时间:2022-09-07 04:16:19
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇无人机遥感技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:微型多旋翼;环境监测;飞行控制系统
中图分类号: TP79 文献标识码: A 文章编号: 1673-1069(2016)31-146-2
1 无人机的定义
无人驾驶航空器简称无人机,英文的缩写为UAV(Unmanned Aerial Vehicle)。无人机具有受气候的影响小,效率高反应速度快、能准确定位、准备工作简单、操作控制容易等特点。整个系统运行稳定,经济性能高,可以在小面积区域、兴趣地点悬停重点拍摄。
2 无人机的分类
①水平起降式:水平起降式机翼为固定式。优点:飞行速度快,可以进行高空飞行,动力效率比高,续航能力强。缺点:受空气流动影响较大,无法悬停在指定位置,对目标只能进行“盘旋观察”在复杂地形飞行时需要操作难度高,微型固定翼UAV限于效果的比例,身体容易跟随流线和角运动,进而影响其稳定性,难以获得连续稳定清晰的图像。对起飞和降落场地要求较高,要求起飞及着陆航线平整且无障碍物,且发射或降落时需要考虑风向、风速问题,限制较多。②垂直起降式: 垂直起降式机翼为旋翼式。优点:低空空气流动对其影响较小,可在空中悬停。可以在兴趣目标点进行“悬停凝视”观测,可以获得连续稳定清晰的图像,有利于小目标或局部区域的细致观测。具有垂直起降能力,可以在恶劣的场地进行起降,对气象条件要求低,具有较广的应用范围。缺点:机翼载荷比水平起降式高,动力效率比低,无法滑行,为减少自重,续航力低,控制系统复杂,容错率低,容易出现故障。
在多种类的无人机中,四旋翼无人机是目前研究最为广泛、用途最多的一种。四旋翼无人机由于能够垂直起降、自由悬停,适应不同的情况,在不同的环境下自由转向和调速。
3 无人机工作原理
3.1 系统概述
无人机飞行控制系统是无人机的核心,飞行控制系统通过采集飞行器的姿态、速度、压力、转速等信息,传输给飞行控制处理器,由处理器解算并发出控制无人机飞行状态的指令,并且通过无线数据通信系统可以向地面站实时传输无人机的飞行参数和功能传感器所探测的目标信息;另一方面,地面站也可以根据需求向无人机发送指令,控制无人机姿态、航向,到达指定地点进行拍摄或探测。整个飞行控制系统的设计是无人机的关键,是地面站与机上飞行控制系统的综合,飞行控制系统的好坏直接决定着无人机的质量。
3.2 无人机探测系统搭载原理
3.2.1 无人机遥感技术
无人机的遥感技术是将传感器技术、遥测遥控技术搭建在无人机技术的平台上,并运用计算机技术进行运算控制,通过通信技术完成信息传输及存储,可迅速、自动、智能地获取相关的环境空间信息,采集数据和应用处理。无人机续航时间长、能实时传输影像,具有成本低、高分辨率、机动灵活等特点,在高危地区探测具有较好的应用前景。
3.2.2 利用高分辨CCD相机系统获取遥感影像
无人机通过控制系统可以实现影像的自动拍摄和获取,通过航迹的规划实施监控,将采集的信息数据进行压缩和自动传输,还可以完成影像预处理,可以在水域环境监测提供环境信息,为各级环境部门环境检测提供便利,并可满足环境应急响应的需求。
3.2.3 数据融合生成三维立体空间图
地面站系统搭载了数据融合软件系统,该系统将传回的传感器数据和位置信息等数据,进行数据融合,生成立体三维空间图,直观展示各类信息,便于数据分析。
3.3 微型多旋翼无人机系统使用目标设定及定位
卫星及传统航空器在复杂水域、面积相对小且污染类型多样的区域拍摄不清晰,无法达到分析要求,无人机飞行器可以在复杂区域完成悬停凝视,拍摄连续稳定高像素图像,更能细致对进行目标区域进行监测。
四旋翼无人机携行方便,不受使用场地约束,最高可在6 级风力情况下使用,在阴云、雾霾能见度不良天气情况下,可以低空或贴水面飞行,获取水域环境的高清晰图像,可以实时追踪和监测突发环境事件的发展。同时借助地面站外部通信设备将无人机实时拍摄巡查地点的高清图片通过网络进行转播或存储。
3.4 无人机的优点
①多旋翼无人机通过采用GPS 模块实现了空间定位功能;将网络通信、自动控制、物联网及软件技术,集成在多旋翼无人机上,利用无人机灵活性特点,以点及面,就可以无死角、全方位地探测目标区域环境条件状况,实现定时定点采样,极大减小了控制生产成本和系统功耗。②数据融合生成立体三维空间图;特有设计了地面站系统,实时显示无人机传回的传感器数据和飞机当前位置信息等,同时进行数据融合,直接将数据以立体三维空间图直观展示,环境各参数指标一目了然。
4 微型多旋翼无人机的操作注意事项
本文以大疆精灵Phantom 4为例,介绍无人机的使用方法:无人机具体参数如表1。
①在目标地点附近起飞,飞行范围是以起飞点为中心高度120m以下,半径500m 范围内。②四旋翼飞行器可以垂直起降,在目标区域附近垂直起飞,到达预定高度后,飞往目标地点,对目标地进行检测。在检测过程中可以根据现场环境调整无人机的高度,便于获得更清晰的图像。在飞行过程中要注意于其他建筑或固定障碍物保持20-30m的安全距离,与运动的障碍物需要保持500m的安全距离。在一次出动微型多旋翼无人机时,需要在各组间设立指挥员,协调各组的飞行范围,保证任务顺利。③受电池约束,该型号无人机只能持续飞行28分钟,信号接收范围为3.5公里,在飞行时注意飞行时间和距离的控制,避免因没电或超出控制距离造成损失。
5 多旋翼无人机在水域环境监测中实际的应用
5.1 无人机在水产养殖区的应用
在水产养殖区域,水域环境检测尤为重要,以水草为例,水草作为大多鱼类的食物,可以很好地促进鱼类的生长,当水草超过一定数量,会造成水层缺氧,并加速水草死亡,造成水质变坏,不利于鱼类养殖。所以鱼塘需要实时监视水草数量,人工划船或观望难以做到全局观测,结果比较片面,使用无人机对水域进行全局探测,快速了解鱼塘整体情况,也可以在局部进行悬停并凝视,确定水草生长情况,获得鱼塘准确信息并及时制定应对措施。
5.2 无人机在环境检测的应用
沂河流经临沂沂水、沂南、临沂市区,临沂段全长284公里,流域面积7425平方公里,集水面积2872平方公里,河面最宽达1540米;被临沂人民誉为"母亲河"。是临沂重要的淡水资源,该河两岸附近分布着工场和众多的居民地,存在排污问题。对沂河的环境检测尤为重要,通过无人机技术可以快速地获得沂河流域环境情况,对保护水资源具有重大意义。
6 结论
水域环境监测需要对目标区域进行全局观测和量大的局部观测,要想获得大量高质量的局部观测信息,就需操作灵活,可控制性高的无人机系统组来完成。可以预见的是微型多旋翼无人机将会得到大量应用,而且未来微型多旋翼无人机的发展方向将是智能化、多样化的空中机器人群组。
参 考 文 献
[1] 高鹏骐,晏磊,赵红颖,何定洲.无人机遥感控制平台的设计与实现[A].第十五届全国遥感技术学术交流会论文摘要集[C].2013.
[2] 黄爱凤,邓克绪.民用无人机发展现状及关键技术[A].第九届长三角科技论坛――航空航天科技创新与长三角经济转型发展分论坛论文集[C].2012.
关键词 地理信息系统;遥感;林业生物灾害;精确管理
中图分类号 S763 文献标识码 A 文章编号 1007-5739(2016)11-0195-01
1 地理信息系统发展概述
地理信息系统,即Geographic Information System,Geo-Information system,或者GIS。广义的是指地理空间信息管理系统,通常意义上的是狭义的,是指获取、存贮、查询、分析和显示地理空间数据的信息处理系统。最早的可操作的地理信息系统,是20世纪60年代初,Tom Linson为加拿大土地勘查局存贮、操作和分析数据开发的CGIS。随着计算机图形学的发展,地图叠置和拓扑网络分析等空间分析方法的引入,以及行式打印机和笔试绘图仪的研发,GIS技术日臻成熟。在众多的GIS平台中,Esri的ArcGIS为用户提供了一个可伸缩的、较为全面的GIS平台,被广泛用于交通、水利、电信、物流、国防、气象、应急救灾、环境、科研、教育等行业的地图生产、数据分析与共享[1]。
2 当前国外地理信息系统应用
GIS最先主要用于土地利用规划、野生动物栖息地分析、自然灾害评估、林木管理与河流监控等自然资源管理领域,如美国地质调查局通过国家地图项目,提供了全美范围内的地理空间数据,应用于跨领域的野火分析、土地利用、气象与水文信息服务等自然资源管理领域。随着GIS应用领域的不断拓展,GIS很快被用于灾害风险分析、紧急救援、犯罪分析、公共健康管理、环境管理、地籍管理、交通应用、精准农业。再加上空间定位技术和互联网的普及与GIS的融合,GIS很快应用于各领域的导航服务,尤其是当今智能手机和车载导航仪的普及,GIS的导航应用已经成为普通民众不可缺少的出行工具之一。
3 国内林业生物灾害监测中地理信息系统的应用
在国内的林业生物灾害管理中,GIS的应用起步较晚。最早主要用于林业生物灾害的数据统计与显示,如武红敢等[2]利用安徽省潜山县的二类森林资源清查基础数据,研发了森林病虫害监测与管理系统,用于林业生物灾害监测的数据统计、报表与制图。骆社周等[3]研发了基于GIS的松毛虫管理系统,主要用于预测并在地图上显示马尾松毛虫的发生状况。孙浩忠等[4]则提出了利用GPS和GIS绘制县级森林病虫害监测网点位置图的方法。覃传恒[5]开发了基于GIS的广西森林病虫害管理信息系统,用于林业生物灾害监测的数据采集、查询与统计制图。
随着ArcGIS在林业系统的普及,ArcGIS的空间分析工具也逐渐应用到林业生物灾害管理之中。马菁[6]在GIS的信息量模型对林业生物灾害空间预测方面进行了探讨性研究。李浩明[7]开发了基于ArcGIS Server的林业病虫害遥感监测与预测系统,实现了落叶松锉叶峰(Pristphora Iaricis)发生和预测空间数据的显示、查询、空间分析和组织管理等功能。张国庆利用ArcGIS的空间分析工具,对安徽省潜山县第三次林业有害生物普查数据进行了统计分析(图1),并结合历年发生数据,将其应用于2016年的林业生物灾害长期预报、中期预报和短期生产性预报(图2)[8-10]。
4 林业生物灾害地理信息系统应用展望
4.1 ENVI 5.2与ArcGIS一体化集成
随着遥感技术的发展,3S技术(Remote Sensing,RS;Geographical information System,GIS;Global Positioning System, GPS)广泛应用各个行业。尤其是近年来,Exelis Visual Infor-mation Solutions公司的ENVI 5.2的,实现了与Esri的 ArcGIS平台的融合,使得遥感影像和图像分析功能可以作为核心组成部分,与ArcGIS一体化集成。
4.2 TSE在林业生物灾害精细化管理中的应用
张国庆[11-19]在提出复杂系统生态论的TSE分析方法(TSDA,Time-Space Dynamic Analysis About Event)的同时,并将其应用于包括林业生物灾害在内的生态系统精确管理方法,运用一体化的ArcGIS和ENVI集成平台,建立林业生物灾害TSE精细化预测预报模型,采用PDCS(Plan,Do,Check,Study)循环,不断提高遥感数据解析的精确度和GIS数据管理的精细度,通过系统关键因子分析,实现林业生物灾害精细化管理。
4.3 GIS在林业生物灾害精确管理中的应用趋势
GIS在林业生物灾害精确管理中的应用,是林业生物灾害精确管理未来发展趋势。笔者认为,在数据获取方面,对于大尺度空间的监测,可以使用高分卫星影像数据,快速获取林业生物灾害发生信息;对于小空间尺度的监测,可以根据需要,采用化学、物理诱集,在线视频监测,航空遥感,或者局地无人机超低空遥测。在数据分析方面,采用TSE方法,引用新的数学分析技术,对上述数据进行建模分析,获取较为精确的预测预警模型,实现林业生物灾害的精细化预报,为林业生物灾害精确管理提供可靠的依据。
5 参考文献
[1] KANG-TSUNG CHANG.Introduction to Geographic Information Systems[M].New York:McGraw-Hill Companies,2008:2-15.
[2] 武红敢,石进,蒋丽雅,等.3S技术在安徽省森林病虫害监测与管理中的应用[C]//昆虫与环境:中国昆虫学会2001年学术年会论文集.北京:中国昆虫学会,2001:298-304.
[3] 骆社周,申维,郑晖,等.基于GIS的松毛虫管理系统的设计与开发[J].江西农业大学学报,2006(2):152-155.
[4] 孙浩忠,周燕萍,兰桂芬,等.GPS与GIS联合进行森林病虫害监测图件制作[J].农业网络信息,2008(11):28-29.
[5] 覃传恒.基于GIS的广西森林病虫害管理信息系统研究[D].南宁:广西大学,2008.
[6] 马菁.基于GIS的信息量模型在森林病虫害空间预测中的应用方法研究[J].林业调查规划,2014(5):44-47.
[7] 李浩明.基于ArcGIS Server的林业病虫害遥感监测与预测系统的设计与实现[D].北京:北京林业大学,2011.
[8] 潜山县国家级森林病虫害中心测报点.2016年潜山县林业生物灾害发生趋势预报[EB/OL].(2016-01-01)[2016-05-02].http:///index.php?m=content&c=index&a=show&catid=21743&id=720.
[9] 潜山县国家级森林病虫害中心测报点.2016年上半年潜山县林业生物灾害发生趋势预报[EB/OL].(2016-01-02)[2016-05-02].http:///index.php?m=content&c=index&a=show&catid=21743&id=721.
[10] 潜山县国家级森林病虫害中心测报点.潜山县2016年思茅松毛虫发生趋势预报[EB/OL].(2016-01-18)[2016-05-02].http:///index.php?m=content&c=index&a=show&catid=21743&id=729.
[11] 张国庆.复杂系统生态论方法及其应用[J].现代农业科技,2013(11):190-193.
[12] 张国庆.生态论:复杂系统研究[EB/OL].(2013-03-27)[2016-05-02].http:///data/attachment/home/201304/01/082301npp1 3fnh5bllmra3.attach,http:///home.php?mod=space& uid=3344&do=blog&id=674444.
[13] 张国庆.发展学基本理论研究[EB/OL].(2013-07-18)[2016-05-02].http:///home.php?mod=attachment&id=39087,http:///home.php?mod=space&uid=3344&do=blog&id=709128.
[14] 张国庆.发展学基本理论与我国当前农村发展问题研究[J].现代农业科技,2013(17):303-313.
[15] 张国庆.基于高分数据与TSE方法的生态系统精细化管理技术研究[EB/OL].(2015-03-07)[2016-05-02].http:///home.php?mod=space&uid=3344&do=blog&id=872568.
[16] 张国庆.基于TSE分析理论的林业生物灾害精细化预报技术研究[J].现代农业科技,2014(20):153-155.
[17] 张国庆.基于生态论的生物灾害精细化预报理论研究[J].现代农业科技,2014(20):146-150.
关键词:普通植物病理学;教学改革;教学内容
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)12-0090-03
《普通植物病理学》是中国农业大学农学与生物技术学院本科生的专业基础课,要求学生掌握植物病理学的基础理论和基本知识。根据本科生所选专业不同,教学内容有所侧重。笔者长期从事农学专业本科生《普通植物病理学》的教学工作,课程教学以普通植物病理学基础知识为核心,并适当结合农学专业学生的实际情况,对主要作物的重要病害进行讲授,内容分为总论和各论两部分。总论部分主要讲授植物病害基本概念、基本理论,包括植物病理学的发展历史、植物病害的概念、植物病害症状学、病原学、诊断学、流行学和防治学等。各论部分主要按照作物种类对主要植物病害进行讲解,包括水稻病害、小麦病害、棉花病害、杂粮作物病害、果树病害、蔬菜病害等。
《普通植物病理学》是一门综合性较大、基础性较强、知识面广泛、实践性较强的课程。随着社会经济的迅速发展、科技水平的迅猛提高、各种先进技术和方法的广泛应用,新知识、新概念、新观点、新技术和新方法等不断涌现,植物病理学新的研究成果不断出现,学科得到迅速发展,《普通植物病理学》的理论不断得到丰富,内容日益更新。经济社会的发展和科技的进步对人才的需求亦提出了新要求。为适应形势需要,我校将本科人才培养定位为“宽口径、厚基础、重创新、强实践、国际化”。因此,在教学过程中,笔者必须与时俱进,根据学科发展和现代社会对大学生素质的需求,在制定的教学大纲的基础上,及时更新教学内容,将新知识、新概念、新观点、新技术和新方法充实到教学内容中,为学生提供符合时代需要的课程体系和教学内容。
笔者通过参考最新教材,收集相关文献资料,了解学科进展,不断跟踪最新相关研究成果,将植物病理学新知识、新概念、新观点、新技术和新方法等融入到《普通植物病理学》教学体系,实现教学内容的更新,并提供相关内容的参考文献,供学生深入学习和阅读。
一、植物病原分类系统的更新
植物病原种类多,分类系统复杂。随着人们认识水平的提高,植物病原分类系统不断变化。例如,之前我国在《普通植物病理学》的教学中大多采用Ainsworth的真菌分类系统,将真菌归属于真菌界,下分黏菌门和真菌门两个门,真菌门再分成鞭毛菌亚门、接合菌亚门、子囊菌亚门、担子菌亚门和半知菌亚门共5个亚门,但是《Dictionary of the Fungi》第9版将分子生物学研究的最新成果应用到真菌分类上,将原来的真菌划归三个不同的生物界,即原生动物界、藻物界(假菌界或管毛生物界)和菌物界,并且这一分类系统逐渐被认同,在最新出版的《普通植物病理学》教材中均采用了这一分类系统。同样地,随着学科发展和技术进步,植物病原细菌和植物病原病毒的分类系统也都有了较大的变化,并且不断有新的属、种报道。所以,应该对教学内容中的植物病原分类系统进行及时更新。韦继光等[1]认为普通植物病理学教学内容应该紧跟学科发展步伐,从病原学方面,介绍了植物病原菌物、植物病原细菌和植物病原病毒的分类变化等。笔者在教学过程中,亦将植物病原菌物、植物病原细菌和植物病原病毒分类变化和最新进展补充到教学内容中,使得学生能够及时了解植物病原生物分类系统的变化,紧跟学科发展步伐。
二、吸纳最新的学科研究成果,丰富植物病理学基础知识和理论
技术的进步和学科的发展,使得植物病理学新的研究成果不断出现,这其中有对某些知识的重新认识,有对某些知识的扩展,有对技术手段和方法的更新等。例如,近几年小麦条锈病菌转主寄生现象的研究新成果彻底改变了人们的认识,认识到小麦条锈病的转主寄主有小檗[2,3]和十大功劳[4],小麦条锈病菌整个生活史中转主寄生现象不容忽视,其生活史过程中产生性孢子、锈孢子、夏孢子、冬孢子和担孢子5种孢子类型,并且转主寄主小檗在我国分布广,种类多,这方面的最新研究使得人们对于小麦条锈病菌的变异和小麦条锈病的病害循环等有了重新认识。2004年,Sesma和Osbourn[5]在Nature杂志上发表文章介绍了他们的研究结果。该研究发现,稻瘟病菌可用侵染叶表不同的方式侵染水稻根部,形成根部病原菌所特有的侵染钉,并且侵染维管束组织,导致系统侵染,这一发现使人们认识到真菌可以改变侵染策略,改变其生态位,促进了植物病害流行学的发展。近年来,寄主植物与病原生物互作研究得到了长足发展,在讲授这部分内容时,补充了寄主植物与病原生物的识别机制,包括病原生物关联分子模式(pathogen-associated molecular pattern,PAMP)、病原生物效应分子识别等。在讲授植物抗病性时,重点补充了植物抗病性的分子机制,包括植物抗病防卫基本信号通路、基因沉默、活性氧迸发等。我国对植物检疫对象名单进行了重新制定,植物检疫对象发生了很大变化。2007年5月29日我国农业部《中华人民共和国进境植物检疫性有害生物名录》,1992年7月25日由农业部的《中华人民共和国进境植物检疫危险性病、虫、杂草名录》同时废止。2009年我国农业部新的《全国农业植物检疫性有害生物名单》和《应施检疫的植物及植物产品名单》,该次的全国农业检疫性有害生物名单与2006年的相比,总数量由43种下降到29种,减少了14种,其中撤消了15种,新增1种,更改2种。在讲授植物检疫部分时,及时补充了有害生物风险分析的理论知识,更新了植物检疫对象名单。由于分子生物学技术和信息技术的发展,植物病原鉴定技术、病害诊断技术有了很大的进步,在教学过程中补充了基于分子生物学技术的病原鉴定方法和基于信息技术的植物病害诊断方法。同时,将基于分子生物学技术和遥感技术的病害监测方法以及基于新媒体技术的病害测报新技术和新方法纳入到《普通植物病理学》的教学内容中。在讲授植物病害发生原因分析和病害流行时,补充了气候变化对植物病害发生流行的影响。在讲授植物病害防治技术和方法时,补充介绍了利用生物多样性控制植物病害、无人机喷药防治病害等内容。对讲授的植物病害种类进行适当调整,增加新的重要性植物病害种类,按照植物病害的发生与危害性、病害症状、病原特征、发生流行规律、预测预报、防治等系统地进行知识组织。
三、植物病害防治理念的更新
随着社会发展和科技进步以及人们对农业安全生产的关注,并且随着气候变化、农业产业结构调整、种植制度和栽培方式的改变等,一些新的病害成为农业生产中的重要病害,植物病害防治理念不断地发生着变化。人们从过去的吃饱需求,过渡到现在的吃好需求,从追求农产品的产量,过渡到不但追求产量,更关注质量,这就要求农业生产过程中植物病害防治必须适应这些需求的变化。我国的植保方针是“预防为主,综合防治”,一般在《普通植物病理学》的教学中主要介绍有害生物综合治理(integrated pest management,IPM)和有害生物可持续治理,近年来,国际上提出了有害生物生态治理(ecologically based pest management,EBPM)的理念,我国提出了“公共植保、绿色植保”的理念,以构建我国新型植物保护体系。这些新的理念的提出受到广泛重视,特别是我国在有害生物治理方面,主推“公共植保、绿色植保”的理念,所以,根据形势发展,需要在《普通植物病理学》教学中更新植物病害防治理念。2012年10月25日,我国农业部余欣荣副部长在中国植物保护成立50周年庆祝大会暨全国农作物重大病虫科学防控高层论坛上发表讲话,要求全面树立“科学植保、公共植保、绿色植保”现代植保理念,进一步推进了有害生物治理的理念的发展。在教学中,结合社会关注的生物安全问题,补充了植物病害管理对生物安全产生的积极或消极作用[6],启发学生对相关问题进行思考。
四、教学幻灯片的更新和补充
根据更新的教学内容,笔者对教学幻灯片进行了更新和补充。通过网络收集和自己拍摄植物病害症状和病原数码图片,更新和补充了大量病原和病害图片,使其能更加清晰地反映病害的各种症状和病原的形态特征,更好地反映教学内容。对一些研究热点和研究前沿问题,提供了参考文献,供学生进行阅读和更好地了解教学内容。并且,加强了多媒体教学手段利用,制作或收集了一些动画和视频,用于反映病原释放过程、病原侵入过程、病原传播过程和病害发生过程等。教学过程中,通过播放动画、视频等,增强了教学直观性,更加形象地表达了相关教学内容,并收到较好的教学效果。笔者经过近两年的努力,制作成了一套形式更加新颖、内容更加丰富、图像更加清晰的幻灯片。
任课教师应根据学科发展动向和前沿,了解学科最新研究问题和热点,特别是对于一些理论性或改变过去认识的研究进行了解,及时更新教学内容。然而,每年都有大量的植物病理学方面的文献发表,同时也有大量与植物病理学有关的文件、规范、法规等,信息量非常多,从中选择具有重要意义的文献资料困难很大,要较好地完成《普通植物病理学》教学内容的更新,做好关于植物病理学学科新进展的文献资料的甄别和筛选尤为重要。由于任课教师有自己的研究方向和重点,很难全面了解整个学科的发展动态。因此,加强多个高校有关任课教师的教学工作交流,对于促进教学将具有重要意义。
与更新教学内容相配合,笔者也进行了教学方法的改革。笔者在教学过程中,综合利用启发式、讨论式、参与式等多种形式的教学方法,注重传统知识和科学前沿知识相结合,注重基础知识和实际应用相结合,充分调动学生的积极性,提高学生的学习兴趣,克服由于课堂学生多、学生缺乏兴趣造成的教学效果较低的现象[7]。詹刚明等[8]在教学中注意了语言技巧的应用,笔者也注意了同样的问题,并在教学中加以实施,活跃了课堂气氛,加深了学生对知识点的印象和认识。同时,笔者对课程考核方式进行了改革,将考核方式改为平时作业、课程论文、期末考试(各占总成绩的20%、20%、60%)相结合的考核方式,可在整个教学过程中进行考核和考察学生对知识的掌握情况,避免了学生期末考试临时突击、片面追成期末考试成绩的弊端。另外,笔者根据更新后的教学内容,设计构建了《普通植物病理学》考试系统,实现了试卷自动生成和计算机辅助阅卷。为加深学生对课堂讲授的《普通植物病理学》理论知识的学习,同步开设了《普通植物病理学实验》课程,使学生通过实验操作和实际观察,达到了理论联系实际、学以致用的目的,取得了良好的教学效果。
参考文献:
[1]韦继光,袁高庆,赖传雅,等.普通植物病理学的教学内容需紧跟学科发展步伐[J].广西农业生物科学,2007,26(增刊):188-190.
[2]Yue J.,Szabo L. J.,Carson M.Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host[J]. Phytopathology,2010,100(5):432-435.
[3]Zhao J.,Wang L.,Wang Z.Y.,et al. Identification of eighteen berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China[J].Phytopathology,2013,103(9):927-934.
[4]Wang M.N.,Chen X.M.First report of Oregon grape (Mahonia aquifolium)as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici)under artificial inoculation[J]. Plant Disease,2013,97(6):839.
[5]Sesma A.,Osbourn A.E.The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi[J]. Nature,2004,(431):582-586.
[6]王海光,马占鸿,黄冲.植物病害管理与生物安全[J].植物保护,2007,33(3):1-7.