可以发现,在雷达图像中的反射波呈弧形,并且多次出现,同时反射波具有同相轴的特点,它出现的位置一般都在混凝土层下方,随着时间的变化反射波的能力会随之增强为此,可按照雷达波在隧道洞内的传播速度和介电常数对脱空区的大小进行计算,同时按照水平距离还可求出脱空区的具体范围
2.2.4 钢拱检测。雷达设备发射的电磁波在传播过程中存在能量传递由于传播导体的电磁性差异较大,所以使得电磁波在传播过程中一旦遇到金属材料等良性导体,就会产生强烈的反射现象。在隧道工程施工中,经常会使用到钢支撑和钢筋网,这两种金属材料结构均属于良性导体。在运用雷达无损探测技术进行隧道检测时,如果混凝土中存在钢拱,那么就会在雷达图像上显不明显的、呈月牙形的反射信号,且每一个钢拱均会有一个对应的反射信号;如果混凝土中存在钢筋,那么就会在雷达图像上显不出强烈的、呈连续点状的反射信号根据雷达无损探测获取的信号形状及雷达图,可得知钢筋、钢拱数量及其分布情况等信息,用以判断钢拱和钢筋用量是否满足工程设计要求。
关键词:隧道,软岩,变形,围岩支护
1概述
随着交通事业的快速发展,越来越多的隧道工程将会在地形、地貌及地质背景复杂的西部山区修建。隧道在施工过程中不可避免的会遇到软弱围岩、高地应力围岩、断层破碎带等复杂的地质状况。通常意义上,穿越这些地区的隧道统称为软岩隧道[1]。软岩隧道开挖易造成围岩大变形,控制围岩变形也是软岩隧道开挖所要解决的主要问题之一。尤其是对于穿越软弱地层的大跨度隧道而言,如果支护不强或支护不及时,将会发生塌方冒顶或二次衬砌严重开裂现象,将会给工程安全性造成严重的威胁。通常来说,隧道围岩大变形指在高地应力软弱围岩条件下,围岩发生沉降破坏并最终导致隧道围岩失稳的现象[1]。其实质是围岩产生剪应力使得岩体彼此错动、断裂破坏,也就是说使围岩的自稳能力丧失,产生塑性变形,进而迫使围岩向开挖洞室方向挤压,产生大变形的现象。对于大变形的界定[2],铁二院考虑了预留变形量的影响,认为单线隧道适当的预留变形量一般不大于150mm,双线隧道一般则不大于300mm,正常的变形量上限取上述值的0.8倍,在支护位移上,若单线隧道大于130mm,双线隧道大于250mm,就认定为发生了大变形。近年来,随着深埋特长隧道建设的日益增多,国内外对软弱围岩隧道大变形的变形机理[3]、变形特征[4]、控制措施[5]、施工工法[6,7]及支护时机[8]等等方面做了大量的研究,并取得了一定的成果。
2大跨软岩隧道存在的问题
由于地层地质的复杂性,大跨软岩隧道工程仍然面临着以下几个急需解决的关键问题:1)对围岩变形的判断与控制。对于软岩隧道围岩变形的研究主要集中在三个方面:a.从理论方面对变形机理进行研究;b.选择合理的施工工法对围岩变形进行控制;c.运用有限元或其他数值模拟的手段对围岩的变形量和变形趋势进行预测。从众多的学术论文和科研成果中不难发现,对于围岩变形的机理多是采用连续性介质理论进行分析,而实际工程中的围岩是非连续的,它是岩块和结构面在三维空间的一种非定向关系。尤其是对于地质状况比较复杂的软弱围岩,都是由多种物理成分组成的,且各物理成分的大小、多少及分布具有很大的随机性。但是,在实际的研究和应用中,例如采用数值模拟的方法对软岩隧道围岩变形进行分析时,又必须运用岩体的本构关系,这本身就是存在问题的,更不要说计算结果的准确性了。不论是理论分析还是数值模拟都没有办法对围岩的变形量进行准确的判断。这将引起另外一个问题,就是在采取控制变形措施时,通常采用的是依据相似工程经验制定施工方案,并没有针对不同的变形量采取相应的控制措施,因此变形控制措施也具有一定的盲目性。另外,隧道施工中变形可以达到1.0m甚至更大,软弱围岩变形本质上属于大变形问题,然而岩体力学中使用的弹塑性变形理论[9]虽然对材料的非线性进行了考虑,但是严格意义上仍属小变形理论。2)对合理支护时机的探讨。隧道二次衬砌施作时机始终是隧道界讨论的热点问题,二次衬砌的支护时机是保证二次衬砌长期稳定的关键。特别是对于软岩大变形隧道,如果二次衬砌施作过晚,则可能造成初期支护变形过大而无法控制,以致隧道失稳;但如果施作过早,则不利于地应力的释放和充分发挥围岩的自稳能力,从而使二衬受力过大而导致开裂,降低了隧道结构稳定性。因此,合理确定二次衬砌施作时机是保证隧道施工阶段和长期运营阶段安全性的关键。但是现阶段,对于隧道二次衬砌支护时机的研究仍然没有形成系统的体系。研究者多根据具体的工程背景选择不同的岩石弹塑性模型,采用的确定合理支护时机的判定方法也各有不同。对于二衬支护时机的影响因素的分析也多是针对单一影响因素,并没有综合考虑。
3软岩隧道的发展与展望
为了满通建设的需要,将不可避免的遇到更多的软岩隧道工程。围岩大变形的控制问题仍然是未来软岩隧道工程需要解决的关键问题。从根本上讲要更深入的研究围岩的变形机理,找出适用于实际工程地质状况的围岩的本构关系。在施工的过程中,超前地质预报要贯穿整个隧道的开挖过程,监控测量要及时跟进。对于具有代表性的工程要完善施工工法,以便以后类似工程经验借鉴。隧道是地层围岩和支护结构共同组成的复杂受力体。支护是一个过程,一个好的支护方案要让这一过程与围岩变形过程相协调。考虑到软弱围岩的蠕变特性,围岩的自稳能力是与施加相关的,因此二次衬砌的支护需要一个合理的时机。反过来理解,如果要确定合理的二衬支护时机,首先要对围岩的蠕变特性和变形机理进行充分而深入地分析,只有在此基础上,才能选择适当的支护时机和支护形式以及确定合适的支护参数。由于目前的研究多针对二次衬砌的支护时机探讨,应该将整个支护过程统一起来,形成与不同围岩级别、不同断面尺寸、不同开挖方式、不同支护参数相对应的系统的支护方案,以及更完善的施工工法。
4结语
本文主要针对近年来出现的软岩隧道工程中的突出问题进行了讨论,并对软岩隧道工程今后的发展进行了展望。为了满通建设的需要,更多更为复杂的软岩隧道工程也必将积累更多的工程经验,更好更深入的解决围岩大变形的控制问题。随着支护理论的不断发展、支护技术的不断进步,软岩隧道工程施工技术水平将会不断提高和发展。
参考文献:
[1]陈玉.共和隧道围岩大变形机理及防治措施研究[D].重庆:重庆大学,2008.
[2]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1993,2(1):46-50.
[3]刘伴兴.软岩隧道大变形机理及位移控制基准[D].石家庄:石家庄铁道学院,2006.
[4]段庆伟,何满朝,张世国.复杂条件下围岩变形特征数值模拟研究[J].煤炭科学技术,2002,30(6):55-58.
[5]柴瑞峰,王才高.鸟鞘岭特长隧道大变形围岩段施工技术[J].铁道建筑,2005(12):38-39.
[6]王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报,2004,23(5):793-796.
[7]王建宇,胡元芳,刘志强.高地应力软弱围岩隧道挤压型变形和可让性支护原理[J].现代隧道技术,2012,49(3):9-17.
[8]刘全林,杨敏.软弱围岩巷道锚固支护机理及变形分析[J].岩石力学与工程学报,2002,21(8):1158-1161.
【关键词】铁路;工程项目;建设;档案管理
在铁路工程建设中,档案管理发挥着基础性的作用,特别是隧道专业档案管理中,做好专业档案组卷工作,可以确保工程资料安全可靠地保存,以为铁路工程建设提供有效的服务。
一、铁路工程建设项目档案管理的特点以及所发挥的作用
(一)铁路工程建设项目档案管理的特点。铁路工程项目建设中,就必然会产生各种资料,将这些资料处理为档案文件实施档案管理,可以将档案工程建设的整个过程详细记录下来。这些工程建设中所形成的原始资料是工程运行中的真实信息。但是,由于铁路工程建设规模大,涉猎面广,施工单位多,过程中产生的技术文件内容所涉及的专业多而且复杂,特别是这些档案资料之间存在着紧密衔接性,需要在档案管理中将这些资料之间所存在的关系体现出来。
(二)铁路工程建设项目档案管理所发挥的作用。铁路工程建设项目档案与普通的档案存在的不同之处在于,该种档案是单一性的,资料渊源分散,而且不同的专业技术领域会采用不同的记录方式。由于工程项目档案是工程建设中产生的,因此,档案资料具有实用性。铁路工程建设中所形成的档案是图物相符的,当铁路工程竣工之后,进行竣工验收工作、工程维护工作中,可以将档案资料作为主要凭证。特别是对铁路工程进行技术改造、改建以及工程扩建的时候,就需要这些技术资料作为参考,以保证工程质量。可见,铁路工程建设中,工程项目档案资料是重要的内容,对提高铁路工程建设质量具有重要的作用。
二、铁路隧道工程建设项目档案管理措施
(一)档案管理人员要具有较高的综合素质。铁路隧道工程建设中,所产生的资料都要进行组织、分析并集中管理,这就需要档案管理人员要具备专业素质。档案管理人员收集、整理资料,做好档案资料的存储工作,主要的作用为档案资料需求者提供服务。可见,档案管理的目的是通过将档案资料存储起来,以为工程的后续工作提供服务。铁路隧道工程建设中,档案循环段资料组卷中,要先将循环段所涉及的分部工程、分项工程和检验批按照施工工序进行组卷,即:洞口工程、洞身开挖、支护、衬砌、防水和排水、辅助坑道及附属洞室及其附属设施等。对于档案资料的保管,施工资料要与竣工图纸分开,如果隧道施工中所产生的资料不多,可以与图纸合并保管。档案循环段所产生的资料涉及多种技术,在对资料的整理中,将已经收集归档的施工资料编排好次序之后,就可以装订成册了,粘上档案循环段文件软封面;整理好工程日志,将空白页去掉之后,摘录其中的重要内容,将所有的档案资料装订成册,粘上软封面;档案卷内的隧道施工资料以及工程日志等等,都要装入到科技档案盒中。隧道施工中所产生的资料的厚度,要按照《铁路建设项目竣工文件编制移交办法》(办档【2002】8号)中的要求进行装订。在档案资料的装订工作中,要注意除去金属物,对其中的文件材料进行检查,保证资料齐全,没有破损之处,确保资料的排列正确,不会出现颠倒、重份、错页等等的问题。档案资料中的表格,文头要一律向上或者向左。将文件材料用尼龙细线在左侧装订,确保装订后的资料整齐、美观、结实。
(二)档案管理工作要系统化展开。档案管理工作中,虽然是对隧道工程进程中所产生的资料进行收集和整体,但是整理档案的时候,要确保所有的档案资料系统化。包括档案资料的收集以及档案资料的管理,都要按照系统的程序展开,不仅可以提高档案的质量,也可以提高档案管理效率。在铁路建设项目工程档案管理中,做好隧道施工资料的整理和组卷工作是非常重要的,主要的目的是确保档案资料的完整性。隧道工程是动态发展的,由于工程建设周期比较长,所产生的档案资料繁杂而数量多。档案管理人员就需要对施工资料整理和组卷的时候,做好档案资料管理工作。以验收工作为例,档案资料的内容是各个部分的验收记录,包括隧道工程质量控制资料核查记录、隧道工程安全检验资料核查和功能检验资料核查、隧道工程观感质量验收记录等等为主要脉络,基础性资料包括分部工程和子分部工程、分项工程和检验批质量检验记录、实验记录、测量记录、隐蔽工程检查记录等等。为了保证档案资料便于查阅,对隧道施工资料进行整理和组卷,主要涵盖四个方面的内容,即验收主体结构分部工程质量的资料;核查工程质量控制的资料、抽查主体分部工程的功能检验资料、观感质量验收等等。
三、结束语
综上所述,铁路工程档案管理工作中,重视隧道专业档案组卷管理工作是非常必要的。档案管理人员要提高档案管理质量,就要提高综合素质,确保档案管理工作系统化运行,以提高工程档案管理质量。
【参考文献】
[1]郝瑞秀.铁路建设项目档案管理存在的问题及对策研究[J].沈阳体育学院学报,2013,32(6):28-29.
[2]邢倩.对新时期铁路建设项目档案管理的思考[J].铁道经济研究,2012(02):11-11.
[3]张航.铁路建设项目档案管理工作浅析[J].陕西档案,2012(03):34-34.