时间:2022-03-27 09:37:51
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇天然产物化学论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
中图分类号:G642.0 文献标识码:A 文章编号:1672-3791(2012)11(b)-0188-02
天然产物化学是运用现代科学理论和技术方法研究天然产物中化学成分的一门学科[1],是化学类专业的一门必修课,在整个化学教育体系中具有十分重要的作用和地位。随着我国药学事业的飞速发展以及崇尚“自然”之风的回归,《天然产物化学》课程显得更加重要。
天然产物实验教学课程是学生在完成了基础化学课程以及有机化学、有机分析化学、精细化工工艺学、化学反应工程等专业基础课和专业课学习及实验基本操作的基础上开设的一门专业实验课,是理论与实践相结合的纽带,是培养学生实验操作技能和应用技术的有效手段,对提高培养质量以及将来学生的就业和从业都起着举足轻重的作用,但由于天然产物实验课时较少,教学当中不可能面面俱到,因此如何选择实验教学内容及采用有效的实验教学手段显的更加关键。为此,我们对天然产物化学实验教学改革进行了探索,取得了一些有益经验,同时还有许多方面有待于进一步深入探索和实践。
1 实验教学内容改革
1.1 时代化
随着科技的快速发展(天然产物产品发展尤为迅速)和学生知识结构的变化,实验内容不能进行及时的调整,一些相关领域的新知识和新技术不能及时引进,不利于激发学生对实验课的主动性和积极性,不利于激发学生的创新性思维,影响了实验教学的质量,同时容易挫伤学生的专业兴趣,为调动学生的积极性,选取一些和日常生活联系密切的综合性实验。如我们在实验内容中开设了大黄中大黄素的提取实验,既让学生了解大黄素在生活中的具体应用,又锻炼了学生的实验技巧,并且通过大黄素的红外鉴定使学生掌握大型仪器的使用,使学生对实验更加感兴趣。
1.2 本土特色化
农林院校天然产物实验课程要以农业为优势和特色开展实验课程教学,一方面体现农学类课程优势;另一方面为学生就业打下特色基础,因此在实验课程的设置上可以适当结合农产品开展天然产物相关实验。比如,紫甘薯是当前流行的甘薯特有品种,其紫甘薯色素是一类用作食用色素的天然花青素类色素[2],对于缓解肝功能障碍、调节血压有显著作用[3]。由于无毒副作用,可用作安全无毒的食品着色剂,是一类极具前途的功能型食品添加剂和保健食品基料,因此在实验中开展紫甘薯色素的提取加强了学生天然产物农学特色化的理念。
2 实验教学方法改革
2.1 多媒体
天然产物化学涉及单体成分的化学结构、提取分离流程、光谱鉴定数据等,传统板书既浪费时间、又容易出错,而经多媒体教学以生动形象的图、文、声、动画等信息来表现教学内容和教学过程,图文并茂,文字清晰,生动直观,便于理解,动态的提取分离过程更利于学生掌握,从多方位刺激学生对知识的理解和接受,显著提高学生的兴趣性和参与性[4~6]。比如说在实验中设计到的一些装置如:浸渍法、渗漉法、煎煮法、回流法等操作技术所需设备仪器、使用溶剂、适用范围和优缺点采用多媒体的形式演示出来,不仅能给学生较深的直观印象,而且动态的演示对于学生后续独立动手操作也有较好的指导作用了,为后期实验教学内容地顺利完成提供保证。
2.2 比较化
传统天然产物实验为流程式操作,具有连续性特点,难以在一次实验课内完成,加之实验学时有限,那么如何在有限的实验学时内充分利用实验室资源,做到既能达到课程标准的基本要求,又能更好地调动学生的积极性,增加其动手、动脑机会,就显得十分重要。因此,我们对传统的单一实验模式进行了改革,建立了同步比较实验模式。该模式是指在同一实验室、同一时间内同步进行2种实验目的相同,但实验方法不同的实验项目。比如在齐墩果酸的提取、分离和鉴定实验中,一半的学生采用索氏提取;另一半的学生采用连续回流提取,并比较两种提取方法在提取效率上的不同,索氏提取效果高的结论不仅是对课堂理论的印证,使学生在比较中形成了科学的思维方法,提高了分析问题的能力;而且扩展了实验范围,同时也使学生对两种操作深有体会,使学生在理论与实践的结合中巩固了所学知识。
3 实验教学手段更新
3.1 开放型实验
所谓“开放性实验”,就是在设计时开始由老师为学生集体命题,由学生从中选题,然后查阅相关资料,独立设计实验方案,计划所需的仪器、试剂,老师组织学生对各种设计方案进行讨论,选择可行性实验方法,并且要求学生在实验报告中对自己所选的工艺路线和实验结果进行讨论分析[7]。如连翘中连翘苷的提取、分离和鉴定,在给定学生命题后由学生自己查阅资料,自行设计提取方案,经教师把关后开展实验。通过方案的设计,学生进一步巩固了理论课堂上的相关内容,切实了解每种试剂的具体作用;通过实验的完成,既锻炼了学生动手能力又锻炼了小组成员间协同工作的能力。开放型实验不仅改变了教师在实验中从实验目的、原理、实验步骤"一包到底"的被动局面,而且是学生对所学知识的一个独立综合应用,是他们由不独立走向独立工作岗位的一个实践平台,因此在一定程度上开展此类实验对于学生的就业是有极大帮助的。
3.2 项目化
传统开设的天然产物实验周中,通常是1个人或者2个人一组,学生的实验方案虽是自己依据参考文献制定,但大都沿用了文献中的数据,依葫芦画瓢的重复一遍,只知其然,不知其所以然,因此对于即将进入大四做毕业论文或者找工作的同学来说进行如何解决实验中问题的训练势在必行。另外学生的合作意识不强,因此为了改变此现象,锻炼学生的解决问题的能力和团队意识,将每个班级的学生分成5个小组,每组6人。分组时不考虑学生的成绩以及相互间关系等因素,只按班级学生名单上的先后顺序依次划分。以大黄中大黄素的提取为例:其中两人负责提取,期间包括提取条件的筛选及提取条件的优化;另外两人负责大黄素的提纯,其中包括纯化方法的选择及条件的筛选;最后两人负责大黄素检测条件的建立。通过分组并摸索实验条件,一方面学生能明白文献或书籍上的实验数据是如何来的,知数据的所以然;另外一方面通过实验的训练也锻炼了他们分析解决的实际操作能力,对大四的论文工作或者与毕业后进入单位进行研究工作都是很有帮助的。另外也可以结合"比较化"实验,使两两大组对同一实验命题,不同方法获得的结果进行横向比较,并作其优缺点及使用范围分析,这样在同一实验内既有统一性(命题的统一),又有差异性(方法的不同),让学生充分发挥实验的主观能动性。
3.3 微型化
微型化学实验是美国的Mayo博士和他的同事们于1982年基于化学实验理论思维上的微型化为减少资源消耗和化学污染而发展起来的一种化学实验的新方法、新技术,为化学实验教学改革开辟一条新的途径[8]。天然产物实验中所用试剂通常属于易挥发、有毒害气体,相对于其它实验而言消耗量大,不仅污染环境,而且在药品回收处理上费时费力。比如在连翘中连翘苷的提取实验中,本来从连翘壳中进行提取分离连翘苷,实验中不仅乙醇等消耗量大,而且富集起来困难,因此我们把实验进行了改革,改成连翘叶中进行提取,在保证收率的情况下50%的减少了试剂的用量。因此在当今大力提倡绿色化学教育的情况下,微型化学实验不仅完全符合绿色化学的教育目标,充分体现了环境友好的原则;而且可降低实验成本,节约实验经费。
实践证明,通过这种从实验教学内容、实验教学方法和实验手段多方面的教学改革,不仅培养了学生的语言表达能力,查阅文献、分析问题及解决问题的能力,而且也培养了学生团队协作能力,此改革有效可行。
参考文献
[1] 姚新生.天然药物化学[M].北京:人民卫生出版社,2002:11
[2] 朱美娟,姚勇芳,韩雪钗,等.紫薯色素的提取及稳定性的研究[J].安徽农业科学,2009,37(36):17885-17887.
[3] ZHU Hongmei,ZHAO Meng. Study on chemical constituents and antioxidan activty of anthocyanins from Ipomoea batatas L (purple sweet potato)[J].Chemistry and Industry of Forest Products,2009,29(1):39-45.
[4] 连国清.多媒体教学好处多[J].中国教育技术装备,2009,22:198-199.
[5] 方君.Flash课件在多媒体教学中的应用[J].考试周刊,2009,33:155-156.
[6] 亢临生,田晋平,王玉莲.充分运用现代教育技术手段进行计算机辅助教学[J].高等理科教育,2003,S2:194-196.
GINA M B,RAYMOND W K.Galanth amine derivatives for the treatment of Alzheimer's disease[J].Drugs Future,1996,21:621-635.
对于“天然绿色宝库”之盛名,长白山名副其实。该地区生态系统保存得比较完整,由于其地形、气候、土壤等自然条件的综合影响,区内蕴含着丰富的生物资源,具有丰富的天然野生药用植物资源。据调查,长白山现有植物种类共计248科3119种;其中,材用植物50种、药用植物900多种、食用植物近200种、观赏植物300多种,蜜源和粉源植物280多种、香料植物100多种、工业用植物380多种,还有真菌类和苔藓类1300多种。其中,蕴藏量占全国1/2以上的品种约40余种,人参,鹿茸等10余种道地药材产量居全国之首。长白山天然野生药用植物资源的保护与开发利用,对延边朝鲜族自治州现代中药产业基地建设乃至吉林省经济和社会发展具有重大意义,也是吉林省经济实现跨越式发展的重要经济生长点之一。
顺应国家资源保护和社会经济发展之需,延边大学长白山生物资源与功能分子教育部重点实验室自成立以来,以“长白山区丰富的生物资源为研究对象,以有机化学为基础,利用现代分析技术和有机合成新方法,开展植物化学成分的结构测定、生物活性与功能、结构修饰与合成、分布及演化规律的研究,并与相关学科相结合,为区域创新植物药和朝药的发展做出贡献”为实验室研究方向,仅在2008年承担的项目就包括“欧盟第七研发框架计划项目”、国家“863”计划项目、教育部“新世纪优秀人才支持计划”和国家自然科学基金项目等,经费共计1050万元。
实验室自立项建设以来,共发表了SCI收录论文200余篇,核心期刊论文180多篇;申请发明专利13项,获发明专利证书3项;通过省级或州级鉴定项目15项,其中转让项目1项(金额330万元);获得吉林省科技进步二等奖和三等奖各2项,吉林省优秀论文奖1项。
创业初告捷,实验室带头人吴学教授并未沉浸在满足之中,面对成绩他显得坦然而自信,没有谈及个人丝毫,而是向我们介绍了实验室的成立与发展之路。
成立之因
长白山开发历史较短,人为破坏程度较低,具有生长天然中药材的良好生态环境,中药材质量优良,驰名中外。同时,长白山地区朝药资源极其丰富,而且绝大多数尚未进行研究开发,其中不少为朝药特有植物。
生物资源的保护与开发利用应该是相辅相成,辩证统一的。资源的开发利用是为了创造出可供人类物质生活消费的产品,为人类造福。而要搞好开发利用,首先应该摸清“家底”,搞好资源的调查研究和保护工作,保护资源的目的就是为了更好地开发和永续利用。保护并非意味着要保持生态的原始状态不动,而是在开发利用的过程中对其采取必要的技术措施,尽可能不造成或少造成破坏,尽量恢复对生物有利的环境,促进其繁衍,形成生物资源的良性循环,以利于资源的永续利用。
合理地开发利用长白山天然野生药用植物资源,重视野生药材资源的驯化栽培和保护,可有效避免野生药用植物资源的枯竭,促进天然药用植物的资源安全和可持续生产及发展。同时,随着中药逐步走向国际市场,对药材资源的需求量会越来越大,野生药材资源面临的压力会日益沉重,保护天然植物环境是保证天然植物及其产品质量,使天然资源可持续性开发利用的前提。
就是在这样的时势所需之下,2005年8月经教育部批准,延边大学有机功能分子与材料实验室立项建设“长白山生物功能因子”省部共建教育部重点实验室,于2008年4月“长白山生物功能因子”省部共建教育部重点实验室建设项目通过了教育部的验收,并同时提出更名申请。实验室于2009年2月经教育部批准正式更名为“长白山生物资源与功能分子教育部重点实验室”。实验室现有教授20人,副教授8人,其中具有博士学位者23人,新世纪优秀人才1人、省首席教授1人、省高级专家1人、省突贡专家3人,全国劳动模范1人、全国优秀教师1人。
五年计划
实验室在化学、药学和生物学相互交叉融合的基础上提出了今后5年的工作目标,依托于有机化学、药物化学两个省重点学科,立足于当前有机分析化学中活跃的前沿研究领域――样品前处理技术和毛细管液相色谱技术的研发,注重原始创新,并以此为支撑有效开展长白山植物资源的保护与开发。本期目标的完成将标志着长白山天然资源的保护。开发、利用由分散进入到系统,由短期行为进入到长期规划阶段,预计将从两大方面取得积极成效一是有力有效地推动延边大学相关学科的建设,促进学校发展目标实现;二是为区域经济发展服务。
有机分析化学方向
长白山植物保护层面上首先解决植物生长环境的评价、植物质量评价、农药残留等问题,这些研究工作涉及的分析和测试工作量大、繁重而费时、费溶剂。为此,亟待开发提取、浓缩、分离和分析为一体的在线、快速原创分析技术,为创造生物最佳生长环境,进行生物质量实时跟踪评价,以利于天然资源的有效开发利用提供科学的基础数据。
李东浩教授主持的有机分析化学,着眼于当前有机分析化学中活跃的前沿研究领域――样品前处理技术和毛细管液相色谱技术的研发及应用,注重原始创新,开展具有重要应用背景的应用基础研究,研究成果将在长白山植物质量控制和保护方面起着龙头作用,并在与长白山植物资源相关的基础研究及知识产权和市场产权领域中起技术支撑作用。
应用有机化学方向
由尹炳柱教授负责,广泛深入地开展功能有机分子(包括在化学、生物学、物理学,材料化学和环境科学领域具有重要功能或性能的有机分子)研究,包括功能分子的合成、天然产物的化学修饰,开发新的药物先导化合物等基础和应用基础研究。该方向由四个课题组构成:
药物先导化合物的修饰课题组,对从长白山天然植物中分离筛选出的具有抗肝纤维化、抗癌、抗代谢性疾病(糖尿病,高血脂)和心血管疾病等先导化合物的化学修饰,合成系列化合物,从其系列化合物中寻找作用强,选择性高、毒性低的化合物;
基于羧基肽酶-A抑制剂合成和抑制机理的研究课题组,从长白山天然植物中筛选对羧基肽酶-A有抑制作用的先导化合物,经化学修饰合成高性能的羧基肽酶-A抑制剂,研究抑制活性、作用机理以及复合物的超分子结构;
光电信息功能分子的设计与合成,合成具有良好应用前景的有机电致发光化合物及其金属配合物,研究其发光性能,探讨发光性质与分子结构的关系以及在分析化学指示剂方面的应用,传感器的制作与应用等,为长白山天然产物中先导化合物的分离、鉴定确立理论基础;
超分子组装体与大生物分子的作用及其机理超分子化学,如合成具有各种几何形状的Coil-Rod型大分子和π-
共轭扩张的四硫富瓦烯以及带有四硫富瓦烯结构单元的四氮杂卟咻衍生物,研究它们的结构和电、光、磁活性,分子自组装以及其LB膜和自组装体系的超分子结构以及在化学诊断、光化学治疗等方面的应用。
长白山药用植物及朝药研究方向
“全国五一劳动奖章”获得者、药学专家南极星牵头,选择长白山天然资源及朝鲜族传统药物,建立朝鲜族民族药材有效部位及化学成分样品库,并利用活性筛选技术对样品库中的化学成分进行筛选,发现先导化合物和候选化合物,并进行先导化合物的优化及构效关系研究,同时利用药理学与分子生物学等方法揭示其作用机理,并开展以朝药为主的长白山药用植物资源驯化与保护研究。
在近几年的研究基础上,针对肿瘤、肝损伤、心脑血管疾病以及代谢性疾病(糖尿病,高血脂)等4种疑难疾病,选择朝鲜族传统药物及特色天然药物,建立朝鲜族民族药材有效部位及化学成分样品库利用活性筛选技术对样品库中的有效成分和有效部位进行筛选,发现先导化合物和候选药物,同时利用药理学与分子生物学方法揭示作用机理。长白山珍稀植物及生物技术研究方向
由尹成日教授负责,针对长白山名贵植物资源保护与利用的需要,利用现代生物技术,探索有效保护长白山重要生物资源的新方法,创建开发利用这些资源的新工艺,研发高附加值。高效益的新产品。采用生物反应器进行人参不定根大规模培养,实现人参的工厂化生产,可大量生产野山参,西洋参、高丽参等高附加值产品,既保护林地又满足不断增长的市场需求;利用微生物转化法,使人参等药材中含量较高的活性成分转化为新的高效活性先导化合物,大大增强药材的生物活性利用微生物深层发酵法,实现长白山珍稀药用菌(桑黄等)的工厂化生产,开发一系列药用菌产品利用长白山有毒植物,开发有效地防止人参锈腐病的植物源生物农药。
发展目标
伟大的跨越离不开科学的目标和精密的计划,任何计划的成功都必有事先的预期和努力。实验室力争通过五年的努力,达到以下目标:
1、将提升延边大学长白山学科群的科研水平和综合实力,为争取获得化学一级学科博士学位授予权和有机化学国家重点学科奠定坚实的基础争取分析化学和生药学二级学科博士点,进入省级重点学科行列。
2、将造就一支由中青年博士组成的高素质学术队伍,培养引进1~2名国际,国内知名的学术领军人物和学术带头人,并使3~5人进入国家及省部级人才计划,建成一支团结协作、开拓创新和勤奋敬业的队伍。
3、将进一步提升高层次人才的培养规模和水平,进一步提高研究生特别是博士生的创新能力。到2011年本项目覆盖学科博士研究生年在校人数达到40名左右,硕士生200名左右。质量上,硕士研究生科研和论文水平接近重点院校相关学科硕士生水平,博士生研究和论文水平要达到国内同类学科的中上等水平。
4、将进一步提升学科承担国家和地方重大科研项目的能力。获得国家基金重点项目,国家科技支撑计划项目在内的国家和省部级科研项目40项以上,发表SCI,El收录论文160篇以上,努力实现本学科高水平、影响力论文的突破;申请专利10项以上,获发明专利授权5项以上,获得国家和省部级科技成果奖励4~6项,提供以多种技术为集成的植物样品提取、浓缩、分离和分析为一体的毛细管液相色谱试验样机,建立长白山植物综合数据库;挖掘和整理朝药,验证朝医药有效方、药,完成有自主知识产权的朝药方(肝、前列腺),争取1~2个临床批号,提供4~6个生物活性强的候选化合物供临床前研究开发人参稀有皂苷等天然活性物质的生物转化技术1~2项和珍稀植物组织培养技术2~3项,开发防治人参根腐病的植物源农药,防治率达到50%以上。
5、将进一步提升学科为地方经济建设服务的能力,开发一批具有自主知识产权的新技术、新产品,努力争取2~4项成果进入产业化应用,为地方经济建设做出贡献。
现代管理
达到目标,不仅要有鲜明的计划和严谨的实施,对于一个团队来说,还需要科学的管理体制和先进的运行机制。长白山生物资源与功能分子教育部重点实验室这样一个拥有多名世界各国归国人才的团体,独辟蹊径,开创了自己独有的管理模式:组建统一的公共技术平台,配备专人负责设备管理、维护和培训等工作,形成学术带头人――青年学术骨干――技术与辅助人员的合理配置与梯队建设。
在运行机制上,实施责任教授负责制度,遵照国家政策和有关规定,组织建设本研究方向的师资和科研力量,有权支配该方向获得的各级科研课题的经费。
在仪器设备管理方面,坚持共享公用为基本原则,以所在教育部重点实验室为依托,将本项目添置的仪器设备纳入现有仪器中心实验室,集中使用和管理,提升使用效率。配备实验室专门仪器管理与维护人员并制订相关管理办法,保证实验室管理的规范化和科学化以及仪器设备的高效率运转。大型仪器设备的增添可通过项目申请的形式,经评审获得批准,方可购置。
大山里走出来的生物学家
1957年3月出生于房县城关镇的邓子新,从贫困山区的农家孩子到名牌大学的教授,从农村青年到蜚声海内外的分子生物学专家,邓子新以他的勤奋和执着,走出了一条自强不息、勇攀高峰的成功之路。
1977年恢复高考,邓子新以优异的成绩考入华中农学院,成为生化系微生物专业的大学生。1982年,邓子新入了党,并以优异成绩毕业。后经人推荐,他拜师在世界链霉菌遗传系研究中心霍普伍德先生的门下。邓子新在英国没有辜负祖国、老师对他的期望,发现了链霉菌启动子在大肠杆菌中能起作用,揭示了链霉菌异源基因表达和调节的新内容,赢得霍普伍德先生的信任和欣赏,破例让他立即到东英大学注册,提前转攻博士学位。邓子新只用三年半时间,完成了别人六年才能完成的学业。1987年5月,他顺利通过博士论文答辨,戴上了英国皇家博士帽。
1988年5月,邓子新携妻子一起回到祖国。回国后,他结合国内的实际情况,在重视和强化自己基础研究能力的前提下,重点开展了应用基础性研究,中心课题是丝状细菌链霉菌抗生素生物合成的遗传学,但他们的研究进行得很不顺利。
邓子新早在英国时就对分子生物学很感兴趣,并在实验中发现一些细菌的DNA发生了降解,而另一些细菌的DNA则不降解。整个DNA的提取、电泳等过程都是一个人操作的,在同样的环境、操作方法和实验条件下,为什么不同生物来源的DNA会出现降解特性完全相反的差异呢?他很快发现,自己的新发现得不到同行的认可,一方面由于解答质疑总要花上一年半载,另一方面太新的想法容易被人看成是在“忽悠”经费,所以往往申请了也白搭。
邓子新还是个多面手,在微生物分子遗传学、抗生素药物代谢工程和化学生物学领域,发展了一系列重要抗生素产生菌的体内外分子操作技术,设计了一系列新抗衍生物,取得了一批抗生素基因簇或其药物衍生化合物的专利。虽然这些工作使他陆续获得了不少经费支持,但他一直“痴心”的这个DNA降解之谜却得不到经费支持,不得已,他就从自己的其他项目“借用”资金,国内做不成的实验,就通过国际合作来解决。
1997年,邓子新和同事已经将有关基因分离出来,分析结果显示,这些基因编码的蛋白质与硫有关。但当时他们第一次拿到DNA上存在硫修饰的证据,那时还没有遗传学、生物化学、尤其是没有化学分析的最终证据,难以服众。
2000年,上海交通大学创办Bio-X生命科学研究中心,邓子新在此中心组建了微生物遗传学团队,并从武汉来到了上海。交大看重他们的研究,给他们提供了较好的工作条件和启动经费,这无疑是项目得以顺利展开的最好催化剂。
2003年,他着手申请国家自然科学基金委的重点项目,然而答辩没有通过,说明认可的程度很低,但基金委认为这是一个有潜力的项目,因此以提供基金委生命科学部主任基金的方式给了他一笔30万元的资助。这是在非共识的情况下得到的经费,邓子新很感动,因为这毕竟是对他挑战常规的一种鼓励。
DNA骨架上第一种生理修饰之谜被破解
2007年,邓子新与其科研团队在这个原创性新领域不断努力,有一种被用作药物的DNA修饰物,原本一直是科学家在实验室中合成的,现在,中美科学家共同发现,原来细菌早就会干这件事——5种酶合力,能将硫掺入到DNA骨架中。这种被称为磷硫酰化的DNA修饰,是迄今在天然DNA骨架上发现的第一种生理修饰。
邓子新领衔的实验室与美国麻省理工学院合作,成功解析DNA硫修饰精细化学结构为“R-构象的磷硫酰”的研究成果《细菌DNA大分子上的磷硫酰化》,发表在《自然》系列之《化学生物学》网络版上。这是迄今为止在天然DNA骨架上发现的第一种生理修饰。
“这一发现,再次证明大自然蕴含无穷神秘,人类会做的事情,它早就会做了。”邓子新表示,天然DNA骨架上磷硫酰化的发现无疑构成了对DNA结构又一新的补充,如同甲基化的修饰导致了一系列新的发现一样,DNA磷硫酰化的发现将产生分子生物学领域新的“信息”流,并打开一个新的学科领域。
有关专家认为,这个新领域刚刚打开,众多研究内容的延伸可能形成一系列新的跨越不同学科的研究生长点。比如透过DNA磷硫酰化修饰找到全新功能的核酸酶,用细菌来合成磷硫酰化寡核苷酸用于生物化学和基因治疗等,都将具有重大的生物学或生物工程学意义。
期待陆地海洋领域学者一同“下海”
“陆地微生物的多样性成为天然药物的第一宝库,那么海洋就是生物多样性的第二宝库。”中科院院士邓子新如是说。“共生是海洋低等生物繁衍和生存的保障。”
随着探索和研究的进行,越来越多的化学和生物证据提示,海洋低等生物中分离的天然产物其实是由共生微生物直接或间接产生的。“我们甚至可以这样说,与海洋低等生物共生的微生物,才是许多海洋药源天然产物的真正制造者。药物产生是生物共生的需求,也是人类资源的外延。如果能够从海洋共生微生物入手,找到或克隆出相关化合物的生物基因簇,那么就可以解决药源限制的瓶颈问题,从而促进海洋药物的发展。”
我国的海洋共生体研究及海洋药物研发还处在初级阶段,存在着很多的不足和限制。对此,邓子新认为,应该鼓励陆地微生物学和化学生物学家“下海”,加强对海洋共生微生物代谢产物和功能基因簇的克隆。针对样品采集过程中各自为政、重复研究而造成资源浪费甚至破坏的情况,邓子新建议,“强化海洋生物采集技术与设备的投入,提高采集效率,同时统筹规划样品采集的利用和保护,加强相互协同,并且借鉴陆地微生物,如放线菌的研究经验,优化和完善整个体系的研究”。
由于99.9%以上的共生微生物还不能被分离培养,同时海洋微生物都是未经驯化的野生菌,因此药源制备非常费力,难以规模发酵。对于野生型微生物的特点,邓子新也有独特的理解,他认为,可以优化培养装置、发酵与代谢调控技术,或者利用分子生物学技术,将其“驯化”为易于遗传操作、发酵性能良好的微生物药物工业产生菌。
目前我国从事海洋药物研发的单位非常有限,主要集中在北京、上海、广州、青岛等几个城市。邓子新表示,期待国内外陆地和海洋领域的学者能够共同加入,利用学科交叉的优势,协同作战,共同促进我国海洋药物的进一步发展。
近几年来,我国在抗生素药物基础研究方面的优势不断增强,研究机构有高等院校、科研院所,覆盖面非常宽,研究的跨度也很大。抗生素产业涉及到各个部门,从学科来讲涉及到上中下游,从产业来讲,企业也有强烈的愿望。政府、科研机构希望通过各种不同的机制能够推动基础研究和产业发生互动。任何一个研究机构在目前的情况下都很难包打天下,从原始资源一直做到优产资源,所以我们希望资源与技术对接,基础与产业互动。在基础研究方面,通过国家建立的科研平台形成强有力的科研积累,研究人员与企业共同在生产过程中发现需求,通过资金投入、项目管理和科技政策的制定等等,促进有用资源的产业化。
关键词 电喷雾 质谱 定性分析 药物代谢 蛋白质研究
近年来,随着医药的不断发展,天然药物化学中天然产物的提取产物,药物分析中生物体内的代谢研究,还有生物化学中具有生理活性的多肽和蛋白质,逐渐成为当前研究热点[1];后基因组学的蛋白组学,在目前也显得相当活跃,而其中很多高极性、难挥发、热不稳定的大分子有机化合物出现,对其检测有难度。质谱作为一种分析检测手段已经出现几十年,电喷雾质谱(ESI-MS)也已发展十几年,成为一种通用质谱技术,它所涵盖的分析应用领域极其广泛,电喷雾质谱的出现解决不挥发和热不稳定等化合物的分析,应用于中、高极性的化合物,可以检测的分子质量范围从300~2000u的小分子化合物到分子质量超过15000u的生物大分子[2],对于蛋白质、核酸等生物大分子在电喷雾质谱中容易形成多电荷峰,分子量测定准确度高,现今电喷雾质谱成为药学和生物医学研究领域重要的标志性工具,在定性肿瘤差异蛋白方面更是重要的工具,拥有良好的前景。
1 电喷雾质谱特点
1.1 电喷雾质谱的发展
电喷雾和质谱成功地结合,是由Dole及其合作者在1968年中首次阐述;1984年Yamashita和Fenn发表的论文更清晰地阐述电喷雾电离机理,并认为可以用作液质联用(LC/MS)的接口;20世纪90年代,仪器制造和实际应用都表现出高速增长和全面发展的态势。1989年,报告ESI离子源与傅里叶变换离子回旋共振质谱联用成功范例;1991年,Sin,Boyle和Whitehouse报道电喷雾/飞行时间质谱,实现更高的准确度,更高的分辨率;随后离子阱电喷雾质谱、电喷雾-四级杆-飞行时间串联质谱仪(ESI-Q-TOF-MS)为代表的仪器在各行业应用开来。
1.2 电喷雾过程
将溶于极性、挥发性溶剂(如甲醇,乙腈,丙酮等)的样品溶液通过电喷针传输,在电场作用下形成泰勒锥,在电喷针尖部形成雾状正或负离子富集,液滴通过溶剂的挥发逐渐缩小,其表面上的电荷密度不断增大;当电荷之间的排斥力克服表面张力时,液滴分裂,产生单个多电荷离子;生出的样品气相离子经质量分析器分析,从而测出它们的质荷比[3~6] 。
1.3 电喷雾电离的优势
电喷雾电离为一种软电离方式,即给样品较小的电离能量,可以得到不稳定化合物的分子离子峰,且谱图简单,主要用于定性分析。Loo等 [7]归纳出电喷雾质谱的4“S”特点:即灵敏( Sensitivity)、快(Speed) 、专一(Specificity),并能直接给出化学计量比(stoichiomotry)。电喷雾质谱的成功在于2个重要的部分,电喷雾提供相对简单的方法使非挥发性的溶剂形成气态,与此同时质谱提供更直接、灵敏度好的检测[8]。电喷雾质谱可以检测阿摩尔级别浓度的样品[2],并且ESI可在一级质谱(MS)条件下获得很强的待测物准分子离子峰,并且可借助MSn(n=2~10)对准分子离子进行多级裂解,进而获得更为丰富的结果信息[9]。ESI已成为一种成熟、高灵敏、快速的质谱技术。比较质谱的离子源(见表1),可以看出ESI的优势所在。
2 近期电喷雾质谱进展
近年来,电喷雾质谱已经不限于小分子的检测,伴随着蛋白组学、基因组学的发展,带动生物大分子分析的发展。蛋白等大分子化合物样品量少,不适合过于复杂的预处理过程,很多专家致力于提高该技术的离子化效率及减少样品预处理过程,能对复杂基体中的分析物进行简单、快速、实时分析。新发展出极低流速下的电喷雾质谱,被称为纳升电喷雾质谱(nanoESI/MS),电喷雾流速采用纳升级流速,流速低,产生的液滴体积小,稳定液流的流量越低,则电离效率几乎随之成比例地提高,对于蛋白样品量小的物质可以减少样品消耗量,又不会减弱信号强度,导致去溶剂化效率、离子化效率及离子转移至分析器的效率都比常规ESI源高,而且喷雾稳定性好[10]。对于电喷雾电离方式也发展出电喷雾解吸电离DESI、电喷雾萃取电离EESI 等,表2中按先后顺序总结电喷雾电离方式的发展。这些电离方式大多不经过样品预处理,可以进行实时、快速的质谱分析。
电喷雾的首要问题是样品的高纯度,因为一些不纯的物质易导致毛细管喷雾堵塞。近些年来,为避免ESI 堵塞,出现一些非毛细管喷射技术,这些技术利用不同的材料尖端形成电喷雾,如铜线及不锈钢针,用放电针为材料,直接离子化,避免毛细管堵塞现象,样品损失也减少,更适合微量样品的检测。最近,纸、牙签等尖端喷雾技术都成功地用于复杂混合样品的分析,使纸兼有导电和分离的作用,这项技术可以检测很多组织,对于医药中穿刺活检都可以进行检测,使得检测更方便、快捷[11]。
电喷雾质谱一般与液相质谱联用较多,进行分离鉴定,而一些新的液相色谱( LC) 分离技术,例如超高效液相色谱( UPLC) 和快速高分离液相色谱( RRLC),研究新液相色谱和电喷雾质谱的连接,更好、更快地完成医药测定鉴定过程。郭小芳等[12]采用RRLC-ESI-MS方式在20min测定生物碱类成分,马长振等[13]用UPLC-ESI-MS测定白茅根的分析,仅在35min内完成鉴定工作。这些新出现的电喷雾质谱都为更好、更快、更高效地进行分离鉴定做出积极贡献。
3 电喷雾质谱在医药中的应用
3.1 定性分析药物及天然产物
电喷雾质谱可以进行多级质谱,电喷雾软电离方式,导致一级全扫描质谱中主要得到的是分子离子峰,这种分子离子峰能反映被测物组成的分子量信息;二级串联质谱(MS2)可直接对粗分离物中的已知成分进行快速鉴定,还可以对样品中具有相同生药来源的未知化合物进行结构预测。这为天然产物的物质组成分析提供一种简单、快速、灵敏的方法,简化繁琐的分离、纯化过程[14]。
天然产物是新药开发的重要部分,目前使用的很多药物都直接或间接来自天然产物。许国旺等[15]人采用傅里叶变换电喷雾质谱用于鉴定丙二酰基人参皂苷,加入甲酸铵流动相进行优化,选定浓度为15mM,谱图效果最好,电喷雾为负离子模式,丙二酰基人参皂苷的多级质谱具有特征的中性丢失信息,中性丢失44,根据此特点,可用于该类化合物的定性分析,而最终测定结果均通过准确质量验证,实验测定值与理论值偏差小于2ppm,提供准确、灵敏的方法。张道来等[16]人采用正离子模式,在60min内鉴定罗氏车盘车样品的13种化合物,还对刺身皂苷进行分析,实验证明高效液相色谱-电喷雾质谱法能克服皂苷类物质分子内由于寡糖链存在导致难鉴别的困难,对于皂苷类化合物的鉴别及结构分析中显示越来越重要的作用。李娟等[17]等对青蒿素类药物的质谱裂解特征进行分析,采用注射泵直接进样,正离子分析模式,对准离子峰进行碰撞诱导解离(CID) 研究,更好、更快地研究青蒿素的代谢以及结构分析。大黄类化合物也是天然产物,马小红等[18]采用正负离子全扫描,同样进行CID二级扫描,负离子扫描得到谱图更清晰,更好地做好特征分析。胡杨等[19]等发现采用负离子模式,川穹质谱响应度高,进而对川穹进行化学成分分析。吴茱萸也是传统中药,高鹏等[20]采用正负离子模式分别研究裂解方式,并发现负离子的响应更高、定量更好,对今后半萜吲哚类生物碱的鉴定检测提供一定实验基础。李丽等[21]利用电喷雾质谱分析鉴定防风中的未知成分,采用正离子模式。
而对于抗生素,廖琼峰等[22]人研究庆大霉素采用电喷雾正离子模式,对其碎片峰进行分析,二级离子打碎,打碎脱去C环(氨基葡萄糖)碎片,说明C环与脱氧链霉胺之间的碳-氧键容易断裂,可更好地用于今后庆大霉素定性和定量分析。抗生素在食品中的应用近年来也大受关注,采用UPLC/MS/MS,乙腈、七氟丁酸水溶液作为流动相,采用正离子电喷雾模式,多反应离子监测(MRM),仅需时3min,精确度、准确度良好。方东升[23]利用电喷雾质谱为软电离方式,在全扫描一级质谱图上主要得到的是分子离子峰,通过分析直接得到化合物的分子量,从而推测出金霉素样品中的杂质成分,快速地对金霉素进行监控。朱侃等[24]采用质谱等一系列方式测定头孢克洛的结构,采用正离子模式得到头孢克洛的特征峰和纯度。霍佳丽等[25]采用ESI-Q-TOF-MS青霉素类抗生素、头孢菌素类抗生素及喹诺酮类药物进行稳定性研究。显示出快速稳定、所需样品少等优点,为今后电喷雾质谱在抗生素方面的应用做一定基础研究。
电喷雾质谱在中药配伍方面也有很重要的影响,越皓等[26]人研究附子不同配伍药对生物碱的影响和附子中双酯型生物碱毒性,研究配伍减毒使其更好地发挥药效作用,通过分析生附子水煎液的电喷雾质谱图,可以看出生附子中主要的3类生物碱(双酯型、单酯型和脂类生物碱),以及其他小分子的化合物,然后分别和各种药材配伍测定验证,乌头碱类生物碱在电喷雾条件下形成的离子峰相对强度与其物质的量成正比例关系,电喷雾质谱图中各离子的相对丰度可以说明对应离子的相对含量变化,来看清双酯型是否减少,是否有配伍无毒性。甘遂甘草配伍[27]研究水煎液中巨大戟二萜醇型化合物在质谱中离子强度的变化,对萜醇类能更好地检测。中药黄芪与当归配伍采用正离子模式一级扫描,得到特征峰后进行二级串联质谱分析,碰撞能量20%~40%,查看异丙酮类的成分变化,质谱谱图清晰、准确、灵敏度高[28]。闫静等[29]根据生物碱类化合物具有较强质子亲和势的特点,利用电喷雾质谱在电喷雾电离条件下极易形成质子化分子,进行马钱子与甘草的配伍测定,测定出有毒的成分降低。综上,利用电喷雾质谱技术可以很好地说明中药的配伍原则。
3.2 现代药物代谢和药物动力学
ESI电离特别温和,成为分析不稳定共轭代谢物的适合方法,确定药物在体内的代谢,以评估药物的安全性、有效性。ESI电离技术效率高,可以获得更低的检测下限,可以用于范围更大的结构类型。Karthick Vishwanathan
等[30]人运用电喷雾质谱测定人血浆中的莫西沙星,运用洛美沙星做内标,定量限为1ng/mL,能更好地检测出代谢产物,定量采用正离子模式,因为存在氨基和酮基,很容易质子化,而且检测时间短,仅用4min,时间短,灵敏度高。李秋莎等[31]应用LC-MS/MS法研究茶多酚在大鼠体内的多组分药动学,运用负离子模式,特异性很高,分析样品仅需4min,大大缩短分析时间,LLOQ能达到5ng/mL,检测灵敏度得以提高。
万益群等[32]对人体尿液中黄蝶呤与异黄蝶呤进行测定,蝶呤类化合物采用电喷雾质谱起到双重定性的作用,通过选择离子来进行定量,能提高灵敏度,2种蝶呤正离子信号较负离子信号相对强的多,经实验证明,黄蝶呤与异黄蝶呤在ESI+模式中全扫描质谱以离子峰[M+H]+稳定存在,采用健康人和癌症的尿液,分别进行定量分析,方法快捷、准确。
ESI离子源能电离80%~90% 的化合物,属于通用型离子源,适用于多组分筛选[33]。沈保华等[34]用电喷雾质谱对血液及尿液中及其代谢物的筛选及确证,采用正离子电喷雾,测定56种化合物绝大部分最低检测限小于0.1ng/mL,建立包含及其代谢物共61种化合物的精确相对分子质量数据库分析方法,Jun Qian等测定紫杉醇在人血浆中的药代动力学,0.3mL血浆,定量下限为1ng/mL。
马海英等[35]检测粪中黄山药总皂苷及其代谢产物。整体给予大鼠灌服黄山药总皂苷于给药后不同时间,采集尿及血清样品,用ESI- MS检测吸收入血成分,测定时选择负离子方式检测,先用全扫描一级质谱方式获得待测物的准分子离子峰[M- H]–,离子源温度为120℃,然后用ESI- MSn离子阱技术对准分子离子峰及其碎片离子峰进行多级质谱分析,获得相应的子离子质谱图。
高博彦等[36]测定复方酸枣仁汤的血浆代谢情况,在负离子模式下,仅进样10μL,在60min内,梯度洗脱,5%~90%乙腈溶液,检测到各色谱峰在负离子模式下的分子离子峰[M-H]–、[M+Cl]–,由分子峰测定可能的分子量,推断一定的结果,对比原有成分和人血吸收成分,有些许不同,含皂苷类的物质如酸枣仁,一般以原型或者苷元形式存在,一些含挥发油的物质入血较少。
周丽君等[37]测定注射用艾普拉唑钠用丁螺环酮作为内标,用比格犬做实验,最低浓度可以达到5μg/L,且在5min内出峰,采用电喷雾质谱简单快捷,特异性好,进行血药浓度的测定,与剂量呈线性。
陈永婧等[38]利用高分辨电喷雾四级杆飞行时间质谱,正离子扫描模式对膀胱癌血清和尿液代谢组学进行研究,对潜在的标志物进行筛选、鉴定,对代谢产物进行分析,对于电喷雾质谱而言非常快捷、方便。杨杰等[39]研究小柴胡汤对抑郁的影响,收集尿液,收集血液,正负离子同时扫描,看是否能应用于现在流行的抑郁疾病。
3.3 蛋白质方法
电喷雾特点在于可产生大分子化合物(肽,蛋白质)的多电荷离子,根据不同电荷数离子的质荷比可准确计算大分子化合物的分子质量和分析复杂生物介质中的样品,跟传统的质谱相比,扩大检测的Mr 范围,提高灵敏度,根据马安德等研究多肽的相对分子量问题,用电喷雾质谱测定蛋白质和多肤的相对分子质量,精确度可达到0.10%~0.01%。远比精度只有大约5%的聚丙烯酞膝凝胶电泳、凝胶过滤、蔗糖密度离心法等经典的蛋白质相对分子质量测定技术更快捷、更精确[40]。它还可与高效液相色谱(HPLC) 和高效毛细管电泳(CE) 等高效的分离方法相连接,结合2种系统分离和高灵敏、高准确度的优点,扩大质谱在生物领域的应用[7]。
电喷雾质谱对于鉴定凝胶电泳所分离的蛋白质提供有力的分析手段,通常途径是采用双向电泳的方式,分离出的斑点用胰蛋白酶酶解、提取,再用ESI-MS进行测定。孙明忠等[41]采用双向胶内差异凝胶电泳检测2,4-二硝基苯磺酸刺激人角质形成细胞HaCaT反应情况,选取的胶条做质谱分析,胶条的等电点、分子量和质谱分析的等电点、分子量基本吻合,进而继续对肽段进行研究。曾嵘等[42]结合双向电泳,测定胶内人肝癌细胞的蛋白组学,覆盖率达到72.5%,通过正常的肝细胞和肝癌细胞进行比对。牟芝蓉等检测维甲酸诱导肿瘤细胞分化有关蛋白质,用毛细管液相色谱和纳升电喷雾源串联的质谱。所有测定均在正离子方式下进行,经检测质量准确度小于0.1。何晓光[43]采用电喷雾质谱,正离子喷雾模式,筛选鉴定卵巢癌细胞乳源调节肽,为肿瘤等一系列因素提供治疗手段和依据。郭晔等[44]也用凝胶电泳和电喷雾质谱的方法对儿童急性淋巴细胞白血病的差异细胞蛋白进行分析测定。而对于N端封闭,测序仪不能很好地测序蛋白,电喷雾质谱可以结合软件更好地完成测序工作。现在更多采用免疫共沉淀方法(CO-IP)结合ESI-MS查看蛋白质之间的相互作用。电喷雾质谱允许在混合蛋白中蛋白质和蛋白质之间的反应,如乳清蛋白[45],用电喷雾质谱结合有关生化技术可以进行氨基酸序列分析、蛋白质翻译后修饰的结构推断等。孙伟等[46]对牛血清蛋白和马细胞色素C进行优化实验,采用5%~30%的乙腈洗脱梯度,使得胰酶酶切多肽更好地鉴定出来;进行重复性实验时,主要洗脱峰的保留时间差别不超过1min,表明重复性良好;并研究丰度抑制与高丰度蛋白分子量之间的关系,验证高丰度蛋白导致丰度抑制多,结合质谱数据依赖的鉴定技术,导致高丰度的蛋白重复,低丰度可能检测不到,检测结果冗余蛋白较多。
在应用质谱做蛋白组学实验、鉴定肽实验的时候,离子带电荷数受实验条件影响,比如说,仪器所使用的电压,还有溶液的浓度和流速等等。明显的是,ESI过程中肽的性质会很大程度地影响电荷数,比如说氨基酸数目和种类还有肽的形成等,ESI中肽电荷数量可以扩大质谱仪的检测极限[47]。
4 展望
医药生物领域迅速发展,电喷雾质谱的应用会更加发挥它相应作用。如何保证样品损失量少和分析速度快、分析量多是发展方向。为推断化学合成药物杂质结构提供有效依据;为现有药物含量测定提供标准;对药物代谢研究痕量成分提供准确定量要求;对于更复杂成分的中药提供检测手段,解决一定的分析难点;对基因重组蛋白及蛋白组的研究等,在这些方面,电喷雾质谱有重要理论和实际应用意义[48]。
目前电喷雾质谱的应用还存在一些问题,譬如对于大分子样品消耗较大,分析时间长,蛋白重复性不好,小分子低丰度蛋白经常漏检等。如何更快、更好地[49]建立高通量的药物筛选方法、寻找以致病蛋白为靶点的药物前体分子提供新的手段[50]、建立药物毒性安全方案等等,以便更好地服务医药行业是今后需要提升的方面。
参考文献
[1] 梁振.多分离模式/电喷雾质谱联用方法发展及相关基础研究[D].大连:中国科学院研究生院, 2005:1-50.
[2] B.N.帕拉马尼克, A.K.甘古利, M.L.格罗斯主编.姜宏键, 俞克佳译.电喷雾质谱应用技术[M].北京:化学工业出版社, 2005.
[3] Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, etc. mass spectrometry instrumentation, interpretation, and applications[M]. USA:A JOHN WILEY & SONS, INC. PUBLICATION, 2009.
[4] 陈耀祖, 涂亚平著.有机质谱原理及应用[M].北京:科学出版社, 2001:18-20.
[5] Manisali, D.D.Y. Chen, and B.B. Schneider, Electrospray ionization source geometry for mass spectrometry: past, present, and future[J]. Trends in Analytical Chemistry, 2006. 25(3):243-256.
[6] 魏开华, 应天翼, 等编著.蛋白质组学实验技术精编[M].北京:化学工业出版, 2010: 100-140.
[7] 林秀丽, 陆玮洁, 主沉浮.电喷雾质谱在药物和DNA相互作用研究中的应用[J].中国生化药物杂志, 2007, 28(2):124-125.
[8] Ian I. Stewart. Electrospray mass spectrometry: a tool for elemental speciation[J]. Spectrochimica Acta Part B, 1999:1649-1695.
[9] 徐远金, 李永库.液相色谱-电喷雾质谱联用法测定蔬菜中7种有机磷农药残留量[J].分析测试学报, 2006, 25(4):36-40.
[10] 秦旸, 徐友宣, 杨树民, 等.液相色谱-质谱联用在兴奋剂检测中的应用及进展[J].2008, 26(4): 431-436.
[11] 鄢飞燕.新型常压质谱技术及其在生物样品分析中的应用[D].上海:东华理工大学, 2012:12-16.
[12] 郭小芳, 刘孟华, 彭维, 等.广东产千里光生物碱类成分研究[J].中药材2011, 34(5):724-726.
[13] 马长振, 陈佩东, 张丽, 等.UPLC-ESI-MSn法分析白茅根中的化学成分[J]. 中成药, 2010, 32(4):625-628.
[14] 韩凤梅, 梁智军, 陈勇马.兜铃酸电喷雾质谱电离规律及其药材指纹图谱[J].湖北大学学报, 2006, (3):65-58.
[15] 孔宏伟, 王梅, 许国旺, 等.HPLC/LTQ-FTMS用于白参中的丙二酰基人参皂苷的研究[J].世界科学技术-中医药现代化, 2009, 11(1): 190-194.
[16] 张道来, 陈军辉, 周明, 等. 高效液相色谱-质谱联用技术在海洋药用生物化学成分快速鉴别中的应用[J]. 中国海洋大学学报, 2010, 40(5):99-102.
[17] 李娟, 宋树美, 王少敏, 等. 电喷雾质谱法研究4种青蒿素类药物的质谱裂解特征[J]. 质谱学报, 2009, 30(3):148-153.
[18] 马小红, 沈少林, 韩凤梅, 等. 大黄蒽醌类化合物电喷雾质谱研究[J].湖北大学学报(自然科学版), 2006, 28(4):403-406.
[19] 胡杨, 刘春明, 胡蕴梅, 等. 川芎化学成分的高效液相色谱-电喷雾质谱研究[J]. 时珍国医国药, 2012, 2(8):1868-1872.
[20] 高鹏, 王灵芝, 邬瑞光, 等. 吴茱萸碱和吴茱萸次碱电喷雾-离子阱质谱裂解途径研究[J]. 药物分析杂志, 2012, 32(5):772-774.
[21] 李丽, 宗晓菲, 张慧荣. 应用液质联用技术分析鉴定防风中一种新色原酮类成分[J]. 长春师范学院学报(自然科学版), 2012, 31(6):20-23.
[22] 廖琼峰, 谢智勇, 张蕾, 等.庆大霉素的电喷雾质谱分析[J].今日药学, 2008,(18):50-53.
[23] 方东升.液相色谱/电喷雾质谱联用分析金霉素中的杂质组分[J].海峡药学, 2005, 17(2):43-46.
[24] 朱侃, 陈小青, 马超, 等. 头孢克洛结构测定与分析[J]. 药物分析杂志, 2010, 30(11):2111-2115.
[25] 霍佳丽. 电喷雾质谱在抗生素类药物中的分析研究[D].重庆:重庆大学硕士学位论文, 2012.
[26] 越皓, 皮子凤, 宋凤瑞, 等.附子不同配伍药对中生物碱成分的电喷雾质谱分析[J].药学学报, 2007, 42(2):201-205.
[27] 刘悦, 杨士斌, 宋凤瑞, 等.甘遂甘草配伍的电喷雾质谱研究[J].中华中医药学刊, 2011,29(9):1990-1993.
[28] 刘炎.中药黄芪炮制及复方配伍的化学研究[D].长春:长春中医药大学, 2007:39-59.
[29] 闫静, 朱海光, 刘志强, 等. 马钱子与甘草配伍前后生物碱成分的变化规律[J]. 分析化学研究简报, 2007, 35(8):1218-1220.
[30] Karthick Vishwanathan, Michael G. Bartlett, James T. Stewart. Determination of moxifloxacin in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,(30): 961 -968.
[31] 李秋莎, 王长远, 韩国柱, 等.应用LC-MS/MS法研究茶多酚在大鼠体内的多组分药动学[J].中国新药杂志, 2011, 20(9):817-824.
[32] 万益群, 陈林, 谭婷,等.高效液相色谱电喷雾质谱同时测定人体尿液中黄蝶呤与异黄蝶呤[J].分析科学学报, 2011, 27(5):561-564.
[33] 李晓雯, 沈保华, 江峥, 等.HPLC-LTQ Orbitrap MS对血液尿液中的筛选及确证[J].法医学杂志, 2012, 28(1):44-48.
[34] Jun Qian, Yi-Xuan Wang, Sheng-Min Su, etc. Determination of paclitaxel in human plasma by LC-ESI-MS and its application in a pharmacokinetic study [J]. Journal of Chinese Pharmaceutical Sciences, 2012,(21):304-310.
[35] 马海英, 周秋丽, 王本祥.黄山药总皂苷肠内菌代谢及代谢产物吸收的研究[J].中国药房, 2002, 13(4):204-205.
[36] 高博彦, 孔令义.高效液相色谱电喷雾离子阱质谱法初步鉴定复方酸枣仁汤中化学物质及血浆吸收成分[J].药学研究,2010,18(3):250-252.
[37] 周丽君, 李敬来, 王晓英, 等. 高效液相色谱-质谱法测定比格犬血浆中的艾普拉唑及其药代动力学[J].色谱, 2012, 30(5):452-456.
[38] 陈永婧, 王小华, 黄真真, 等. 膀胱癌血清及尿液代谢组学研究[J].分析化学, 2012, 40(9):1322-1328.
[39] 杨杰, 黄丹雪, 鹿秀梅, 等. 小柴胡汤化学成分及其在抑郁模型大鼠体内代谢成分的分析[J].中草药, 2012, (9):34-41.
[40] 马安德, 沈梅.电喷雾质谱确定多肤化合物的精确相对分子质量[J].第一军医大学学报, 2001, 21(5):379.
[41] 孙明忠, 杨帆, 侯志杰, 等.2D-DIGE-HPLC-nESIMS/MS对2, 4-二硝基苯磺酸损伤HaCaT细胞差异蛋白质的鉴定[J].分析测试学报, 2011,30(21):146-151.
[42] 曾嵘, 俞利荣, 邵晓霞, 等.电喷雾离子阱质谱法鉴定人肝癌细胞双向凝胶电泳胶内蛋白质科学简报[J]. 2000, 45(6): 592-598.
[43] 何晓光. 卵巢癌细胞中乳源免疫调节肽受体的筛选、鉴定及其功能的初步研究[D].安徽:安徽医科大学, 2012.
[44] 郭晔, 范宝丽, 陈玉梅, 等. TEL/AML1阳性儿童急性淋巴细胞白血病细胞差异蛋白组的质谱分析[J].中国实验血液学杂志, 2010, 18(1):116-121.
[45] Pedro A. Alvarez, Hosahalli S. Ramaswamy, Ashraf A. Ismail. Effect of high-pressure treatment on the electrospray ionization mass spectrometry (ESI-MS) profiles of whey proteins[J]. international dairy journal,2007,17(8):881-888.
[46] 孙伟.液质联用蛋白质组学鉴定方法的建立及其在正常人尿蛋白质组鉴定中的应用[D].北京:中国协和医科大学博士学位论文, 2005.
[47] Hui Liu, Jiyang Zhang, Hanchang Sun, etc. The Prediction of Peptide Charge States for Electrospray Ionization in Mass Spectrometry [J].Procedia Environmental Sciences, 2011, (8): 483-491.
[48] 杨芃原, 钱小红, 盛龙生编著.生物质谱技术与方法[M].北京:科学出版社, 2005: 312-337.
关键词:食用菌硒培养基生物富集
硒(Se)是人体必需的微量元素,与人体健康密切相关。缺硒会导致多种疾病,人体硒元素缺乏会造成肝坏死、胰脏萎缩、肌肉营养不良、水肿、贫血、早衰、心脏病、糖尿病等一系列病变,由此造成“克山病”、“大骨节病”等多种地方病,因而,硒被科学家称誉为生命的“奇效元素”。
世界上有40多个国家缺硒或少硒。中国也有22个省市约占72%以上县市缺乏硒元素,近几年的地质普查中发现,恩施州是世界上罕见的自然富硒地区,不但发现了独立硒矿床,含硒量为100~800PPM,而且,大部分土地处于足硒区,有240个村处在0.07PPM的高硒区,各种农作物、土特产品和畜禽产品,含硒水平都较高。论文百事通因此,恩施被誉为“中国硒都”。
一、研究意义及原理
人体健康普查表明,即便是享有“硒都”之称的恩施,仍然存在一定的人体缺硒状况,只是相对其他地区状况要好。这又究竟是怎么一回事呢?原来研究发现,硒元素的存在与人体吸收需要借助于一定的形态和途径,就食品中的含硒而言,也要有一定的标准,2004年4月中国预防医学科学院、中国农业科学研究院、国家质量监督检验检疫总局等单位和湖北省质量技术监督局在“中国硒都”恩施编制完成的全国第一个富硒食品标签标准,准确定了富硒食品的定义,定了多种富硒食品的最低硒含量指标,如何达到这个含量标准,是生物化学研究中的一个重要保证。
从营养学、食品科学和生物化学等多种学科原理及研究证实、人体从食品中对任何微量元素的吸收都与其化学状态有关,硒也不例外,游离形式的硒元素显然不易被人体吸收,并有一定毒性(如恩施州生活在天然富硒矿床附近的村民也有患克山病的就是典型例证),很显然硒元素无机态的生物学效价低于一般有机态的生物学效价,而一般有机态的生物学效价又低于生物源有机态的生物学效价。目前,饮食中生物有机态硒元素的来源主要是动物性和植物性食物,但要向动、植物中直接添加硒元素十分困难,相比之下,利用微生物学原理,人工培养的食用菌应该是一个值得研究的途径。
香菇、金针菇是食用菌类中的上品,味美香浓,营养极为丰富,富含人体不能合成的8种必需氨基酸。利用食用菌的生物合成作用,将无机态的硒转化成生物源有机态的硒,这不仅可以除去由于添加这类强化剂对食品造成的不良影响,而且可以提高对微量元素的生物利用率。由于被食用菌利用的原料十分广泛,添加元素十分方便,因此,也利于广泛开发利用。
二、材料与方法
2.1材料
菌株香菇(Lentinusedodes)、金针菇(Flammulinavelutipes),由我院生物实验室分离所得。A培养基(黄豆粉培养基):恩施产富硒黄豆粉20g、蔗糖20g、富硒矿泉水1000ml;pH呈中性。B培养基(马玲薯培养基):恩施产富硒马玲薯200g、蔗糖20g、水1000ml;PH自然。C培养基(加盐黄豆粉培养基):以黄豆粉培养基为基础培养基,加入七合亚硒酸钠0.01%。
2.2方法
培养基合成。分别取黄豆20g磨成细粉加水煮沸30min,马玲薯去皮,切成块加水煮沸30min,都均用九层纱布过滤,均再加蔗糖20g,最后溶化后补足水至1000ml。C培养基在A培养基中直接加亚硒酸钠即可。
食用菌菌丝的培养。取食有菌菌丝各一小块,分别接种于200ml的液体培养基中28℃、200r/min摇瓶培养6d。
菌丝洗涤处理。发酵物离心(2800r/min)倾上去清液菌丝球捣碎呈泥状加入200ml双重蒸馏水、搅拌离心(2800r/min),倾去上清液,如此反复洗涤5次最后4000r/min获得食用菌菌丝细胞。
元素测定方法。准确称取约1g菌丝细胞样品于50ml烧杯中,加入8ml浓HNO3和2ml高氯酸,加热至冒白烟,没有油滴出现。冷却后将该溶液转移入50ml容量瓶中用双重蒸馏水定容,摇匀待测。
三、分析
3.1A、B培养基中硒含量测量
按上述方法,我们曾选用了非恩施产黄豆(东北产)和马玲薯(重庆开县产)及武汉地区天然矿泉水也培养了A1、B1两支培养基,此与本实验研究关系不太大,但可作一比较。
3.1.1直接测检
在食用菌接种培养前,先对A、A1、B、B1四支培养基进行硒含量检测。
从表1得知,A、B培养基中的硒含量分别比A1、B1培养基中高出一倍多,很显然,恩施富硒地区地产物质作培养基其硒含量要高得多。而A、B培养基两者中硒含量也有很大差异,这说明植物中的硒元素主要来源于土壤中,地下果实的马玲薯比地上果实的黄豆要高。
3.1.2不同培养基和不同食用菌丝、硒富集量测定
将香菇和金针菇菌丝分别接入A、A1、B、B1四支培养基中经同一条件,工艺、培养处理后再对菌丝细胞中的硒含量进行检测。
从上图得知:①再次证实,以恩施富硒地区地产物质为基础物质作培养基的菌丝硒含量比其它地区的物质作培养基要高,余下不再就此实验讨论。②A培养基的硒含量远低于B培养基,而培养出的菌丝细胞中的硒含量却相反,即B培养基比A培养基培养出的菌丝细胞中的硒含量提高了2.7倍,造成这一现象的原因。这主要是两者基础物质营养成分的差异,其它加蔗糖、水一样,工艺操作也一样。为此,我们对两者的主要成分再化验。
3.2加硒盐培养基试验分析
3.2.1硒含量测验
将香菇、金针菇菌丝分别于接入C培养基中,经培养处理后。可知,在加盐培养基上培养,食用菌富集硒能力明显增强。
3.2.2加盐培养基对食用菌生长的影响在A、C培养基中各取200ml培养液经同样离心,洗涤处理后,所获菌丝进行称重。wWw.gWyoO
由上表得知,经加盐培养的菌丝,香菇湿重增加1倍,而金针菇湿重则下降1.2倍。
四、结论
食用菌对硒的富集能力均会受到培养基成分、所加元素浓度和食用菌菌株等因素影响,表现在:
(1)培养基基础物质中的高蛋白,高脂肪成份有助于硒元素在食用菌细胞中的螯合,因此,选择黄豆等高蛋白,高脂肪物质作培养基可以大大提高硒的生物富集能力。
(2)在培养基中加入适当的硒盐有助于食用菌增强生物富硒能力。
(3)不同的菌种对硒盐而授程度不一样,加盐培养基有助于香菇菌丝生长,会抑制金针菇生长。
【摘要】 白花泡桐[Paulownia. Fortunei (Seem.) Hemsl.]为玄参科泡桐属(Paulownia)植物,落叶乔木,全国几乎均有分布,野生或栽培,是常用的中草药,其花、叶、皮、根、果古时对其就有药用记载,可用于治疗炎症、病毒感染、跌打损伤等多种疾病。白花泡桐花的化学成分除挥发油部分外,未见报道。本文对泡桐属植物化学成分及生物活性进行总结,为开发利用植物资源、研究植物生物活性提供了一定的科学依据。
【关键词】 泡桐属;化学成分;生物活性
玄参科泡桐属Paulownia植物,全属共有7种,分别是白花泡桐[P.fortunei(Seem.)Hemsl.],毛泡桐[P.tomentosa(Thunb.)Steud.],兰考泡桐(P.elongata S.Y.Hu),椒叶泡桐(P.catalpifolia Gong Tong),台湾泡桐(P.kawakamii Ito),川泡桐(P.fargesii Franch.)和南方泡桐(P.australis Gong Tong),光泡桐[P.tomentosa var. tsinlingensis (Pai)Gong Tong]是毛泡桐的变种。除东北北部、内蒙古、新疆北部、西藏等地区外全国均有分布,栽培或野生。白花泡桐在越南、老挝也有分布,有些种类已在世界许多国家引种栽培。作为一种优质木材,它不仅在工农业方面有广泛用途,同时它还是一种常用的中草药,其花、叶、皮、根、果古时就有其药用记载。如《本草纲目》记述:“桐叶……主恶蚀疮著阴,皮主五痔,杀三虫。花主傅猪疮,消肿生发[1]。” 《药性论》也言:“治五淋,沐发去头风,生发滋润。”近年来医学研究发现其主要作用有:抗菌消炎,止咳利尿,降压止血,同时还具有杀虫作用。
1 化学成分
泡桐属植物的化学成分研究始于20世纪30年代初。日本学者最先对泡桐属植物的化学成分进行了研究,1931年Masco Kazi等从泡桐叶的树皮和树叶中分离得到糖苷类化合物[2,3] 。1959年,Kazutoru Yoneichi研究了桐木中的木脂素成分,分离得到了丁香苷。随着科学技术的发展,各种色谱分离方法和现代波谱技术应用于天然产物的研究,从泡桐属植物中不断发现新化合物。该属植物中所含化学成分类型主要有环烯醚萜苷、苯丙素、木脂素苷、黄酮、倍半萜、三萜等。其中许多化合物被证明具有一定的生物活性。
1.1 苯丙素类化合物 苯丙素类化合物在泡桐属植物中分布较为广泛。主要有:(1)木脂素(四氢呋喃骈四氢呋喃类):细辛素(d-Asarinin)[4],芝麻素(d-Sesamin)[5],泡桐素(Paulownin)[6],异泡桐素(Isopaulownin)、(+)-Piperitol[7]等。(2)苯丙素酚类:Verbascoside[8],Isoverbascoside[9]。
1.2 环烯醚萜类 富含环烯醚萜类成分是泡桐属植物的一大特征,在该属植物中多以成苷的形式出现,广泛分布于桐木、桐皮、桐叶中,花中还未见文献报道。泡桐属中的环烯醚萜成分具有九碳骨架(即C-4去甲基)的环戊烷型、环戊烯型和7,8环氧戊烷型,显示了其在植物分类学上的意义。其取代基位置比较固定,一般1位羟基与1分子葡萄糖成苷,8位为甲基或羟甲基。另外,Soern等从成年毛泡桐的叶部获得两个5,6位为双键的环烯醚萜苷,同时,他还发现成年和幼年的毛泡桐中环烯醚萜苷成分有所不同[10~14]。
1.3 倍半萜类 李志刚等[15]从毛泡桐的花中分到7个落叶酸型的倍半萜,为首次从该属植物中分到倍半萜类化合物,可能与该类激素促进开花,抑制种子发芽有关, 其他部分未发现。
1.4 甘油酯类 杜欣等[16]从毛泡桐的花中还分到了甘油酯类的化合物及其苷。
1.5 其他成分 从该属植物中还分离出黄酮类、二氢黄酮类、三萜(主要为熊果酸及其苷[17])、生物碱、多酚、单糖、鞣酸、脂肪酸等多种成分。另外,栗原滕三郎和宋永芳等[18]对泡桐花的精油成分作了色谱、质谱分析,研究了其中的蛋白质、氨基酸、微量元素等营养成分,利用GC/MS技术鉴定出许多长链及芳香族化合物。
1.6 植物激素 王文芝等[19]对河南兰考泡桐的根、茎、叶中的植物激素进行了研究,利用HPLC技术分离鉴定出了激动素、反式玉米素、激动素核酸等8种激素。
2 生物活性
2.1 抗菌作用 芝麻素对结核杆菌有抑制作用[20],而泡桐花及其果实的注射液(醇提取后用醋酸铅沉淀去杂质制成),体外实验时对金黄色葡萄球菌及伤寒杆菌、痢疾杆菌、大肠杆菌、绿脓杆菌、布氏杆菌、革兰菌、酵母菌等均有一定的抑制作用[4]。从泡桐属植物中分到的紫葳新苷Ⅰ对金黄色葡萄球菌和乳链球菌均有抑制作用,最小浓度为150μg/ml,并认为其角甲基是抗菌必要基团[21]。魏希颖等将泡桐花的黄酮提取物作了体外抑菌实验,发现其对金黄色葡萄球菌作用最强,而对黑曲霉、啤酒酵母、产黄青霉无明显的抑制作用[22]。
2.2 治疗气管炎 泡桐果及花治疗慢性气管炎有一定疗效,临床治疗1341例,有效率为81%,其中临床控制率7%,显效25%[23]。
2.3 消炎作用 泡桐花可用于治疗炎症感染,临床报道用其治疗16种疾病计244例,均有一定疗效,其中对上感、支气管肺炎、急性扁桃体炎、菌痢、急性肠炎、急性结膜炎的疗效较好,治疗中未发现不良反应和副作用[4]。实验中通过观察泡桐花浸膏对哮喘豚鼠肺病理组织学的影响发现泡桐花浸膏能明显延长豚鼠诱喘潜伏期,优于地塞米松(P
2.4 止血作用 泡桐属植物中所含丁香苷有明显止血作用。本品注射液用于手术70例,良效(明显止血)30例,占42.9%,有效(出血减少)26例,占37.1%,无效14例[26]。
2.5 毒性研究 小鼠口服泡桐果乙醇提取物半数致死量为21.4g生药/kg。大鼠口服2g/(kg·d),共21天,一般情况及体重均无异常,内脏病理检查未见中毒性病理形态改变。家兔急性、亚急性毒理实验中,泡桐果煎剂对心、肝、肾、脾、胃均无毒性病理改变。家兔灌服泡桐花浸膏或静脉注射,一般情况及食欲、体重、白细胞等均无明显变化,成人口服上述浸膏或肌肉注射,自觉症状、体温、脉搏及白细胞数等均无明显改变,但有轻度血压下降[4]。已有报道苯丙素苷具有抗菌、抗病毒、抗肿瘤、清除自由基、延缓骨骼肌疲劳、DNA碱基修复、抗凝血、抗血小板凝聚等多种生理活性。从泡桐属植物的树皮和茎部分离得到一个新的呋喃醌酮(methyl-5-hydroxy-dinaphtho[1,2-2′,3′]furan-7,12- dione-6-carboxylate),对hela癌细胞有抑制作用,对polio病毒的brunhildeⅠ型EC50为0.1μg/ml对leonⅢ型EC50为0.1μg/ml[27]。另外,咖啡酸的糖酯类化合物被认为与该植物的颜色改变有关[28]。
2.6 杀虫作用 泡桐素、芝麻素可增强杀虫剂除虫菊酯的杀虫作用,可有效杀灭蚊蝇及其幼体[29]。
2.7 其他作用 泡桐属植物还具有止咳、平喘、祛痰、治手足癣与烧伤、消肿、生发等功效[4]。
从以上可知,泡桐属植物化学成分疗效显著且具多样化,但对该属植物的成分研究多集中于毛泡桐种,其他种涉及较少,而对部位的研究则多为桐叶,皮、根,茎次之,花研究的最少。对生物活性的研究则不够深入,其有效部位及有效成分有待进一步确定。
转贴于 参考文献
1 中国科学院.中国植物志.北京:科学出版社,1979,67(2):28.
2 Masao Kazi,Tokiti Simabayasi.A glucoside from Paulownia. Japan, 1931, 93;735;27.
3 Koiti Iwadare. Lignin.Ⅱ.Ligin of Paulownia imperialis. J Chem Soc Japan, 1941,62:186-189.
4 江苏新医学院编.中药大词典.上海:上海科学技术出版社,1977.
5 Kijjoa A,Kitirattrakarn T,Anantachoke C. Preliminary study of chemical constituents of Paulownia Taiwaniana. Kasetsart J,1991,25(4):430-433.
6 Kotaro Takagawa.Constituents of medical plants Ⅳ structure of paulownin,a component of wood of Paulownia tomentosa.Yakugaku Zasshi, 1963, 83: 1101-1105.
7 Hiroji,Mayumi O,Yutaka S, et al.(+)-Piperitol from Paulownia tomentosa. Planta Medica,1987,53(5):504.
8 Schilling G,Hugel M,Mayer W. Verbascoside and isoverbascoside from Paulownia tomentosa Steud. Z.,Naturforsch ,B:Anorg Chem Org. Chem,1982,37B(12):1633-1635.
9 Sticher I,Lahloub MF.Phenolic glycosides of Paulownia tomentosa bark. Planta Medica,1987,46(3):145-148.
10 Damtoft Soren. Biosyntheses of catalpol. Phytochemistry, 1994, 35(5): 1187-1189.
11 Hegnauer R, Kooiman P. The taxonomic significance of iridoids of tubiflorae sensu wettstein.Planta Medica, 1978,33(1):1-33.
12 Adriani C,Bonini C,Iavarone C,et al. Isolation and characterization of paulownioside,a new highly oxygenated iridoid glucoside from Paulownia tomentosa.J Nat Prod, 1981,44(6):739-744.
13 Soren D,Soren RJ. Tomentoside and 7-hydroxytomentoside, two iridoid glucosides from Paulownia tomentosa. Phytochemistry, 1993, 34(6): 1636-1638.
14 Soeren D.Biosynthesis of catalpol. Phytochemistry, 1994, 35(5): 1187 -1189.
15 李志刚.毛泡桐花化学成分.兰州大学硕士学位论文. 2001.
16 杜欣.毛泡桐花的化学成分研究.兰州大学硕士学位论文,2003.
17 Yoshihisa T,Sadao K,Kotaro T,et al. Constituents of medical plants Ⅲ Constituents of leaves of Paulownia tomentosa and Rhododendron kaempferi. Kauazwa Daigaku Yakugakubu Keukgu Nempo,1962,12:7-14.
18 宋永芳,罗嘉梁,倪善庆,等. 泡桐花的化学成分研究.林产化学与工业, 1990,10(4):269.
19 王文芝.反向高效液相色谱分离泡桐中的植物激素.分析化学,1984, 12(6): 531.
20 国家医药管理局中草药情报中心.植物药有效成分分离手册.北京:人民卫生出版社,1980.
21 White PJ.Separation of K+- and Cl-- selective ion channels from rye roots on a continuous sucrose density gradient.J Exp Bot,1995,46(285):361-376.
22 魏希颖,何悦,蒋立锋,等.泡桐花体外抑菌作用及黄酮含量的测定. 天然产物研究与开发,2006,18:401-404.
23 河南医学院,等.泡桐果及花治疗慢性气管炎的临床疗效和实验研究.河南医学院学报,1975,1:26-28.
24 张永辉,刘宗花,杜红丽,等.中药泡桐花浸膏对哮喘豚鼠肺组织作用的病理学研究.新乡医学院学报,2002,19(6):473-475.
25 李寅超,赵宜红,李寅丽,等. 泡桐花总黄酮抗BALB / c小鼠哮喘气道炎症的实验研究. 中原医刊,2006,33(19):16-17.
26 谢培山,杨赞熹. 救必应化学成分的研究—止血成分救必应乙素的分离、鉴定. 药学学报,1980,15 (5): 3-7.
27 Kang KH,Huh HK,Bak K. An antiviral furanoquinine from Paulownia tomentosa Steud. Phytother,1999,13(7):624-646.
关键词:高分子材料专业;化工原理;教改实践;教学内容;教学方法
化工原理是一门综合性技术学科,主要研究化学工业生产中有关的各单元操作的基本原理、所用的典型设备结构、工艺尺寸设计和设备的选型的共性问题。它是综合运用数学、物理、化学等基础知识,分析和解决化工类型生产中各种物理过程的工程学科,主要强调工程观点、定量运算、实验技能及设计能力的培养,强调理论联系实际。由于其在培养学生工程科学及工程技术的双重教育任务中起到重要作用,目前该课程是化工类及相近专业的一门重要的技术基础课,很适合现在的“重基础宽口径”本科教育的培养理念。笔者所在校的化学工程专业、食品工程专业、制药专业、高分子材料与加工专业和生物化工专业都开设了该门课程的教学任务。
化工原理教材源自1923年美国麻省理工学院的著名教授W.H.Walker等教授发表的首部著作――Principle of Chemical Engineering。我国最早是浙江大学在1927年首建化学工程系时开设了该门课程的。自此有关化工原理课程的教学与改革工作开始深受学者们重视,目前化工原理的理论教材正式出版的已达20多个版本,同时发表的教研论文也有近600篇。然而,目前多数教材有一个普遍的特点就是偏重于引介传统的基础化工知识,对化学工程类专业的学生适应性强而缺乏与其他的教学专业间的密切联系,从而易使其他非化工类专业的学生产生教材对于他们专业适用性不强的错觉。这也导致部分的非化工类专业学生对该门课程学习兴趣不强。如果将学生的专业课程的知识融入化工课程原理的教学中,以化工原理知识在非化工类相关专业中的应用为切入点引导这类专业学生的学习兴趣是很重要的。
高分子材料与加工专业是以相对分子质量较高的化合物构成的材料包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料等为研究对象研究其合成改性和加工成型等的一门科学。这有别于多数化工原理教材中引述的小分子物质如水、苯或甲苯等常规化学品的。如何将化工原理知识和高分子材料加工应用实例结合起来教学,从而提高该专业学生学习该门课程的积极性,笔者围绕着教学内容和教学方法等,在课堂上开展了一系列的教改实践与尝试,并获得了好的效果。
一、阐明高分子生产加工与化工生产间的内在联系高分子材料加工涉及的通常是高分子材料成型加工方法,化工原理课程也是海南大学(以下简称“我校”)高分子材料与工程专业的一门专业基础课。学生在初学化工原理时可能感觉与高分子加工技术相差较大,对将来专业知识没有直接帮助,学习的积极性与主动性均难以充分调动,甚至还易产生消极抵触的情绪。因此,在课程刚开始的绪论这一章的教学中在介绍什么是化学工业过程时笔者不以教材里的传统化工加工为例,而是详举高分子行业中运用化工原理知识进行材料加工处理的实例,提前介绍一些高分子材料加工的方法,拉近学生与传统化工加工技术的距离,让学生理解高分子加工的一些操作与传统化工类的操作间的异同点,以便消除同学们内心的疑惑,指明高分子材料加工专业的同学学习化工原理知识的必要性。
如天然橡胶的初加工是海南(以下简称“我省”)省的特色产业也是我校高分子材料专业的一个重要方向。从天然橡胶树上采割的胶乳经过一系列的处理得到干胶产品(如图所示)。在这个过程中干燥、浓缩、压片等操作与传统化工生产中的相关的单元操作一样,所用的基本原理相同,设备基本通用。
高分子材料如聚乙烯的合成中乙烯气体在常压常温下,加压输送合成前的加热升温操作及反应后产物的分离与传统化工专业的流体输送原理及加热原理是相同的,所用设备是相通的。二、将高分子加工工艺融入化工原理的课程教学中在高分子材料的加工中采用了大量的化工单元操作。但这些高分子加工工
制胶方法图艺在传统的化工原理教材中是看不到的。这就要求任课教师具有高分子材料加工方面的知识背景,这样可以将高分子加工工艺中运用到的化工原理的知识融入课程的教学中,学生领会到该门课程的知识在专业知识中的基础作用学习兴趣才会提高,并且在将来的工作中能有意识地提前运用化工原理的理论知识,进行企业的节能降耗等的工艺改进。
如在以动量传递理论为基础的单元操作的有关教学中,教材通常是以牛顿型流体如水、苯或甲苯等常规化学品的流体输送为例,而高分子材料专业的学生处理对象多为大分子材料,所处状态通常固体颗粒或黏稠状态,属于非牛顿型流体范畴。因此教材中的例子缺乏对高分子材料专业学生的足够吸引力,难以达到应有的示例效果。教学中我们以胶乳厂中天然浓缩胶乳的生产工艺为例,说明工艺中我们利用泵提供新鲜胶乳能量,促使其流入高速离心机中,而离心机是非均相物分离的一个单元操作。高分子量的聚异戊二烯在离心机转鼓的轴中心较远的地方富集,而小分子如水分、小分子量的聚异戊二烯在轴中心附近富集。将这两个位置的乳液分别导出就分别得到浓缩胶乳和胶清胶,并利用非牛顿型流体的阻力计算方法表明,由于胶乳的黏稠度远大于水的黏度在动力消耗上要比同等条件下输送水的动力消耗大。
鉴于在塑料或橡胶的加工生产中大量运用到了螺杆挤出机。所以在流体输送设备介绍中,笔者是以螺杆挤出机在塑料加工中的应用为例,说明螺杆挤出机的工作原理,并且介绍在塑料挤出机的料斗的颗粒进料系统中可以利用固体流态化技术,采用真空吸料或用鼓风机压料进行原料输送。
在以热量传递为理论基础的单元操作中,在介绍以导热方式进行的热传递时,笔者以未硫化胶膜在平板硫化仪内加热硫化为例进行导热说明。而以塑料在螺杆挤出机内或橡胶在炼胶机上进行塑炼时的粘流态受热为例介绍对流传热热传递方式。
在以质量传递为理论基础的单元操作中,以粉末涂料的生产为例,介绍喷雾干燥工艺。这些将高分子材料加工工艺融入化工原理的课堂教学中,拉近了材料加工与化工原理知识间的距离,提高了学生学习的兴趣,起到明显的教学改革效果。
三、以高分子材料为实验对象化工原理一般是同学们从公共基础课转向专业课学习所接触到的第一门工程性课程,亦是一门理论与实践紧密结合的技术基础课程。它的实验课教学设计至关重要,其不仅关系到整门课程教学效果的好坏,更是决定能否推进该课程素质教育的关键环节之一。
为提高高分子材料类专业同学参与化工原理实验课的学习热情,笔者在实验教学中选择高分子材料进行相关的实验 。如干燥实验中有的专业以甘蔗渣纸板为实验对象,获得有关纤维的干燥过程曲线和干燥速率曲线。而我省特色产业天然胶乳加工中有将天然胶乳干燥制备成干胶的这一操作。为了结合我校的高分子材料专业,专业实习提前将有关化工原理的知识融入到专业学习中。实验中以天然胶乳制备的湿膜片为实验材料,获得天然胶乳薄膜制品的干燥过程曲线和干燥速率曲线,为以后同学们去胶乳厂参观实习提供理论和实验依据。这一举措不仅有效激发了同学们参与实验研究的主动性,反过来也极大促进了该课程理论学习的积极性。
四、有的放矢传授教学内容,适应少学时的课程教学计划在高分子材料类专业的教学计划中,化工原理虽也多被列为必修课程,但相比化工类专业,其教学学时要少得多。因此,如何在有限的学时内,引导同学们在掌握基本化工操作知识的基础上,有的放矢地传授教学内容,引导学生自主复习,进行课外自学。如化工原理教材中有大量公式推导过程,少学时专业课的教学中不容许课堂上在公式推导中花费大量的时间,课堂教学中会简单介绍推导思路,鼓励学生课前及课后自学,重点放在有关理论的应用上。如离心泵理论扬程的方程式的推导过程,运用了前期我们学过的伯努利方程的知识和几何学中速度的矢量运算知识。在教学中要求学生课前自学,教学重点在分析、总结和对公式的理解和运用上。考虑课程特点,在蒸发等单元操作上分配课时较少,而对于膜分离这类单元操作,由于与高分子材料有密切关系,安排一定的学时学习这类单元操作的原理。这样做到有的放矢,尽可能与专业产生一定的关联,为专业知识拓宽坚实的专业基础知识。
参考文献:
[1]管国锋,赵汝溥.化工原理[M].北京:化学工业出版社,2008.
论文摘要 异株克生是广泛存在的自然现象,它既存在于不同杂草种群之间,也存在于杂草与作物之间,还存在于杂草同种不同个体或作物与作物之间。阐述了异株克生现象的原理,总结了异株发生现象在杂草防治和农业上应用的途径和意义,并针对异株发生现象的弊端,提出了应对措施。
异株克生这一概念最先由奥地利科学家Molish(1937)提出。异株克生(Allelopathy)是植物(供体)向农业生态环境中释放的化学物质对其他植物(受体)产生的毒害作用,即一种植物对另一种植物萌芽、生长及发育所产生的有害影响。供体释放的化学物质称作异株克生化合物(Allelopathins,Allelo-chemicals),化合物直接毒害受体时称作真克生;而供体释放的化学物质或供体的残体通过微生物等分解产生的物质毒害受体时,称作功能性克生。
Grummer(1955)提出将异株克生分为4类:①抗生作用,微生物产生抗生素对其他微生物发生作用;②植物杀菌素,更高级的植物分泌杀菌素对微生物发生影响;③凋萎影响,微生物分泌凋萎物质对比其更高级的植物产生影响;④高等植物的相互影响,高等植物产生化学物质对其他高等植物产生影响。
1984年,Rice在《Allelopa-thy》中将其较完整的定义为:植物或微生物的代谢分泌物对环境中其他植物或微生物的有利或不利的作用。起异株克生作用的物质称为异株克生物质。到目前为止,植物体内已发现的这类物质包括:有机酸类、醛类、芳香族酸、简单不饱和内酯、香豆素、醌类、类黄酮、生物碱、长链脂肪酸、乙醇等。这些物质,有的是单独起克生作用,有的则需经土壤微生物作用后才有异株克生效果。
异株克生作用是自然界存在的一种普遍现象,它既存在于不同杂草种群之间,如小飞蓬产生C10聚乙炔甲酯抑制豚草种子发芽;也存在于杂草与作物之间,如野燕麦的根系分泌出莨菪碱(Scopo-lamine)及香草酸等抑制小麦的生长发育,小麦的根系分泌物抑制白茅的生长; 还存在于杂草同种不同个体或作物与作物之间,如小飞蓬根腐烂产生的他感作用抑制其幼苗的生长,腐烂的小麦残体抑制玉米的生长。老桃园残留桃树皮中扁桃苷的降解产物氰化物对新种植的桃树有毒害作用。玉米、黑麦、烟草植株分解过程中能产生抗真菌化合物,这些作物的残体在土壤中接近杂草种子时,便可防止种子腐烂,使其保持生命力。
异株克生化合物在杂草治理中起着重要作用。有研究表明:在耕地再生的假高粱与向日葵含有的抑制物质能抑制许多其他杂草发芽。因此,应该使用合理的作物布局与作物轮作、选育抗病、抗草的作物品种与种植制度。
1异株克生作用在杂草防治和农业中的应用
1.1作物与杂草之间的克生
有研究表明:对禾谷类作物水提物的研究发现(1989),大麦、燕麦、小麦提取液至少含有5种芳香族酸和一些胺类,它们能使森林杂草覆盖地上部干重分别降低10%、40%和68%。埃及科学家Hassan于1993~1996年开展了水稻与稗草的异株克生关系的研究,发现约有30份材料可以控制田间稗草50%~90%的生长。Putnam(1990)认为燕麦残体可以释放对杂草有克生作用的化学物质DIMBOA(2,4-二羟基-1,4-(2H)苯丙恶嗪-3)及其代谢产物BOA((3H)-苯丙恶唑啉酮),而土壤真菌可将BOA转化成另外一种物质,对杂草的毒性比前者高10多倍。我国李善林等报道(1994),小麦能通过颖壳中的苯甲酸的克生作用抑制白茅的生育。而杂草对作物的影响不仅表现在与作物争夺水、肥、光等生活因子,其产生的异株克生物质也是影响作物生育的一个重要原因。Holm(1984)发现将马唐种子与水以1∶16.7(w/v)提取24h,提取物可明显抑制花生、大豆等作物的发芽,Qasem的研究表明(1993),藜属(C.murale)的地上部水提物原液可抑制大麦、小麦、茄子、甘蓝、胡萝卜、辣椒的发芽,反枝苋地上部水提物原液可抑制茄子、甘蓝等蔬菜的发芽及生长。
1.2作物与作物之间的克生
我国马永青等研究麦秸覆盖对玉米生长的影响时发现(1993),麦秸与水按1∶10(w/v)提取24h的提取液对玉米发芽有明显克生影响,玉米胚芽生长也受抑制。麦秸覆盖土壤对下茬玉米发芽率、株高、重量及叶面积均有不同程度的影响,这一影响可能是作物释放的异株克生物质可在土壤中残留,从而影响下茬作物的生长。在国外有人将成熟向日葵切碎,以32t/hm2鲜重混入土壤表面,结果可使棉花的发芽率降低至86.0%。
1.3杂草与杂草之间的克生
对杂草之间异株克生作用的研究报道较少。Hagin(1989)发现,偃麦草体内可分离出5-羟基吲哚乙酸和5-羟基色氨酸,这些物质对其他杂草生长产生抑制作用。Martin(1994)等的试验表明,狗尾草和马唐可使多花黑麦草种子发芽率降低50%以上。杂草之间除了抑制作用以外,还具有促进作用。Kazinczi发现(1991),苘麻的水提液及酒精提取物可促进反枝苋种子发芽。
2异株克生化合物在杂草治理中的应用
2.1异株发生现象利用的途径
(1)直接利用具有克生作用的植物体或微生物体作为除草剂,但这种方法效果并不理想。
(2)采用植物化学的研究手段,对具有克生活性的次生代谢物提取、分离、鉴定,进而人工合成或化学修饰,既可以直接利用,也可能成为新化学农药的先导化合物。稻田除草剂艾割就是国外从桉树的次生代谢物中提取分离仿生的先导化合物,桉树含有1,8-桉树脑。Mnller等发现其是鼠尾草等植物的主要克生植物,为此,人们开发了新除草剂Cinmethylin。但是在国内除草剂方面还局限于提取、分离、鉴定阶段,尚未能形成成熟的产品。
(3)利用生物技术进行异株克生基因的转移,将代谢途径或某一关键步骤导入目标作物中,可提高作物的异株克生潜能;或者利用转基因技术,将优秀的克生资源克隆到作物和覆盖作物体内并表达,使其具有抑制杂草的能力,达到除草目的,在这方面的研究目前都只局限在探索和尝试阶段。
2.2异株发生现象利用的价值与意义
种植业伊始,作物一直受杂草的危害,人类长期为其所困。科学技术发展到今天,除草技术已有长足进步,但全世界的农业生产始终未能摆脱杂草的巨大危害。异株克生作用作为研究发现新克生作用物质及除草剂先导化合物的一条重要途径,它对植物种间关系理论的研究具有极大的推动作用,在生产上具有多方面的应用价值。从抗除草剂机理方面看,这一研究方向有着丰富的资源和广阔的空间。目前可以想象的包括代谢过程的异株克生物质、来自微生物的异株克生物质、来自其他植物的异株克生物质,都可能作为利用的资源。在创制新农药品种的过程中,也可以借鉴异株克生物质的成果,有目的地开发作物己经具备抗性的化合物,提高新农药研制的效率,推动农药工业的发展。近年来,应用先进的分子生物学技术,人们己分离出许多的异株克生物质,如各种器官或组织异株克生化合物生物合成途径的关键技术等。此外,利用异株克生现象能克服常规育种的盲目性和耗时等缺点,加强了人类对作物定向改造和设计的能力;从根本上解决了除草剂的选择性问题,最大限度地发挥现有除草剂的经济效益。异株克生作用和生物除草剂的改良,减轻了环境对化学除草剂的负荷,可能开发出更优秀的产品。异株克生作用的出现有力地促进了综合防治(IPM)理论的发展。异株克生作用的大面积推广在提高粮食产量、简化农业生产环节、节约能源和水、降低除草剂的研制与开发成本等诸多方面将产生巨大的环境、经济和社会效益。
3异株克生现象的弊端
3.1异株克生化合物对环境的影响
异株克生化合物作为一种农药使用时,同样也有其作为农药的一些不利的特征。首先,其具有一定的挥发性,施用后会被周围的植物吸收或经露水浓缩后被吸收,可能对敏感非靶标植物产生药害;其次,其同样具有淋溶性,通过降雨、灌溉、喷雾等使之进入土壤、河流和地下水等。 转贴于
3.2对植物生理与生化影响
异株克生化合物来源于植物的根、茎、叶、花、果实及种子。由于它对植物的生理生化方面的研究较少,它在植物的养分吸收、细胞分裂、光合作用、呼吸作用、酶活性和蛋白质合成等方面的影响还有待进一步研究。
3.3浓度变化的不规律性
其作为农药使用时,定量施用后,并不一定象除草剂那样随时间的延长浓度呈一定规律的降低,而是处于植物(供体)—土壤—植物(受体)的变化系统中,作用对象和浓度在不断调整,对植物影响的系统研究仍是空白。
3.4异株克生化合物的提取、分离、鉴定和检测技术不成熟
由于异株克生化合物种类繁多,含量甚微,在一个复杂混合群体,如何提取、分离、鉴定和检测的问题同样有待进一步研究。同时还必须考虑静态和动态有效性。
3.5移动方式的多样性
经物理化学过程而降解、吸附;经土壤微生物的呼吸作用或代谢过程而失去毒性;在外界因素作用下发生化学结构或构象的变化。
3.6安全性
与其他农药产品一样,异株克生物质同样受到安全性质疑。在开发和使用异株克生物质中也确实存在一些安全性问题。异株克生物质可能引发的生态安全性问题有以下几方面:①由于异株克生物质的使用,能否导致杂草抗性的增强;②对野生植物群落和天敌的潜在影响;③使用异株克生物质后,作物的品质及毒性等问题具有不可预知性;④能否产生交互抗性;⑤施用异株克生物质后,其残留浓度对人、畜是否安全。
4对异株克生现象弊端的应对措施
(1)在把用异株克生化合物作为农药前,先调查周围的非靶标植物是否对其具有敏感性。因此,同一种异株克生化合物农药并非适用于任何地方。
(2)针对不同的环境和不同的植物,调整不同的异株克生化合物浓度。进一步研究植物(供体)—土壤—植物(受体)系统的变化。
(3)提高异株克生化合物的提取、分离、鉴定和检测技术,使之能广泛应用到农业中去。
总之,植物之间存在的异株克生效应是非常普遍的。尽管其中的许多机理尚未揭示清楚,但已经取得了不少研究成果,这些成果的运用定会产生出极大的经济和生态效益,为杂草的防治研究提供新的发展趋势,并将对我国乃至全世界农业的发展起着推动作用,为科学务农提供科学依据。
5参考文献
[1] 陈杰,吴志伟.用幼苗生测法测定黑麦中他感化学物质的不同活性[J].浙江化工,2002(1):1-4.
[2] 房义福,刘元铅,徐迎春,等.植物天然活性物质对有害生物的防御作用及其开发利用前景[J].山东林业科技,1997,(S1):77-79.
[3] 郭永霞,孔祥清.转基因技术在杂草防除中的应用及展望[J].黑龙江八一农垦大学学报,2004,16(4):3-26
[4] 黄冬如.异株克生现象在杂草防治中的应用及展望[J].广西植保,2008(21):16-18.
[5] 李宝平,苏仙绒.试谈植物相生相克效应的应用[J].运城高专学报,1994(4):23-24.
[6] 李立新,崔岩,李怀.浅谈森林植物间的异株克生现象[J].防护林科技,2004(5):73-74.
[7] 李善林,李孙荣.小麦克生物质的提取及其对白茅的杀除效力研究[C]∥第五次杂草科学学术会议论文集.昆明:云南农业大学出版社,1994.
[8] 李善林,由振国,李孙荣.小麦提取液对反枝苋、繁缕生长的化感效应研究[J].中国生物防治,1996,12(2):23-28
[9] 李绍文.生态生物化学[M].北京:北京大学出版社,2001.
[10] 李香菊,李秉华.植物异株克生及其在杂草防除中的应用[J].河北农业科学,1998,2(4):5-8.
[11] 马永清,韩庆华.不同玉米品种对麦秸覆盖引起的生化他感作用的差异性分析[J].生态农业研究,1993(4):113-172.
[12] 宋君.杂草间的他感作用[J].生态学杂志,1990,9(6):43-47.
菲舍尔在糖类化学的研究中做出了卓越的贡献,极大地推动了有机化学的发展.他发现2mol的苯肼与1mol的糖反应,能得到高收率的结晶产物,他称之为脎(osazone),这对建立单糖的三维结构非常有帮助.不同的糖具有不同的晶形、熔点,不同的糖即使生成相同的脎反应速度和时间也不同,因此成脎反应可用作糖的定性鉴定.例如菲舍尔发现葡萄糖、果糖、甘露糖能得到相同的糖脎,这意味着这3种单糖相互之间只有2个位置是有区别的,而其它4个中心构型相同[4](图5).菲舍尔应用范托夫(J.H.Van’tHoff,荷兰化学家)和勒贝尔(J.A.LeBel,法国化学家)的“碳原子具有四面体结构”的概念证明了糖具有同分异构体,并推断出己醛糖有16种可能的构型.到1881年,菲舍尔用各种化学方法确定了D系列-己醛糖所有成员的构型,这16种异构体中,很多是菲舍尔通过人工方法合成的.1887年,菲舍尔开始尝试人工合成糖类的研究,先后合成了阿洛糖(acrose)、果糖(fructose)和山梨糖(sorbose),这是首次完成的人工全合成天然糖类.后来菲舍尔又用增长碳链的方法将戊糖转变为己糖、再将己糖转变为庚糖等,还合成了含有9个碳原子的糖.菲舍尔经过近20年的研究,阐明了很多糖分子的复杂结构和化学性质,完成了50多种天然糖的全合成并确定了许多糖的构型.为了在平面上画出糖的这些异构体,1891年,菲舍尔开始利用用平面式来表示分子的立体结构,这就是著名的菲舍尔投影式,这种表达方式极大地方便了书写和科研交流,对有机立体化学理论有着重大意义[5].菲舍尔在糖化学领域的研究极大地推动了有机化学的发展,被尊称为“糖化学之父”.
2蛋白质化学的研究
1899年菲舍尔对蛋白质的研究产生浓厚兴趣,他的几个发现涉及蛋白质的性质、反应、分析、合成等领域.20世纪早期,费舍尔将注意力转向了鉴别不同的氨基酸,并且发现了新的环状氨基酸:脯氨酸和羟脯氨酸.在1901年进行了乳蛋白和络蛋白的水解和分析,在此过程中,他认识到氨基酸是如何连接成多肽和蛋白质的,并提出了蛋白质的肽键理论,被认为是多肽化学的奠基人.菲舍尔引入α-卤代氨基酸,用五氯化磷将其转换为相应的酰氯,然后与氨基酸的酯反应即可形成肽键(图7).1907年菲舍尔又成功地用化学方法连接了18个氨基酸首次合成了多肽[6],从而建立了作为蛋白质化学结构基础的多肽理论,这项研究成果一时轰动整个科学界.
3酶的研究
在研究糖和蛋白质的同时,菲舍尔还研究酶的性质并奠定了酶化学的基础.1894年菲舍尔发现葡萄糖甲基化制备的α-葡萄糖甲苷和β-葡萄糖甲苷在酶水解反应中表现出专一性,α-异构体只能被从酵母中提取出来的蔗糖酶水解,而β-异构体只能被从苦杏仁中提取出来的苦杏仁酶水解,令人吃惊的是当酶发生改变时,水解反应就不能进行.因此他认识到:对组成相同但具有不同立体构型的糖来说,一种酶只对某一特定的构型具有活性.菲舍尔认为这是酶在其中起了作用,该性质在生化反应中有重要意义.菲舍尔把酶的专一性,形象地比喻为“钥匙”和“锁”的关系,专门的钥匙才能打开与之配套的锁[7],“锁匙学说”今天仍普遍地应用于酶化学研究甚至扩展到药理学等研究中.
4其他领域的研究
菲舍尔的研究工作不仅限于嘌呤、糖、蛋白质这些领域,他在制革化学、染料、地衣分析、巴比妥类安眠药、吲哚等方面也有深入的研究,在他的职业生涯晚期开始研究另一类生物分子:脂肪.菲舍尔一生硕果累累,共发表600多篇学术论文,分为八类:三苯胺染料、苯肼和吲哚、嘌呤、碳水化合物和酶、氨基酸多肽和蛋白质、染料.
5菲舍尔和化学工业
菲舍尔对德国的化学工业有重大的影响,他的许多研究成果都具有实用的工业价值.此外,他的实验室为工厂培养了大批优秀的青年化学家.菲舍尔本人对化工行业的兴趣开始于焦油染料工厂,在那里他和堂兄一起研究碱性品红和一品红染料,并通过实验证明品红染料是三苯甲烷的衍生物.菲舍尔第1位优秀的学生德维希•诺尔(LudwigKnorr),他用苯肼和乙酰乙酸乙酯反应,然后甲基化,合成了二甲基苯基吡唑酮,一种非常有效的解热镇痛药(图8)[8],Hoechst公司以安替比林(antipyrine)的名称将其推向市场并获得成功.后来又合成出了它的类似物的匹拉米洞(pyramidone),一种疗效更强的解热镇痛药,这两种药物由Hoechst染料公司生产并将其推向市场,标志着染料行业向制药业的转变.第1个高利润的工业产品是1902年菲舍尔参与研究的二乙基巴比妥酸,该产品具有很好的镇静催眠作用,在获得专利权后,二乙基巴比妥酸首先由默克公司生产并推向市场.后来研究的碘代山嵛酸钙是一种容易被生物体接受的无味碘源,常被添加于饲料中,由拜耳和Hoechst公司生产.1913年菲舍尔开始研究治疗癌症的药物,其中最著名的是有拜耳公司推向市场的‘Elarson’.1914年,一战爆发后,作为德国化学界的最高权威,费舍尔受政府委托积极参与解决战时的各种科学技术问题.用石膏和硫镁钒矿代替供应日益减少的黄铁矿;用二甲基二苯脲和二乙基二苯脲代替战时供应不足的炸药稳定剂樟脑;将稻草和碎木转化成牛可以消化的草料;他用氨合成硝酸和硝石,代替因海上封锁中止进口的智利硝石的问题.
6菲舍尔的科学后裔
菲舍尔对有机化学和生物化学的深远影响不仅仅在于他的伟大研究成果,而且还在于他的实验室培养了200多名博士和博士后,这使得菲舍尔的科研工作得以传承.他的很多学生和助手在化学和生物学等领域做出了重要的贡献.其中有4人获得诺贝尔化学奖[9],两人获得诺贝尔生理学和医学奖.普列格尔(FritzPregl)因创立有机物的微量分析法获1923年诺贝尔化学奖;阿道夫•温道斯(AdolfWindaus)由于对固醇类化合物的深入研究并发现维生素D而获得1928年的诺贝尔化学奖;汉斯•费歇尔(HansFischer)由于对血红素和叶绿素结构的研究,以及血红素的合成,1930年获得诺贝尔化学奖;奥托•迪尔斯(OttoPHDiels)1928年与他的学生(KurtAlder)合作发现了著名的Diels-Alder反应,又名双烯合成,该反应是制备六元环状化合物的重要方法,因此两人共同获得1950年的诺贝尔化学奖;卡尔•兰德施泰纳(KarlLandsteiner)发现了人类的ABO血型系统,为此获得1930年诺贝尔生理学或医学奖;奥托•海因里希•瓦尔堡(OttoHeinrichWarburg),1931年因“发现呼吸酶的性质及作用方式”获得诺贝尔生理学和医学奖.直到今天菲舍尔及其同仁的研究成果对我们仍然是非常有用的.
7结束语
[关键词] 渣驯;来源;本草考证;使用现状;调查;生物化石
[Abstract] In this article the classics textual research to the origin of "Zha-xun" was carried out,the ethnobotanical research methods,the origin of visits,key informant interviews,sample collection and textual research were applied in the research. The results showed that the hypothesis of Zha-xun"s origin mainly included "source of mine","source of feces","source of monkey menstrual blood" in China. There were "source of fossil","source of the plant secretion" abroad. The authors had interviewed the villagers at origin,herbalists,Tibetan doctors,herb dealers,foreign scholars for a total of 18 people,and collecting 45 batches medicinal materials. According to ancient Tibetan classics textual and Tibetan medicine doctors′ views,medicinal materials were divided into the genuine and the substitutes. The genuine was identified as ancient so-called "iron" type "Zha-xun",and the substitute was fecal pellet bonding briquette. According to the field survey and literature research,"source of fossil" more in line with substance of Zha-xun was derived from the rock. As the results,the author believed that Zha-xun was the mixture of organic fossils from the rock seepage with flying squirrel,pika feces. So it is needed to be set up Zha-xun classification standard to evaluate the quality of medicinal materials. Meanwhile,it was necessary to further clarify fecal pellet substitute rationality. Above all,this article clarified the status of the use of Tibetan medicine-"Zha-xun",and laid the foundation of species systematics and quality standards research of "Zha-xun".
[Key words] Zha-xun;source;classics textual research;use situation;investigate;fossil
doi:10.4268/cjcmm20162428
渣驯,藏名,意译即“岩石的精华”,简称“岩精”,是一种常用的藏药生药。渣驯之名最早记载于公元8世纪的藏医文献《月王药诊》[1]。本品经水浸泡滤去杂质熬制成膏后即为渣驯膏,是大宗常用藏药,主要用于治疗诸热症,特治肝胃肾热症,如木布病、陈旧性肝病、眼病等[2]。在《部颁藏药标准》收载的201个成方制剂中,有34个含有渣驯膏,包括二十五味余甘子丸、智托洁白丸、十八味诃子利尿丸等知名品种,其在藏医药中具有举足轻重的地位。渣驯也是著名的国际传统药,在印度阿育吠陀体系中名为Shilajit(喜来芝),作为壮阳、抗氧化、免疫力剂广泛使用,在美国食品添加剂市场中也有出售。“渣驯是什么?”这是藏医药学术界争议已久的问题。一方面,渣驯从岩层中渗出的产生方式颇为特殊,前苏联学者以“石怪的眼泪”[3]喻之;另一方面,国内藏医药界对于渣驯的使用情况记述不明,“矿物来源说”和“粪便来源说”争论尖锐,甚至有“不存在正品,现今使用的均为代用品”之说,大量文献、标准直接冠以“五灵脂”之名。鉴于此,本文在对国内外文献有关渣驯来源记载进行系统整理,在此基础上,收集全国各藏区藏医院、藏药厂、市场渣驯标本,阐明其使用现状,结合产地考察与调研,分析现有来源观点的合理性,以期为渣驯品种整理、药材基原鉴定及药材标准制定提供基础。
1 方法
采用药用民族植物学相关方法进行调查研究。
1.1 文献考证
对藏医药文献、专著及国内外论文中渣驯的来源记载进行整理。
1.2 P键人物访谈
对藏医药从业者进行访谈,包括藏医医生、藏医院药剂人员、藏药企业职工等,调查其对渣驯来源、分类、炮制、临床使用的认识;对渣驯产地村民、药材采集者进行访谈,调查其对渣驯来源的认识及采收方法;对药材收购商进行访谈,主要调查渣驯药材名称、来源等。
1.3 产地调研
现场观察、拍摄村民采收渣驯过程及分析渣驯出露点情况。
1.4 凭证标本收集及信息记录
从产地、藏医院、藏药厂、藏药市场收集作为渣驯用的药材;对青海藏医药文化博物馆和青海大学藏医学院标本室馆藏渣驯标本进行记录,并以此做为判断渣驯正品的佐证。
1.5 药材形态观察
描述药材形状、颜色、质地、断面颜色、气、味等特征。对药材进行正品和代用品划分,根据藏医认识制定药材优劣判断方法。
2 结果
2.1 文献考证
2.1.1 渣驯来源的藏医药古籍文献整理 渣驯“”一名最早记载于公元8世纪的藏医文献,如《月王药诊》、藏医经典《四部医典》和苯教医学经典《四部甘露藏》[4]。此后1 000多年来,历代医药学家陆续对其药性作了论述。传统藏医药理论认为渣驯是含金、银、铜、铁、锌、锡等单一矿或复合矿岩渗出的汁液黏结成的块状物。具体本草整理结果见表1。
2.1.2 渣驯来源的现代文献整理 20世纪70年代起,藏医药工作者对渣驯进行了来源考证。一些著作考证结果和传统本草出现了分歧,体现在 “矿源说”和 “粪源说”的重大差异,藏族学者多支持矿物说或认为粪便为代用品。 “粪源说”主要分为2类:以青海地区为代表,认为其为红耳鼠兔Ochotona erythrotis、鼠兔O. thibetana的干燥粪便(尿);以地区为代表,认为可用五灵脂,即复齿鼯鼠Trogopterus xanthotis的干燥粪便或以此为代用品。分析认为粪便类渣驯的基原有可能还包括高原鼠兔O. curzoniae等动物的粪便。笔者研究表明[9],马尔康地区渣驯分布于变质岩层片结构中,主要以腐殖酸为主体的有机质和砂石组成,金属元素总量少,14C同位素测定表明不同产地的渣驯黑色流浸膏物质分别有(3 356±29)年和(6 038±27)年,由此提出渣驯可能为一种岩层中有机生物化石渗出后与鼯鼠、鼠兔粪便的混合物,见表2。青藏高原地区五灵脂使用报道见表3。
2.1.3 国内外其他民族有关渣驯的使用及来源整理 其他民族和国家使用情况见表4。
2.2 关键人物访谈
2011―2015年,先后走访了藏医从业人员6人,羌医1人,印度学者1人,尼泊尔药材收购商1人,渣驯药材者采集者3人,各地药材市场经营者5人、村民2人,共计18人。访谈结果见表5。由此分析可知:渣驯名称多样,羌医称为“戈悟石”、川西高原民间为“猴结”、印度阿育吠陀体系为“Shilajit(喜来芝)”;渣驯来源假说多样,如藏医的“矿源说”、民间的“猴子月经说” 、“植物分泌物说”、“粪源说”、“岩石渗出物与粪便混合物说”,其中部分采集者和收购者是后2种观点的赞同者;本品作为Shilajit(喜来芝)出口印度是渣驯商品主要流通渠道,甚至在产地可见尼泊尔出口商收购药材,其功效与藏医迥异。
2.3 产地药材采集及出露点特征
现场观察表明,渣驯的采集方法为在川西高原峡谷岩壁上获取,主要采用敲取和爆破的方式,采集过程危险性大,药材资源再生性评价低,见图1。采集观测表明,在同一岩面上,即存在渣驯,也存在作为代用品的圆形粪粒黏结团块。结合岩层地址结构分析表明,渣驯主要分布在岩石的张性断裂面附近,呈渗出、堆积或结核状态,在渣驯堆积点上多少可见镶嵌或覆盖的粪粒,甚至动物窝,见图1。在出露点上方敲取岩石样品表明,岩层中渣驯分布于变质岩层片结构中。《四部医典蓝琉璃》[7]记载:“六金各自流汁液……夏日炎热石岩缝,流出紫草茸般汁”。该书曼唐挂图中详尽绘制了6类渣驯的生境及与2类哺乳动物的密切关系。渣驯产地出露点特点与《四部医典蓝琉璃》所记载的一致。
2.4 凭证标本收集及形态描述
2.4.1 标本馆调查与形状描述 中国藏医药文化博物馆将“”汉文写为“五灵脂”,记载本品是“岩山等地的岩石精汁,状若汤液,流出岩隙,主产于、青海和四川”,见图2。可以观察到标本为黑色沥青状岩石物。青海大学标本馆汉文名“闸驯”,为长椭圆形粪粒与黑色岩石状物质的累积岩石块状物。鉴于标本馆药材可以作为此种药材鉴定的凭证,因此,本文认为,青海藏医对渣驯正品的认识与四川藏医一致。
2.4.2 标本收集、鉴定、分类及形态描述 以共收集到作为渣驯用的药材样品45批。本研究根据《晶珠本草》[8]有关“铁”类渣驯“特品如紫靛、上品如干血块、中品如房子油烟、下品如干泥丸”的描述,由成都中医药大学降拥四郎藏医主任医师和阿坝州藏医院华尔江藏医主治医师对收集的药材进行鉴定。鉴定结果将药材可分为2类,其中正品属于“铁”类渣驯,为黑色沥青岩石状固体多少包裹动物粪粒而成,以粪便、石块少、质重为优;而另一类为粪粒黏结团块,被调查的藏医医生均认为不能作为渣驯使用,鉴于该品在实际使用中为青海、地区藏医院、藏药厂广泛作为“渣驯”投料,本文将粪粒黏结团块归于代用品。
“铁”类渣驯药材的形态特征如下:呈不规则块状,大小不一。表面黑色或棕褐色,凹凸不平或平滑光亮,有的具油性光泽。质硬,断面黑褐色、黄棕色,镶嵌有或多或少的长椭圆形或小型类圆形粪粒,有的可见石块包裹其中。气微腥臭,味辛苦。遇热、遇水熔化。各批次主要区别在于颜色从棕褐色至黑色;粪粒的形状如小型球形或者是长的椭圆形,以及粪粒数量的多少。结合本草描述,以色深,坚硬,光亮,质重,粪粒及石块少者为佳。
粪粒黏结团块代用品的形态特征如下:为小型类圆形粪粒黏结的不规则块状,表面黄棕色或黑棕色,凹凸不平,粗糙,体轻,质松泡,断面黄棕色,粗糙,全体为圆形粪粒堆积;气微腥臭,味辛、苦,见图3。
四川藏区和青海、藏区渣驯使用情况存在差异,四川藏区主流药材为“铁”类渣驯,而青海主流渣驯药材除了2批藏医院的药材外,其余都均为粪粒黏结团块,收集到的藏医院样品为粪粒黏结团块,可见不同地区使用的渣驯存在差异。另一方面,存在一家藏医院同时提供“铁”类渣驯和粪粒黏结团块代用品的情况,见表6。
3 结论与讨论
3.1 渣驯使用情况
3.1.1 藏医药产业“渣驯”使用情况 根据课题组调查,目前我国藏医产业使用的渣驯药材符合本草描述,属于“铁”类。
虽然传统藏医文献对渣驯分类复杂,参考、青海标本馆馆藏渣驯形态,结合专家鉴定,认为收集到的35批样品均为 “铁”类渣驯,为符合传统本草描述的正品,该品也大量作为“Shilajit(喜来芝)”出口印度。在长达4年的调查过程中,课题组并未发现有其他类型的的渣驯,有关金、银、铜、铅(锡)等分类所代表的药材类型还需要进一步研究。由于川西峡谷地区为渣驯主产地,因而四川地区藏医院的渣驯多为正品。
由于药材中粪粒多少不定,建议根据药材质量体积比、粪便出现频率及颜色建立药材商品分级方法,以满足商品采购与临床用药的需要。
3.1.2 主要藏区“渣驯”使用情况 根据课题组走访以及调查结果显示,四川地区主要使用“铁”类渣驯,青海、大量使用粪粒黏结团块,本文暂将该类药材归为“渣驯”代用品,其使用科学性值得进一步研究。
在样品收集过程中,课题组收集到8批粪粒黏结团块,均为小颗粒粪便组成,体轻,气味较淡,本品产地与市场价格均较渣驯正品药材低,四川藏医认为该品为渣驯伪品,不能做渣驯用。但该类药材广泛见于青海、的药厂、医院,也为大量现代藏药著作和标准以渣驯收载,如《藏药部颁标准》、《自治区藏药材标准》、《青海省藏药炮制规范》,这些著作或认为本品即为 “五灵脂”[23],或认为本品为渣驯代用品。由于复齿鼯鼠粪便为椭圆形颗粒,因此其排便动物不为复齿鼯鼠,并非中药“五灵脂”。 本文暂将该类药材归为“渣驯”代用品,其使用科学性还需要药效学研究与安全性评价。
3.2 渣驯来源论点多样的原因
渣驯的来源问题争论已久,笔者认为渣驯特殊的生长环境与外观性状是其来源论点多样的原因,由于渣驯出露在绝壁上,科学工作者难于获得第一手资料,从岩层中渗出的特殊产生方式颇为神秘,且渗出后必定裹挟粪便,仅采用常规生药学方法和物种鉴别方法不能解决其来源问题,也无法说明药材中黑色有机物与粪粒间的生物学关系。
传统“矿源论”强调药材从岩石中流出,强调粪粒是制备渣驯膏过程中需要除去的杂质。研究表明,药材由以腐殖酸为主体的有机质及砂石组成,金、银、铜、铁、铅等诸多金属含量极微,本文推论金属分类是否与药材颜色分类有关;“粪源论”强调药材最终形态中存在粪便颗粒,由于其首次记录出现在1974年的著作中,无从知晓上述文献考证渣驯时所参考的药材标本为何物。该理论无法解释药材中存在大量遇水溶解的黑色有机物,用尿液来解释岩石间流出的黑色浸膏状液体[35]也是有欠妥当的;“猴子月经学”[36-37]论缺乏生物学依据,为文献所否定;而 “喜来芝”植物和树脂来源的说法,笔者在产地没有找到诸如霸王鞭Euphorbia royleana和大量苔藓植物。因此,本研究认为上述说法均不能合理阐释渣驯来源,或许仅能把握到渣驯客观事实的某个方面,陷入“盲人摸象”的困境。
3.3 渣驯来源的实质分析
本文认为“生物化石来源说”更符合渣驯来源实质,根据笔者前期研究发现渣驯中有机质主要为腐殖酸,碳14同位素测定也证明了即使受到外界污染,这些物质至少也在3 000年以上[9]。鉴于腐殖酸是动植物残体通^各种生物、非生物的降解、缩合等作用形成的天然有机大分子物质,根据有机地球化学有关沉积作用有机质演化规律,即生物有机体通过成岩作用(微生物的降解作用,聚合作用,缩合作用)形成干酪根(Kerogen,成岩作用的主要产物,标志该阶段结束),其间产生腐殖酸,腐殖质;干酪根通过深成作用(热催化裂解作用,热降解作用)形成石油与天然气(湿气);最后是形成原油与天然气剩余的有机物通过变质作用形成甲烷和石墨等物质[38]。笔者认为“渣驯”中有机质演化至进行到生成腐殖酸阶段。但是“生物化石来源说”中,国外学者有关本品来源于软体动物化石或高等植物化石的说法存在矛盾,需要结合地质学、分子古生物学、地球化学进行进一步验证。
[参考文献]
[1] 马世林译.月王药诊[M].上海:上海科技出版社,2012:61.
[2] 索南邓登,童丽,袁冬平,等.传统藏药渣驯的文献研究[J].中国民族民间医药,2012,2(4):8.
[3] Grechikhin A. The tears of the stone giants. Mumiyah (Zhun): the legends and the reality(Russian)[J]. Tekhnika Mologyozhi (Technique of Youth),1971,11:56.
[4] 加央尼玛.藏药渣驯辨证[J].中国藏学,2002(4):139.
[5] 宇妥・元丹贡布.四部医典[M]. 马世林,罗达尚,毛继祖,等译.上海:上海科技出版社,1987:38.
[6] 杜玛尔・丹增彭措. 无垢晶曼[M].北京:民族出版社,1986.
[7] 第司・桑吉嘉措.四部医典诠释蓝琉璃[M]. 毛继祖,卡洛,毛韶玲译.上海:上海科技出版社,2012:9.
[8] 蒂玛尔・丹增彭措.晶珠本草[M].毛继祖,罗尚达,王振华,等译.上海:上海科学技术出版社,1988:51.
[9] 曹S,古锐,马逾英,等.藏药“渣驯”物质组成研究[J].中药材,2015,38(2):279.
[10] 青海高原生物研究所植物室.青藏高原药物图鉴.第3册[M].西宁:青海人民出版社,1972:43.
[11] 杨竞生.迪庆藏药[M].昆明:云南民族出版社,1987:82.
[12] 卫生部药品生物制品检定所,云南省药品检验所.中国民族药志.第2卷[M].北京:人民卫生出版社,1990:521.
[13] 中国科学院西北高原生物研究所.藏药志[M].西宁:青海人民出版社,1991:517.
[14] 青海省卫生厅.青海省藏药标准[M].西宁:青海人民出版社,1992:33.
[15] 噶玛群培.甘露本草明镜[M].拉萨:人民出版社,1993:685.
[16] 中华人民共和国卫生部药典委员会.中华人民共和国卫生部药品标准・藏药.第1册[S]. 1995:342.
[17] 嘎务・藏药晶镜本草[M].北京:民族出版社,1995:105,附图197.
[18] 青海省藏医药研究所,青海省药品检验所.中国藏药.第2卷[M].上海:上海科学技术出版社,1996:145.
[19] 土旦次仁.中国医学百科全书藏医学[M].上海:上海科学技术出版社,1999:201.
[20] 中华本草编委会.中华本草・藏药卷[M].上海:上海科学技术出版社,2002:386.
[21] 罗达尚.新修晶珠本草[M].成都:四川科学技术出版社,2004:95.
[22] 青海省食品药品监督管理局.青海省藏药炮制规范[S].西宁:青海人民出版社,2010:41.
[23] 地区食品药品监督管理局.自治区藏药材标准. 第1册 [S].拉萨:人民出版社,2012:36.
[24] 来复根.中药五灵脂及其混淆品鉴别的新方法[J].中药通报,1985,10(7):15.
[25] 王水潮.青海五灵脂品种调查与鉴定[J].中药材,1998,21(6):279.
[26] 木拉提・克扎衣别克.塔斯玛依的研究进展[J].中国中药杂志,2013,38(3):443.
[27] 木拉提,陈敏,熊元君.哈萨克医常用神药――塔斯马衣[J].中国民族民间医药杂志.2000,(5):282.
[28] 马纳提别克.哈医药精华(关于哈医医术研究文)[M].奎屯:伊犁人民出版社,1997:45.
[29] 中华本草编委会.中华本草・蒙药卷[M].上海:上海科学技术出版社,2002:423.
[30] S Ghosal. Shilajit in perspective[M]. United Kingdom,Oxford:Alpha Science International Limited,2006.
[31] Eugene Wilson,G Victor Rajamanickam,G Prasad Dubey,et al. Review on shilajit used in traditional Indian medicine[J]. J Ethnopharmacol,2011,136 (4) :1.
[32] Agarwal S P,Khanna R,Karmarkar R,et al. Shilajit: a review[J]. Phytother Res,2007,21:401.
[33] Frolova L N,Kiseleva T L. Chemical composition of mumijo and methods fordetermining its authenticity and quality (a review) [J]. Pharm Chem J,1996,30:543.
[34] Scholz-Bttcher B M,Nissenbaum A,Rullktter J. An 18th century medication "Mumia vera aegyptica"-Fake or authentic [J]. Org Geochem,2013,65:1.
[35] 高士t,邓明鲁. 复齿藉鼠的生态观察及糖灵脂的形成[J].特产科学实验,1983(3):28.
[36] 陆文光,欧阳秋玉,刘秀珍.中药猴经和猴结的研究[J].右江卫生,1980(4):65.
【关键词】卷丹百合成分提取
Abstract:ThisarticleintroducedtheresearchadvancementofLiliumlancifoliumThunb.andL.browniiF.E.BrownVar.viridulumBakerchemicalcompositionsandtheextractionmethodinrecenttenyears,mainlyconcentratedinthesteroidsaponin,thepolysaccharideandthecolchicine,thesteroidsaponinextractionhasethanolextract-thepocketresinabsorptionlawandethanolextraction-thenormalbutylalcoholextractionmethod;thepolysaccharideextractionhaswaterextractandethanoltosink,thecompoundenzymelaw;thecolchicineextractionhastheorganicsolventextractionprocessandthesupercriticalcarbondioxidefluidextractionmethod.
Keywords:LiliumlancifoliumThunb.;L.browniiF.E.BrownVar.viridulumBaker;Ingredient;Extraction
中药百合来源于植物卷丹LiliumlancifoliumThunb.百合L.browniiF.E.BrownVar.viridulumBaker和细叶百合L.pumilumDC.的干燥肉质鳞叶,最早记载于《神农本草经》,细叶百合主要分布于东北,野生为主,市场少见。卷丹和百合在全国分布较广,在长江流域广为栽培,为百合药材的主要来源。其主要成分有皂苷类、多糖、生物碱、微量元素及蛋白质、磷脂、无机元素等。研究表明,百合在止咳化痰、抗疲劳与耐缺氧、升高外周白细胞、降血糖及抑制迟发过敏性反应、催眠安神等方面均具有显著效果。
1化学成分
1.1皂苷类
近几年来百合皂苷的研究主要集中于甾体皂苷,侯秀云等[1]从百合中分离得到β-谷甾醇(Ⅰ)、胡萝卜苷(Ⅱ)、正丁基-β-D-吡喃果苷(Ⅲ)、26-O-β-D-吡喃葡萄糖3β,26-二羟基-5-胆甾烯-l6,22-二氧3-O-α-L-吡喃鼠李糖-(12)-β-D-吡喃葡萄糖苷(Ⅳ)、26-O-β-D-吡喃葡萄糖3β,26-二羟基胆甾烷-16,22-二氧-3-O-α-L-吡喃鼠李糖-(12)-β-D-吡喃葡萄糖苷(Ⅴ)[2]。其中Ⅳ和Ⅴ为新化台物,初步药理实验证明,这两种皂苷对二氧化硫引起的小鼠咳嗽有镇咳作用[2]。Ⅰ,Ⅱ和Ⅲ为首次从该植物中分得。吉宏武等[3,4]以卷丹鳞茎为原料,通过光谱与HPLC等手段鉴定百合皂苷有两种,一种为含有提果皂苷元与3个糖基的甾体皂苷,一种为含有薯蓣皂苷元与3个糖基的甾体皂苷。吴晓斌等[5]以龙山百合为原料,发现百合皂苷与薯蓣皂苷有相同的薯蓣皂苷元。百合总皂苷提取物对自由基的清除作用比人参皂苷强[6]。杨秀伟等[7]分离并鉴定卷丹中两种甾体皂苷,麦冬皂苷D(ophipogoninD),其结构为薯蓣皂苷元-3-O-﹛O-α-L-鼠李糖基-(12)-O-[β-D-木糖基(13)]-β-D-葡萄糖苷﹜,另一化合物为薯蓣皂苷元-3-O-﹛O-α-L-鼠李糖基-(12)-O-[α-L-阿拉伯糖基(13)]-β-D-葡萄糖苷﹜,经鉴定是一种新的化合物,定名为卷丹皂苷A(1ililancifolosideA)。
1.2多糖类姜茹等[8]
从百合鳞叶中首次分离出一种水溶性多糖BHP,酸水解,薄层展开进行多糖组分分析,呈现D-半乳糖、L-阿拉伯糖、D-甘露糖、D-葡萄糖、L-鼠李糖等斑点。该多糖作用于机体免疫系统,对小鼠免疫功能有明显的调理作用。刘成梅等[9,10]从新鲜百合的鳞叶中,分离得到LP1,LP2两种多糖,在多糖的组分分析中LP1由葡萄糖、甘露糖组成,比例为1∶2.46,LP2由葡萄糖、甘露糖、阿拉伯糖、半乳糖醛酸组成,比例为1∶0.73:2.61∶1.8∶0.84。这两种多糖单体对四氧嘧啶引起的高血糖小鼠有明显的降血糖功能,并且与浓度呈正相关。百合多糖LP2降血糖作用强于百合多糖LP1。赵国华等[11]从百合块茎中分离得到LBPS-I多糖,是一种纯粹的非淀粉类葡聚糖,是由α-D-(1,4)-Glcp和α-D-(1,3)-Glcp以2∶1的比例交替形成主链,并有α-D-(1,6)-Glcp侧链的葡聚糖。该多糖单体对移植性黑色素B16和Lewis肺癌有较强的抑制作用。ManalMShehata等[12]从百合中分离得到百合水溶性非淀粉多糖(WSNSP)。体外实验结果表明,百合球茎中WSNSP组分B可以直接抑制肿瘤细胞的生长;体内实验结果表明,WSNSP组分B具有抗癌功效,可以抑制小鼠S180肉瘤增殖,抑瘤率在45.68%以上。
1.3生物碱类百合中生物碱研究早在20世纪60年代就有报道,主要集中在秋水仙碱。贺世洪等[13]利用极谱法,采用二阶导数直接测定其中秋水仙碱的含量,达0.0064%。何纯莲、李新社等[14,15]采用超临界萃取法和高效液相测得湖南龙山产卷丹鳞片中秋水仙碱含量。百合中秋水仙碱,能抑制癌细胞的增殖,尤其对乳癌的抑制效果比较好[16]。
2提取
2.1皂苷及其苷元类
2.1.1皂苷类甾体皂苷的提取分离有3种方法:醇提—大孔树脂吸附法、醇提—正丁醇萃取法和色谱法。吴晓斌、任凤莲等[5,17]分别讨论了温度、乙醇用量、回流时间和提取次数对百合总皂苷提取率的影响。采用正交实验法得出了百合总皂苷的最佳提取条件为:用80%乙醇(其体积为百合质量的6倍),在70℃回流提取3次,3h/次。吴晓斌等[5]考虑百合总皂苷的含量和工业中的实际生产情况,确定最佳提取条件为6倍于药材量的乙醇(浓度为70%),在60℃提取3次,3h/次。用AB-8大孔吸附树脂柱分离,无水乙醇、丙酮-乙醚混合液沉淀干燥得百合皂苷,得率为0.253%。吉宏武等[18]采用微波处理卷丹百合,烘至含水量6%左右粉成80目。选用甲醇为提取剂,采用超声波提取和水饱和正丁醇萃取百合中总皂苷,所建立的方法具有干扰小、准确度高、分析速度快等优点,抽提皂苷完全、适合于大量试样的分析。
2.1.2皂苷元甾体皂苷元的提取有醇提酸水解—有机溶剂提取法、酸或酶水解—有机溶剂提取法。百合中甾体皂苷元的提取采用的是前者,百合皂苷经酸水解,乙醚萃取,氮气吹干,即得甾体皂苷元[3,4,19]。
2.2百合多糖
2.2.1水提醇沉法刘成梅等[20]以浸提温度、固液比、浸提时间为考察对象,进行正交实验,发现对百合多糖提取率影响程度为:温度>时间>固液比,确定百合多糖浸提最佳工艺参数:浸提温度95℃,时间2h,固液比1:5。去蛋白采用酶-Seveag联用法,沉淀多糖。滕利荣等[21]分别就提取时间、溶剂体积、浸提温度进行单因素实验,发现热水提取百合多糖的最佳条件为:加水比70:1,浸提时间6h,浸提温度60℃,在此条件下提取率可达10.87%。Sevag试剂离心除蛋白质,测定多糖含量。杨林莎等[22,23]讨论提取时间、提取次数、溶剂体积、浸提温度等因素对多糖得率的影响,采用正交实验法进行优选。影响百合多糖提取的主次顺序为温度>溶剂体积>浸提次数>浸提时间,最佳工艺为温浸温度80℃,但考虑到多糖解聚及淀粉糊化、变性,浸提温度设为65℃,溶剂体积l5倍量,浸提3次,浸提时间4h。Sevag法除蛋白,以多糖得率为指标,采取正交实验法探讨Sevag法中的氯仿与正丁醇的配比及与样品体积的比例关系,最佳工艺为氯仿-正丁醇体积比为3:1,样品-氯仿正丁醇体积比为5:2,振摇时间10min。测定多糖得率为5.2%。杨华等[24]用三氯三氟乙烷与seveage法联用脱蛋白,得百合粗多糖水溶液。以乙醇沉淀,丙酮、乙醚洗涤,冷冻干燥后得粗多糖。孙丽华等[25]用Sevag法脱蛋白,分离纯化所得活性多糖的得率为4.5%,多糖含量为96.8%。
2.2.2复合酶法百合块茎中除多糖物质外,还含一定量的蛋白质、胶质、粗纤维及脂肪。这些物质的分解有利于多糖的分离和纯化。复合酶法提取百合多糖具有条件温和、杂质易除、提取率高和生物活性高等特点。因此选用复合酶系,将复合酶[ω(纤维素酶):ω(果胶酶):ω(胰酶)=2:2:1]加入百合块茎干品中,考察pH、酶促反应温度、酶促反应时间对提取率的影响,确定酶法提取多糖的最佳反应条件:pH值是影响百合多糖提取率的显著因素,浸提液pH7.0,浸提温度50℃,酶促反应时间90min。在上述最佳条件下,测定了加酶量对多糖提取率的影响,最佳加酶量为3%。在最适酶提条件下提取率达31.03%,是热水提取法的2.85倍[21]。
2.3秋水仙碱
2.3.1有机溶剂提取法李新社等[15]考察了溶剂种类、提取时间及提取方式对提取效果的影响,确定提取剂为乙醇,提取时间为8h,碱化百合粉能显著改善提取效果,提取率从0.95%提高到1.77%。何纯莲等[26]研究了提取温度、提取时间、溶剂用量、粒度4个因素对秋水仙碱提取的影响,确定萃取温度﹥溶剂用量﹥提取时间﹥粒度。最佳工艺条件为原料过20目筛,提取溶剂选用乙醇。80℃,溶剂用量6∶1,提取10h,即可达到在此实验条件范围内的最佳提取效果。采用高效液相色谱法测得秋水仙碱的含量为43.2mg,含量为0.36‰。李谷才等[27]筛选出乙醇提取百合中秋水仙碱的最佳工艺条件:75℃时,用乙醇将过50目筛的百合粉以5:1,提取5h,可得秋水仙碱45.78mg。在此条件下,用HPLC法测得百合中的秋水仙碱含量为4.58%。
2.3.2超临界二氧化碳流体萃取法何纯莲、李新社、任凤莲、李谷才等[14,15,26,27]选取萃取温度、萃取压力、提携剂(乙醇)用量、萃取时间4个因素为变量,发现各因素的影响秩序为:萃取温度﹥萃取时间﹥萃取压力﹥提携剂用量。最佳条件为:40℃,18Mpa下,以300ml乙醇作提携剂萃取2h。测得萃取物粗品中含秋水仙碱24.5mg,含量为6.38%。经HPLC法测定,测得百合中秋水仙碱含量为0.0485%。
3小结
目前,对百合化学成分的研究已经有了较丰富的文献积累,但缺乏百合构效关系的研究,药理作用机理研究也不够深入,从整体上看缺乏横向的联系,因此要对百合进行系统全面的研究,可谓任重而道远。
百合化学成分提取分离研究,文献报道较多的百合皂苷和多糖类,其良好前景使得对它的提取有待于进一步研究改进,主要集中在简化工艺流程和引入新的研究方法,提高产物富集率和纯度上。
在水提醇沉法除蛋白方法比较中,从脱蛋白后的水溶性百合多糖损失和蛋白质去除效果来看,酶法与Seveage联用法优于Seveage法和三氯三氟乙烷与Seveage联用法,是一种很有效的植物多糖中脱蛋白方法。无论采用哪种,所得的水溶性百合多糖中蛋白质含量均在10%以上,其原因可能是百合水溶性多糖中部分蛋白质与多糖结合成紧密的糖蛋白复合物[28]。
百合是中华人民共和国卫生部审批通过的首批药食两用的植物,不仅临床上有着广泛的应用,而且作为加工保健产品的原料也极具有开发前景。因此对百合的栽培技术、功能因子的结构、含量、作用及在食品中稳定性等方面进行深入研究,使其最大限度地保留活性,是百合研究开发的趋势。
【参考文献】
[1]侯秀云,陈发奎.百合化学成分的分离和结构鉴定[J].药学学报,1998,33(12):923.
[2]侯秀云,陈发奎,吴立军.百合中的甾体皂苷的结构鉴定[J].中国药物化学杂志,1998,8(1):49.
[3]吉宏武,丁霄霖.百合皂苷的提取分离与结构初步鉴定[J].林产化学与工业,2001,21(3):48.
[4]吉宏武,丁霄霖,陶冠军.液相色谱-电喷雾电离质谱与电子轰击质谱联用筛选百合中的甾体皂甙[J].色谱,2001,19(5):403.
[5]吴晓斌,任凤莲,邱昌桂,等.百合皂苷的提取、纯化及其鉴定[J].广州化学,2005,30(2):36.
[6]吴晓斌,任凤莲,邱昌桂,等.百合皂苷的提取、纯化及其对羟自由基的清除作用[J].天然产物研究与开发,2005,17(6):777.
[7]杨秀伟,吴云山,崔育新,等.卷丹中新甾体皂苷的分离和鉴定[J].药学学报,2002,7(11):863.
[8]姜茹,匡永清,吴少华.百合免疫活性多糖的分离及其组成[J].第四军医大学学报,1998,19(2):188.
[9]刘成梅,付桂明,游海,等.百合多糖的纯化与化学结构鉴定研究[J].食品科学,2002,23(5):114.
[10]刘成梅,付桂明,涂宗则,等.百合多糖降血糖功能研究[J].食品科学,2002,23(6):113.
[11]赵国华,李志孝,陈宗道.百合多糖的化学结构及抗肿瘤活性[J].食品与生物技术,2002,21(1):62.
[12]ManalMShehata,王璋.百合中水溶性非淀粉多糖的分离与提纯[J].无锡轻工大学学报,2002,21(5):503.
[13]贺世洪,任凤莲,宋鸽.秋水仙碱的二阶导数极谱测定[J].湘潭大学自然科学学报,2001,23(4):78.
[14]何纯莲,李谷才,任凤莲,等.超临界流体萃取——高效液相色谱法测定百合中秋水仙碱[J].天然产物研究与开发,2003,15(1):5.
[15]李新社,王志兴.溶剂提取和超临界流体萃取百合中的秋水仙碱[J].中南大学学报(自然科学版),2004,35(2):244.
[16]郭朝晖,蒋生祥.中药百合的研究和应用[J].中医药学报,2004,32(3):27.
[17]任凤莲,邱昌桂,连琰.百合总皂甙的提取工艺[J].中南大学学报(自然科学版),2005,36(1):69.
[18]吉宏武,丁霄霖.百合总皂苷定量测定方法的研究[J].林业化学与工业,2003,23(4):54.
[19]吉宏武,丁霄霖.百合甾体皂苷元的气——质联用分析及其结构鉴定[J].无锡轻工大学学报,2003,22(3):84.
[20]刘成梅,付桂明,涂宗财,等.百合多糖提取的影响因素研究[J].食品科学,2002,23(2):87.
[21]滕利荣,孟庆繁,刘培源,等.酶法提取百合多糖及其体外抗氧化活性[J].吉林大学学报(理学版),2003,10(4):538.
[22]杨林莎,李玉贤,李秋杰,等.百合多糖提取、纯化工艺优选[J].中医研究,2005,18(1):25.
[23]杨林莎,李玉贤,李明丽,等.苯酚-硫酸比色法测定百合多糖的含量[J].中国中医药信息杂志,2004,8(11):704.
[24]杨华,阮振寰,姚宏.百合多糖的提取及蛋白含量测定[J].美中国际创伤杂志,2005,4(2):53.
[25]孙丽华,周彦钢,盛清,等.百合活性多糖的分离纯化与鉴定[J].浙江省医学科学院学报,2000,6(42):27.
[26]何纯莲,向建南,伍伟青.百合中秋水仙碱的分离应用研究[D].湖南大学硕士学位论文,2003,10:17,32.
1古代医药学对化学发展做出的重要贡献
中国古代的神农尝百草(《淮南子•修务训》)使人们认识到某些植物的汤液对疾病有治疗作用。这便是人类医学科学的开端——中药的重要起源。从中国的商代以后汤液成为中药的主要剂型。然而,草药虽然能够治病,但并不能延长人的寿命。而封建王朝的最高统治者——皇希望长生不老,永远处于统治地位。因此,自战国以来,在中国历代皇帝的支持下,便产生了一个长期繁荣不衰的职业——炼丹。起源于道家学派的炼丹家相信,只有自身不腐败的药物才能使人长生不老,青春永驻。当时,人们所用的草药当然做不到这一点,惟有金石能充当这一角色。
我国晋代著名的道教学者、炼丹家和医药学家葛洪(公元284~354年)所著的《抱扑子•内篇》金丹卷中就明确记载:草木之药“煮之则烂,埋之则腐”,而“丹砂烧之成水银,积变又还成丹砂”。这就是说,用中草药炼丹是不行的,因为它们容易腐烂。而朱砂加热后可变成水银和硫磺,反过来水银与硫磺在冷却的条件之下又可转变为朱砂。因此,服用朱砂炼制的丹药,人的生命就像朱砂与水银能互变那样,往返循环,生生不息。并把丹砂(HgS)称为长生不老药的极品。这是丹砂与水银、硫磺进行可逆化学反应的最早的明确记录。这一反应也是我们日常生活中的化学。例如:当水银温度计打碎了之后,洒落在地面的水银容易蒸发,而以蒸汽的形式被人所呼吸,从而引起汞中毒。在这种情况下,我们通常的做法是在水银上面撒一些硫磺,使之变为HgS,而HgS在常温下是没有挥发性的。有“药王”之称的唐代著名医学家孙思邈(公元581~682年)也是一位非常著名的炼丹大师。他在炼丹过程中发现了黑火药,在其著作《伏硫磺法》中记载了黑火药的配方:两份硝石+三份碳+一分硫。这三种物质一旦发生化学反应,就在短时间内产生大量的气体,从而产生爆炸。这就是我国古代的四大发明之一。这一技术直到公元8世纪才传到阿拉伯。阿拉伯人把硝石称为“中国雪”,而波斯人(今伊朗人)则称其为“中国盐”。虽然炼丹家们寻找长生不老药的梦想最终破灭,但却在炼丹的过程中创造了很多有趣的新方法和新物质,例如淮南王刘安在组织其门客炼丹过程中偶然发现了豆腐,而被称为豆腐的鼻祖,也把自己造就成了化学家。正因为如此,英国自然科技史专家李约瑟(1994年当选为中国科学院外籍院士),根据中国古代在炼丹术等方面的成就,在其著作《中国科学技术史》中提出了“医药化学源于中国”的论断,认为“整个化学的最重要的根源之一,是地地道道从中国传出去的”。到了16世纪初,药物化学家的奠基者、瑞士科学家巴拉塞尔士首先把矿物质作为药物使用,提出化学的目的是制造药剂。他认为有病就是缺盐、水银和硫磺这三种要素之一(分别比作为肉体、灵魂、精神)。为了治病就要服用所缺的要素。而为了获得能够治疗疾病的药物,必然要进行化学实验,因此,在这些实验过程中,人们便发现了硝酸、盐酸、硫酸、氨和矾等化合物,也产生了元素、化合物、化学试剂等概念,从而推动了化学的发展。
2化学的发展对医学所做的贡献
巴拉塞尔士作为医学的改革者,极力反对伽仑及阿维森纳的学说,并引导人们注意到化学对医学及药学的莫大用处。他的这种主张随着科学的不断发展而逐渐被证实。随着唯物主义哲学和化学的发展,人们坚信能够治病的这些植物中肯定存在着内在的物质基础。结果在19世纪初,化学家们从药用植物中寻找到了具有药用价值的小分子有机化合物。例如:1763年,爱德华•斯通(EdwardStone)在伦敦皇家学会宣读了题为“关于柳树皮治愈寒颤病成功的报告”。1828年,法国药剂师亨利•勒鲁克斯(HenriLeroux)与意大利化学家拉斐尔•皮里亚(RaffaelePiria)利用化学手段从柳树皮中提纯出了其有效成分水杨酸,化学名是邻羟基苯甲酸。1860年,德国拜尔公司化学家赫尔曼•科尔贝(HermanKolbe)成功实现了水杨酸的人工合成。但是水杨酸对口腔、食道和胃壁的黏膜有严重的刺激作用,从而使其在医学应用中受到了严重限制。为了解决这一问题,化学家们首先想到的是将其改为酸性较小的钠盐(水杨酸钠),这虽然减小了其刺激性,但却具有令人不愉快的甜味,导致大多数患者不愿意服用。到了1893年,德国Bayer公司的化学家费利克斯•霍夫曼(FelixHoffmann)对水杨酸进行了改造,制成了乙酰水杨酸。水杨酸与乙酰水杨酸具有相同的医学性质,但后者却没有令人不愉快的味道和对黏膜的高度刺激性,这就是“万灵药”阿司匹林。这个例子说明人们已经可以用化学的方法去改变天然产物的结构,使之成为更为理想的药物。1928年,英国细菌学教授弗莱明发现了人类第一个抗生素药物青霉素。虽然弗莱明发现了青霉素,但是青霉素培养液中所含青霉素的量太少,加上他化学底子比较薄弱,一直没法找到富集浓缩青霉素的技术,很难从中提取足够的数量供临床研究使用。因此,弗莱明只好暂时停止了对青霉素的培养和研究工作。
直到1935年,澳洲药理学家弗洛里和侨居英国的德国生物化学家钱恩合作解决了青霉素的富集、浓缩这个技术问题,才使得青霉素真正成为服务于人类的良药。青霉素的大量生产挽救了千百万患有肺炎、梅毒、猩红热等疾病的患者的生命。青霉素的发现被公认为是第二次世界大战中与原子弹和雷达相并列的第三个重大发明。正是因为弗莱明、弗洛里和钱恩对改善人类健康和延长人类寿命所做出的突出贡献,他们三人共同分享了1945年的诺贝尔生理学和医学奖。同样,我国的科学家们在推动医药学的发展和改善人类的健康方面也做出了重要的贡献。2011年,我国药理学家屠呦呦教授获得了仅次于诺贝尔奖的世界级大奖——美国拉斯克-狄贝基临床医学研究奖(LaskerDeBakeyClinicalMedicalResearchAward),以表彰她在青蒿素(Artemisinin)的发现及将其应用于治疗疟疾方面所做出的杰出贡献。这一医学发展史上的重大发现,每年在全世界,挽救了数以百万计疟疾患者的生命。这是迄今为止中国生物医学界获得的世界级最高奖项。青蒿作为药物使用,首次记载于《五十二病方》(公元前168年左右)中,这本书出土于马王堆三号汉墓。书中详细描述了如何用青蒿来舒缓痔疮。在公元340年间东晋医药学家葛洪在其著作《肘后备急方》中,明确记载了青蒿能够治疗疟疾:“青蒿一握,以水二升渍,绞取汁,尽服之。”屠教授正是根据这一段文字记载受的启发,改变了传统的提取方法,在经过190多次的失败之后,于1972年11月8日从青蒿中获得了其有效成分——青蒿素的单体。1973年,作为其结构研究的一部分,屠呦呦对青蒿素的结构进行修饰,得到了双氢青蒿素,其药效比青蒿素高10倍。双氢青蒿素的合成奠定了合成其他衍生药物的基础。1984年初,上海有机所周维善院士课题组实现了对青蒿素的人工全合成。另外一个极为重要的例子就是哈尔滨医科大学第一附属医院中医科张亭栋教授发现As2O3可以治疗M3型白血病的原创性研究。他从民间中医中得到一个秘方:砒霜、轻粉(HgCl)和蟾蜍可用于治疗淋巴结核和癌症。而张亭栋将这个配方主要用于治疗白血病的研究,并分别检测这三种药物在治疗中的作用。通过研究,他发现其有效成分为As2O3,并于1973年在《黑龙江医药》上发表了As2O3用于治疗白血病的开创性论文[4]。1979年,他们在《黑龙江医药》上再次,明确指出As2O3对M3型白血病效果最好,从而清晰地奠定了人类今天的认识:As2O3可以治疗白血病,特别是M3型白血病[5]。1998年美国康奈尔医学院的Soignet教授将张亭栋的研究结果用于临床治疗并将其治疗结果和可能的作用机制发表于世界最权威之一的医学杂志《新英格兰医学杂志》,从而导致了国际医学界广泛接受As2O3对M3型白血病的治疗作用。而且相关药品已经通过美国FDA批准正式上市。
此外,医药史上具有里程碑意义的药物还有很多。例如1908年德国科学家埃尔利希课题组从合成的上千种含砷化合物中筛选出能够用于治疗梅毒的化学药物——砷凡纳明,从而开启了化学合成药物治疗的时代;1911年,波兰化学家CasmirFank在谷物中发现了维生素B1,并且发现缺乏维生素B1会患脚气病,随后新的维生素被不断地分离纯化并进行了结构的鉴定,使人们认识到维生素缺乏与疾病的关系;1932年德国生物化学家多马克发现的第一个磺胺类抗菌药——百浪多息;1963年美国化学家瓦尼(M.C.Wani)和沃尔(MonreE.Wall)从红豆杉中分离到了抗癌活性成分——紫杉醇(taxol)等等,这些重要药物的发现无不与化学的分离和确定结构的技术有关,见证了化学对医学的深远影响和重大作用。化学手段已经成为医学研究的一个非常重要的技术支撑。如可以用先进的化学手段来测定基因的结构、基因的序列,还可以利用化学手段去改变基因的结构,在基因上连接一个小分子或通过基因的对接来改良基因、甚至创造出新的基因。例如我们现在所见的一些转基因的食品——大豆和玉米等都是通过基因的改变来实现的。这些成就将为人类抵抗遗传性疾病及恶性肿瘤等现阶段无法治疗的疾病提供一种可能的方法。生命过程是无数化学变化的综合体现。尽管关于生命起源的学说很多,但是得到现在科学实验强有力支持的就只有“化学进化学说”,即生命是化学反应的产物。1952年,美国科学家StanleyMiller在实验室中模拟原始地球的大气成分和电闪雷鸣的自然环境,将甲烷、氨气、氢气、水蒸气等置于密闭的容器中,进行持续一周的活化放电,得到了氨基酸——这一组成生命不可缺少的蛋白质原料。而且在1965年9月17日,以钮经义为首的我国科学家用无生命的简单有机化合物合成了具有生命活性的结晶牛胰岛素,这一成果为人类做出了划时代的贡献。这些研究结果为生命起源的化学进化学说提供了有力的实验支持。美国著名的有机化学家,哈佛大学E.J.Corry教授(1990年诺贝尔奖获得者)曾经预言:“21世纪,化学将涵盖医学与化学之间的任一事情。”这一预言很快就被美国斯坦福大学医学院医学教授科恩伯格所证实,科恩伯格于2001年首次在分子水平上展示了真核的转录过程,并因此荣获了2006年诺贝尔化学奖。这里我们应该要特别注意的是,科恩伯格是位医学教授,但他却荣获了化学奖。
3化学对医学贡献的未来展望
化学对医学的发展做出了突出的贡献并产生了深远的影响。但是在医学上我们仍然面临着巨大的问题:尽管抗癌药和抗艾滋病的药物已经面世,但是这些疾病还未能完全被控制。生命过程是一个复杂的化学过程,只有生命过程化学的基本问题得到突破才能导致生物学和医学的突破。这一领域可以产生突破的化学基本问题包括:活体内信息分子的运动规律和生理调控的化学机制;从化学进化到手性和生命起源的飞跃过程;如何实现从生物分子到分子生命的飞跃,如何制造活的分子,跨越从化学进化到生物进化的鸿沟;蛋白质和DNA的理论研究等。正如北大校长周其凤先生为庆祝2011年国际化学年而写的歌词《化学是你,化学是我》中所描述的那样:“你我的身心健康是化学密码解锁,是化学为生命密码解锁。”因此,我们有理由相信,随着化学学科的不断发展,在未来的生命科学中,化学必将为我们揭开生命的奥秘,为研制治疗绝症的灵丹妙药而再铸辉煌。
作者:秦向阳单位:第四军医大学药学院