HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 无线通信论文

无线通信论文

时间:2022-08-19 05:08:24

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇无线通信论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

无线通信论文

第1篇

[论文摘要]随着现代科学技术的飞速发展,构建完善坚强可靠的电力通信网,显得越来越重要。文章结合电力通信的特点和需求及无线新技术的特性,分析无线通信技术在电网通信中的应用前景。

一、概述

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。

(七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

从天线技术上看,仅仅3G和WiMax技术采用了MIMO技术,而其他技术均未采用MIMO技术;从传输环境上看,仅仅WiMax技术和3G技术支持非视距传输,其余技术均要求视距传输环境;从网络安全和QoS机制上看,WiMax技术和3G技术在这方面做得比较优秀、完善,其余的均存在较大的问题。

第2篇

1.13G技术

3G技术是第3代移动通信技术,经过近几年的发展,3G的应用已非常成熟,积累一整套的包括计算机仿真、传播模型预算、网络的链路预算在内的建网的理论,3G技术在静止状态下最大传输速率为2Mbps,在步行慢速移动的状态下最大传输速率为384kbps,在高速移动状态下最大传输速率为144kbps。

1.2Wi-Fi技术

无线局域网又称作WLAN。相对于3G技术,Wi-Fi技术更加稳定、灵活,其通过无线技术把计算机设备、移动终端设备相互连在一起,以便能更好地进行通讯和资源共享。WLAN主要利用ISM无线电广播频段通信,通信的范围一般设定在同一栋建筑物内。WLAN的最高标准是IEEE802.11a,其次是IEEE802.11b和IEEE802.11g,频段依次是5GHz、2.4GHz、2.4GHz,最大的传输速率是54Mb/s、11Mb/s、54Mb/s。IEEE802.11b的网络一般都符合Wi-Fi的要求,也是当前最常见的WLAN标准。IEEE802.11b无线网络采用2.4GHz的波段,其能根据信号和干扰的强弱对带宽进行调整,最高是11Mbps,也可调整为1Mbps、2Mbps、5.5Mbps。带宽的自动调整大大提高了网络的灵活性。

1.3WiMAX技术

WiMAX技术不仅能实现优良的最后一公里网络接入服务,还可以进行大面积的信号覆盖,同样的覆盖面积,WiMAX网络所需要的基站更少。理论上,WiMAX最长的通信距离能超过30英里,在实际的应用已达到10英里,其数据传输速率比3G、Wi-Fi都要高很多,通信的方式是点对点和点对多点,这里的地点是固定的[1]。在美国,WiMAX开始了包括私人固定网络在内的商用应用,这些应用更多地侧重覆盖范围的扩大所以,WiMAX网络能实现大面积的室内室外同时覆盖,WiMAX超远距离传输数据的能力是其优于3G、Wi-Fi的主要特征。这尤其适合配网通信的需求,使得WiMAX技术在配网通信中具有广阔的应用前景。作为无线城域网,WiMAX并不由国家工信部进行具体的监管,其主管单位一般是当地的无线电管理机构,这就使得电力企业申办WiMAX牌照简单很多。电力企业可利用WiMAX构建企业内部的无线配网通信专网,可有效避免3G公共网络的不稳定性和Wi-Fi射频传输数据存在的弊端[2]。WiMAX基站的覆盖范围能达到6~10km,能满足分散各处的配网通信节点传输数据的需要。

二、3G、Wi-Fi、WiMAX技术的对比

尽管我国的3G技术已非常成熟,但与Wi-Fi、WiMAX相比,其传输速率较低、信号不稳定。相对于3G技术,Wi-Fi技术更加稳定、灵活,但是它的通信范围一般限定在同一栋建筑物内。另外,与3G、WiMAX相比,Wi-Fi具有较高的安全隐患,黑客很容易就能通过WLAN网络侵入,盗取系统信息,甚至破坏通信网络的运行。与Wi-Fi相比,WiMax的覆盖面积更大,与3G技术相比,覆盖单位面积WiMAX所需的基站更少,且WiMAX的最大传播速率是75Mbps,远远高于3G、Wi-Fi的传播速率。

三、结语

第3篇

1.1移动终端的硬件平台饱受威胁。当前,移动终端的硬件平台普遍缺乏验证机制与保护机制,以至于部分模块固件被不发入侵者肆意篡改,加之终端内部的通信接口未形成集聚完整性与机密性的保护机制,导致移动终端内传出的信息被黑客窃听,对其基本安全性造成极大威胁。

1.2由于4G无线系统包含着许多种类,但操作系统的安全性却相对匮乏,因而出现了许多漏洞,而且这些漏洞具有公开性特征。

1.34G无线系统的移动终端具备支持多种无线应用的功能,例如电子邮件、电子商务等。假使这些无线应用本身在程序方面存在着漏洞或安全隐患,同样会对4G无线通信的网络安全性造成极大威胁。

二、提升4G无线通信网络安全性的主要策略

由于有线网络和无线网络在基本特性方面存在着较大差异,因此在设计无线通信的网络安全方案时,应当充分考虑其兼容性、安全性以及效率性等因素,从而最大限度提升4G无线通信的网络安全性。

2.1研发与利用加固型操作系统

为了规避安全问题,在选择操作系统时,应选择满足TMP需求的操作系统,能够支持远程验证、区域隔离以及混合访问控制等操作。

2.2采取硬件物理保护措施

通过加大无线通信测试平台硬件的集成度,减少存在攻击威胁的接口数量,并适当增加电压、电流以及温度,以此方式达到检测电路的目标,以防采取物理检测措施时被攻击。此外,针对TPM和全球用户识别卡中的相关数据,还应当根据安全级别进行销毁处理。

2.3不断加固硬件平台

把中国移动互联网可信应用平台视作网络安全问题基本防护对象,除了对其进行全方位检测以及可信启动之外,还应予以存储保护等安全措施。同时,由于4G无线通信的核心网是TD-SCDMA,尽管不对称管制、起步晚以及备受怀疑等主客观因素对其发展产生了一定的影响,但TD-SCDMA的整体发展趋势十分明朗,同时还取得了较大成功。而随着TD-LTE的不断推行与普及,其发展事态已远远超过TD-SCDMA,全球范围内TD-LTE的商用网络总数已达到13个,其发展与应用必定会成为大势所趋。

2.4提升通信服务效率

由于无线通信的网络资源有限,为了提升网络资源的可靠性、安全性与有效性,首先应当控制安全协议的信息交互总数,确保安全信息的精准性与短小性。其次,控制移动终端的任务数量,针对4G无线通信的网络终端制定明确的标准,要求其计算能力具备明显的非对称性。最后,针对处于闲置状态的移动终端,必须加以有效利用,从而实现预计算、预认证的目标。

三、结束语

第4篇

1.1城市4G无线通信接入网络的安全威胁

在接入网络中,用户可以在同一网络内和不同网络间任意地漫游和切换,已经完全控制某个系统的攻击者通过生成RRC(RadioResourceControl)信令的方法向ME发起重配置过程,制ME切换到安全性较弱的传统网络中,并且将ME引进攻击者已经控制的网络或系统中。比如当前EPON网络中OLT设备往往是多个逻辑OLT的集合,可选加上交换芯片,集成交换机或路由器的功能,与核心网络的接口称为SNI(系统网络接口)。ONU设备一般为单个逻辑ONU设备,提供UNI(用户网络接口),SNI、UNI口可以为以太口(数据)、POTS口(语音)、RF(视频)接口,可选和交换机、路由器、其他特定功能的网络终端集成。

2接入网技术在城市4G无线通信中的应用体系建立

2.1常见安全机制

采用临时身份或加密的永久身份信息实现用户的身份隐藏。通过使用数字签名技术可以实现信息的防抵赖性。通过数字管理技术、加密技术、消息摘要技术可以实现数据完整性。通过加密技术和安全信道可以实现数据的机密性。通过认证机制实现通信参与方在数据交换之前的身份鉴定过程。比如当前某某城市联通移动核心网新建的第一套4GHSS(用户归属服务器,是4G移动网的核心网元)顺利割接入网,经过近期运行观察,性能良好,各项话务指标都在正常范围。割接完成后,现有用户不换号就可以享受联通4GLTE网络,对整个4G网络建设进度具有里程碑式的意义。

2.2系统总体设计

对于开发下一代产品的验证平台,对于城市4G无线通信接入网络,强大的硬件运算能力和大容量存储以及高速的数据传输能力都是必须的,因此在器件选型的时候就选择了业界较为先进、处理能力高、集成度大、功耗低和工艺新的器件。比如TMS320DM8168多媒体处理器具有一颗CortexA8内核和一颗C674X系列的DSP,其中电源是整个电路能否正常稳定工作的核心,这个部分着重讲了验证平台所选取的电源芯片以及周边电路,同时分析了各个支路的电流和上电顺序,以确保电路能够正常稳定的工作。验证平台的PCB设计主要包括器件布局,层叠结构设计等。外设部分主要包含了存储系统和配置电路。存储系统为软件运行提供了足够的运行空间,配置电路为FPGA的程序下载提供了一条高速公路,减少了程序员的开发时间。接入网系统是芯片与芯片或者芯片与外设信息交换的桥梁,这部分主要介绍了验证板所使用的各种接入网方式同时分析了接入网系统的硬件性能。

2.3接入网系统设计

接入网系统是芯片与芯片之间以及验证平台与外设之间数据传输的系统,一个接入网系统的优劣直接决定了整个系统的数据传输能力以及性能。目前所用的系统间或者芯片间的接入网方式很多,例如UART、I2C、SPI等,这些都是速度比较低的接入网接口协议,而现代的多媒体时代需要更高速的接入网接口比如USB2.0、USB3.0、SATA、PCIe、SRI/O等。TMS320DM8168主板上的PCIExpressx2接口,每条串行线路的数据传输率最大可传输5Gbps的数据,该接口用于和外设进行高速数据传输。目前,中国移动已经启动了全国范围内4G网络技术的试点应用,正准备快速在全国范围内推广。“4G”TD-LTE的最大特点是高速数据传输服务,是现有3G网络的十倍。同时可以通过手机等各种终端获得无线高清视频体验,十分流畅清晰。4G无线网络的部署是在运营商的4G网络基础上对覆盖点进行网络的延伸,增加4G网络路由器通过无线方式与监控平台互联,通过运营商的宽带网络实现信息传输。在4G网络未覆盖到的区域可以通过3G网络作为补偿进行承载,可根据3G网络带宽情况灵活调整信号的方式和容量。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线监控方式。

3结语

第5篇

如果能在单一架构下管理多个无线网络的实时数据,或者说在单一架构下管理统一后的单一无线网络的实时数据,应该是过程行业用户一致的要求,所以我们说多种无线通信技术标准的融合是一个大趋势,它可以提供远程操作的更高可靠性和更低成本。三大无线国际标准合作的技术基础原本是存在的,因为ISA100.11a、WirelessHART和WIA-PA的底层协议都是IEEE802.15.4,而提供芯片和通信协议栈的商家往往同时提供这几种技术的部件,即使是在ISA100.11a、WirelessHART和WIA-PA阵营内,还包括有很多相同的会员。作为ISA100的核心成员单位的尼维斯(Nivis)公司一向以其管理和优化网状网络的软件而闻名,同时在利用ISA100.11a、WirelessHART和6LoWPAN开发基于标准的无线网状通信堆栈方面拥有丰富的知识和能力。

尼维斯公司目前是我们所了解到的唯一同时提供ISA100.11a和WirelessHART两种流程行业无线产品供应商,比如其无线节点和路由器用在ISA100.11a和WirelessHART的型号是相同的,使用户能够在单一的硬件上运行任何一种标准。如VersaRouter910路由器既支持Nivis的ISA100.11a标准,也支持WirelessHART标准,拥有在同一平台上运行的软件,VersaRouter910是一个双启动硬件(Dualboothardware),是集全功能于一身,专门为客户准备好提供的无线解决方案设计的工业级无线路由器。中科博微公司是可同时提供WIA-PA、WirelessHART两种流程行业无线产品供应商,比如其无线网关既有属于WIA-PA无线网络的WIAPA-GW1498、WIAPA-GWS12002种型号的网关,又有属于WirelessHART无线网络的WHT-GW1250网关。北京天宇蓝翔科技发展有限公司也可提供WIA-PA、WirelessHART两种无线网络产品。在ISA100.11a和WirelessHART问世之初,在ISA名下成立过ISA100.12工作组,负责寻找将WirelessHART和ISA100.11a无线标准融合的技术途径。当时认定实现无线标准融合技术途径的唯一方法是提案申请,后有3个团队提出申请。

但最终这些团队没有解决以下核心问题:网络规范的定义能够取代ISA100.11a和WirelessHART及提供2个现有网络的反向兼容。代表ISA100.11a和WirelessHART供应商的两个团队都不能接受修改自己基础网络的要求,因此无法达成任何妥协协议。其原因非技术方面,而是集中在营销效应方面。因此在2013年,ISA100.12工作组已决定放弃在无线通信技术标准融合方面的努力。ISA100.12工作组中的最终用户曾建议的融合备选方案是供应商可提供同时对ISA100.11a和WirelessHART无线网络进行操作的产品,即“双启动”产品的解决方案。2010年初,德国测量与控制标准委员会NAMURPressRelease(公告),开始提出单一(融合)工业无线标准(仅过程自动化领域)的要求,建议三个标准合并为一个IEC标准。2010年8月在伦敦的Heathrow(希思罗)机场召开了工作组第一次会议,工作组即以希思罗命名。2011年3月底在瑞士的融合工作组会议形成备忘录决定成立技术工作组,重庆邮电大学是希思罗工作组的5名核心成员之一和技术工作组主要成员。

技术工作组首先完成“三个标准的异同”资料的编辑,然后达成分三步开展工作的共识,第一步是实现三标准共存,如图1所示,第二步完成渐进式融合,第三步以单一的OSI/ISO层过程仪表协议的现场设备、统一的接入点、统一的网关实现标准的最终融合,这里的现场设备、接入点、网关均以希思罗命名。2012年12月现场总线基金会(FF)宣布与国际自动化学会自动化标准委员会ISA100合作提出了一个通用的框架,允许多个工业通信协议通过共享无线集成架构在过程自动化系统中运行,使现场总线连接到远程的I/O和ISA100.11a、WirelessHART、有线H1协议集成到单一的标准化环境中,这称为基金会的远程操作管理ROM,这是通过第三方的开放融合,以便为用户提供更高的可靠性和更低成本的远程操作。这个框架保持了“基础设施”战略,而不是试图在无线设备水平方面竞争。

2、系统架构的创新

霍尼韦尔公司2004年推出工业无线变送器——基于ZigBee无线技术的XYR5000无线压力变送器,载频为902MHz~928MHz,以此为基础的无线网络系统构成如图2所示。作为网关设备的基站WBR与各种类型的XYR5000无线变送器可直接通信,最大数量为50台,最大距离610m。基站还可有线接入最多25个AO/DO组件,基站与控制系统的连接有RS485ModbusRTU接口,还可提供RS232到WMT无线管理工具上显示。随后IEC三大国际标准的早期无线网络系统的架构是由网关和无线现场设备组成,如横河电机无线系统的早期架构是YFGW710现场无线一体型网关和现场无线设备,一台网关可接入最多10台(刷新率1s)或50台(刷新率5s)现场无线设备,如图3所示。艾默生过程管理公司下属的罗斯蒙特公司真正针对流程行业无线网络系统的研究始于1998年,2006年推出的智能无线解决方案是采用900MHz,2007年以后在欧洲和亚洲则推出2.4GHz的解决方案。早期无线网络系统的架构也是由网关和无线现场设备组成,可能会包括适配器等设备,同时每一台无线现场设备还可作为路由器将其他无线现场设备的信息传送到网关,如图4所示。

2007年6月11日,霍尼韦尔公司推出基于ISA100.11a思路的OneWireless无线网络方案,采用了XYR6000变送器,载频为2.4GHz。推出OneWireless无线网络后,系统架构也在不断更新,较早的版本是2009年4月的120版,当时作为网关的是多功能节点;2011年9月200版的新功能包括无线变送器无路由功能改为路由功能可选、增加了现场设备接入点FDAP、增加了HART适配器等,2011年10月又引入了CiscoAironet1552SOutdoorAP节点设备、CiscoWLAN控制器;2013年4月210版的新功能包括在线

无线设备授权等新功能。AP节点设备被分为两类:网格接入点(MAP)和根接入点(RAP)。网格接入点是Mesh网络的远程接入点,它作为ISA100.11a无线现场设备网络和IEEE802.11a/b/g/nWi-Fi网络的接入点,这是所有接入点的默认角色。对下层ISA100.11a无线现场设备网络来说,每个网格接入点都可以发送和接收来自无线现场设备的消息,同时,它又作为一个路由器,为其相邻网格接入点以IEEE802.11a/b/g/nWi-Fi网络转发消息,从而在2层网络中为无线设备和主机应用之间实现数据传输,通过转发过程,数据可以找到通过中间网格接入点抵达目的地的最佳路径。 如果一个链路因为任何原因而出现故障,网络会自动通过其他路径安排数据传输,直到数据抵达网关为止。根接入点通过光纤、有线以太网或电缆连接器连接到有线网络或服务器,作为到有线网络的“根”或“网关”,它必须在接入点配置时设定为根接入点。通信时,网格接入点通过网格接入点之间的路径或直接传送到根接入点。在这种网络拓扑结构中,接入点之间有许多冗余路径连接,因而特别可靠。随着网络规模的增大和网格接入点数量的增加,有必要使用多台根接入点以保证无线网络所需的性能和吞吐量(如图5所示)。推荐根接入点对网格接入点比值为20,这意味着,最多20个网格接入点可以共享相同的一次和二次根接入点,由于每个网格接入点可接入数十台无线现场设备,每个根接入点可接入20个网格接入点,而根接入点又可以多个同时接入交换机,其应用规模可满足数百点到数千点的大型无线网络的要求。

艾默生过程管理公司在WirelessHART网络中也推出了CiscoAP节点设备作为构成回传网络节点的接入点,菲尼克斯公司在WirelessHART网络中也推出了可与该公司多台WirelessHART网关组成骨干网络的WLAN接入点,且都通过Wi-Fi传送采集的所有信息,同时,WirelessHART网络也可接收支持802.11Wi-Fi通信的无线设备的信息。随着工业无线网络将过程控制延伸到工厂现场的各个角落,其应用越来越普及,单个应用实例的规模也越来越大,已突破一个工序或一个车间的范围。在这种形势下,流程行业无线网络设备的制造厂家不失时机地推出可覆盖整个工厂的全集成式多用途无线网络。这样的网络中既包括简单的无线现场仪表网络,也覆盖多种无线应用的场合。创新的系统架构主要体现在接入点设备作为主干网络节点,比如OneWireless无线网络先后推出的现场设备接入点FDAP、CiscoAironet1552SOutdoorAP节点,横河电机ISA100.11a无线网络的YFGW510现场无线接入点,艾默生过程管理公司WirelessHART无线网络推出的781远程链路、CiscoAP节点设备和WLAN接入点,菲尼克斯公司WirelessHART无线网络的WLAN接入点。这些设备具有骨干路由器功能,可将众多的无线现场设备的信息通过底层网络采集后,尽快地通过骨干网络传送到无线网关。这种将网关功能分离为接入点和现场无线管理站以及将信息传送分为底层网络及骨干网络的分层架构,不仅扩大了网络的规模、提高了信息传送速度,还能更好地实现同时管理多个现场无线子网通信系统的要求。

第6篇

1.1WiFi无线通信技术

WiFi无线通信技术采用OFDM(OrthogonalFrequencyDivisionMultiplexing)正交频分复用技术,其优势在于具有较高的数据带宽,低廉的设备成本,同时使用2.4GHz的公共频段,不需要复杂的审批手续。但WiFi技术不属于国际电信联盟ITU(InternationalTelecommunicationUnion)规定的移动语音通信标准,不具备规模组网通信的理论基础与技术标准,其定位就是短距异步宽带数据无线接入。由于WiFi采用的是短码扩频技术,只适合视距无遮挡点对点直线通信,而对矿井这种遮挡严重,多径反射剧烈,场强衰落快速变化的现场,将直接导致WiFi的通信距离大大缩短。WiFi通信技术所使用的通信体制、占用带宽、调制方式与目前煤矿井下人员定位系统的RFID和ZigBee完全相同或近似,使得系统之间会产生严重的电磁干扰,严重的还会使系统瘫痪。

1.2TD-SCDMA无线通信技术

TD-SCDMA技术是ITU的第三代移动通信空间接口技术规范之一。TD-SCDMA的特点是上下行同频段,通过时隙配置为上下行信道提供无线承载。TD-SCDMA可支持速率为8kbit/s~2Mbit/s的语音、互联网等所有的3G业务。TD-SCDMA系统采用时分双工模式,它的一个载波占用1.6MHz的带宽,仅能提供速率为2Mbit/s的3G数据业务。并且在产业链方面TD-SCDMA不够成熟,终端数量较少。目前,TD-SCDMA矿用通信系统采用BBU(BuildingBasebandUnit)+RRU(RadioRemoteUnit)拉远方式,BBU部署在地面,RRU作为井下无线站点部署在井下,地面与井下采用私有的IR接口,必须使用裸光纤,无法直接使用井下工业以太环网,且当BBU出现故障时,会导致全网无法工作。某个中间RRU故障会导致整个链上的RRU无法工作,维护、扩容较为困难。

1.3WCDMA无线通信技术

WCDMA技术是ITU正式的第三代移动通信空间接口技术规范之一,是集CDMA、FDMA(FrequencyDivisionMultipleAccess,频分多址)技术优势于一体、系统容量大、抗干扰能力强的移动通信技术[4]。WCDMA发展空间较大,技术成熟性最佳,有较高的扩频增益,可支持速率为8kbit/s~5.76Mbit/s的语音、互联网等所有的3G业务。WCDMA作为产业链最为成熟、网络部署最为广泛、终端最为丰富的3G技术,其网络除能实现语音通信功能外,还可提供高速率数据和图像传输功能。但是,传统WCDMA系统总体造价相对较高,不利于大规模推广,而且井下巷道错综复杂,其无线信号的全矿井无缝覆盖困难大。

1.4Femtocell无线通信技术

1.4.1Femtocell技术简介Femtocell又可称为毫微微小区、家庭基站[5],是近年来根据3G发展和移动宽带化趋势推出的低功率、超小型化移动基站。Femtocell使用IP协议,通过用户已有的ADSL、LAN等宽带电路连接,远端由专用网关实现从IP网到移动网的联通。它的大小与ADSL调制解调器相似,具有安装方便、自动配置、自动网规、即插即用的特点。1.4.2Femtocell技术优势(1)可覆盖宏小区不能覆盖的地方。(2)可以减少来自于宏小区基站的高功率开销并提高宏小区基站的性能。(3)辐射更低,手机电池也更耐用。(4)为固网与移动网融合提供了一个理想的解决方案。Femtocell的网络架构如图1所示。目前业界主流的设备商主要采用的是把NodeB和RNC(RadioNetworkController,无线网络控制器)功能集成于一个接入设备的扁平化架构,由Femtocell网关提供标准的Iu接口。更进一步的扁平化架构可以把SGSN(ServingGPRSSupportNode,GPRS服务支持节点)/GGSN(GatewayGPRSSupportNode,网关GPRS支持节点)等功能集成于Femtocell接入设备。扁平化架构的优势是它符合下一代移动网络的发展趋势。由于独立节点的减少,使得网络端到端时延大大降低(降低40%左右),从而大大增强用户在使用高速数据业务和实时业务时的体验。同时,节点的减少也大大提高了网络的可靠性。

2基于Femtocell的矿用

WCDMA无线通信系统传统的矿用CDMA-2000,TDS-CDMA以及WCDMA系统总体造价相对较高,不利于大规模推广,而且井下巷道错综复杂,其无线信号的全矿井无缝覆盖困难极大;但随着Femtocell技术的应用,使得WCDMA无线技术应用到煤矿井下变得简单。针对煤矿井下的环境特点,提出了一种基于Femtocell的矿用WCDMA无线通信系统,系统结构如图2所示。从图2可看出,基于Femtocell的矿用WCDMA无线通信系统采用现有的IP网络传输,Femtocell通过工业以太网与地面主系统相连,井下通信的网络架构可采用标准的Femto网络架构,实现井下、井上通信的结合,传输使用矿区已经部署的井下工业以太环网。Femtocell基站集成了NodeB(即移动基站,一般由控制子系统、传输子系统、射频子系统、中频/基带子系统、天馈子系统等部分组成)和RNC的功能,它通过SIP(SessionInitiationProtocol,会话初始协议)/IMS(IPMultimediaSubsystem,IP多媒体系统)连接到地面核心网络(核心网包括移动交换中心MSC和用户归属位置寄存器HLR等),核心网络采用WCDMA专网的自建核心网。

2.1系统的关键技术

2.1.1即插即用Femtocell所扮演的角色类似于终端设备,因此,其使用方法必须简单明确,安装好Femtocell基站后,只要接通电源和网络就可以使用。Femtocell和服务器之间必须能自动完成IP连接和IP分配,能够进行远程的自动软件升级、自动网络规划(包括最小干扰频点的选择、扰码的自动分配、邻区列表的自动创建及发射功率的自动调整)。2.1.2接入控制接入控制主要有3个层面:①接入层的UE(UserExperience)接入鉴权。用户必须可以设置Femtocell的接入模式,如是否允许所有用户接入、能否设置不同的接入用户、Femtocell信号是否可以独享等。因此,Femtocell必须设置一个白名单编辑功能,以满足对Femtocell接入终端的控制。②Femtocell基站设备的接入控制。服务器要能够监控Femtocell基站的使用,并控制其IP接入。目前主要采用在Femtocell基站内置一张类似于SIM卡的信息鉴权设备,运营商可以在SIM卡上烧制相应的鉴权信息。③核心网3GPP标准的UE接入鉴权。Femtocell对用户的接入必须满足3GPP对3G的各项标准规定[6]。2.1.3IP传输网络质量要求因为Femtocell是完全通过IP网络实现与核心网的连接,因此,如何保证业务的QoS服务等级,特别是语音业务的QoS要求非常关键。因此,对于IP传输网络需要有一定的性能要求,如对满足语音业务、满足视频电话及PS384K业务在时延、抖动、丢包率、带宽等方面的指标均有最低要求。2.1.4时钟同步技术Femtocell基站主要通过接收周围宏基站信号来提取同步时钟信号,如果Femtocell完全处于孤岛环境,就需要通过自身的时钟振荡器来获取时钟。

2.2系统优势分析

综合了Femtocell技术与WCDMA技术的特点,基于Femtocell的矿用WCDMA无线通信系统主要有以下优势。(1)组网灵活。由于系统采用Femtocell技术和小型化设备,且可即插即用,系统安装维护方便,组网更加灵活。(2)稳定可靠。系统内设备采用电信级标准设计,确保系统可靠性。无线资源池共享技术的应用使得系统稳定性和可靠性大大提高,且满足突况下设备的资源需求;在正常情况下,设备运行负荷均衡,工作状态稳定。(3)业务丰富。系统不仅支持基本的高质量语音通信和短信业务,而且基于WCDMA的高带宽特性,可灵活承载移动办公、无线监控、生产巡检等各种数据业务。另外,可根据数字化矿山的特点,灵活定制适应于矿山安全生产的多种移动业务。(4)兼容性高。基于Femtocell的矿用WCDMA矿用无线通信系统设备采用国际通用通信标准设计,设备可以和不同制造商生产的公网模式的WCDMA制式终端兼容;可以和多家主流设备制造商生产的用户级交换机和局用交换机互通。

3结语

第7篇

1方案设计

PBS表示主基站(PrimaryBaseStation),通过光缆可以将各类监测数据、感知数据、计量数据等业务数据传输到变电站内的各种应用系统子站,也可以根据需要将数据通过电力骨干网络(SDH等)传输到省电力公司内的系统主站,CBS表示认知基站(CognitiveBaseStation),通过光缆与主基站连接进行信息交互,通过无线方式与次用户通信,PU表示主用户即授权用户(PrimaryUser),SU表示次用户即认知用户(SecondaryUser),这里的用户在实际应用场景中泛指各种无线通信终端,本文为与认知无线电的各种概念保存一致,也称为用户,各类业务数据通过授权用户或次用户将数据传输到基站,SB表示频谱经纪人(SpectrumBroker),通过光缆或者网线形式与认知基站进行信息交互。认知基站负责认知用户的控制和管理,主要包括对认知用户的感知结果进行融合、空闲信道资源分配、接入及切换管理。频谱使用区域分授权频段区域和非授权频段区域,在授权频段区域,认知基站与主基站进行信息交互,降低感知目标频段的盲目性,认知用户根据认知基站的交互信息,感知授权用户的授权频段的空闲情况并利用。在非授权频段区域,认知用户感知非授权频段的使用情况并进行竞争利用,能够及时规避干扰频段,使用动态分配的频谱资源,在该区域中频谱经纪人充当协调者角色,负责不同认知网络之间的频谱资源协调管理。为提高频谱感知效率,缩短系统接入时间,提升频谱切换性能,本文设计两张用于认知基站内维护的信息表,一张是可用频率资源列表,一张是交互信息列表。“频带范围”表示认知用户可以使用的频段的范围,“频带历史使用信息”表示该段空闲频段的历史使用情况,包括数据传输平均占用时长和空闲率,由此可以计算频段的大致可用时长;“频带带宽”表示可用的频带宽度;“干扰水平”表示历史干扰水平和当前干扰水平,干扰水平是指空闲频谱所遭受的干扰程度和强度,包括无线环境下的路径损耗等干扰和电力设施运行时的电磁干扰,以功率形式量化,结合相关系数,可以计算信道最大容量;“可用状态”表示频率资源的利用方式,包括共享式和独享式,共享式是指认知用户与授权用户共享频率资源,但不会对授权用户造成干扰,或者是由多个认知用户之间进行共享使用空闲授权频率资源或空闲非授权频率资源,独享式是指空闲频率资源无其他用户使用,由单个认知用户单独享用。综合以上信息,认知基站能够根据认知用户的需求情况快速找到匹配资源进行分配,提高了分配效率、缩短了分配时间,根据业务特性,有选择地选取特定频谱实现与业务需求的匹配。

2频率分配方法

本文假设频谱感知由物理层来完成,而且能够获得准确的感知结果,MAC层在获取感知结果的基础上主要负责频谱资源的动态管理。其中频谱分配和频谱干扰规避是频谱资源管理的重要部分,也是电力行业应用下需要解决的重要问题。在分配阶段,提出基于迫切性和公平性的频谱资源分配方法,不仅考虑认知用户的接入的迫切程度,同时也需考虑用户接入的公平性。迫切性和公平性是影响资源分配的重要参考内容,影响迫切性主要参数包括:业务优先级、等待时间,影响公平性主要参数包括:用户不良信用记录、用户接入成功率,其中,业务优先级是指业务的重要程度,等待时间是指用户数据的有效期,超过一定时间,数据的传输就无意义,在电力行业下,这一参数尤其重要,用户不良信用记录是指用户分配到频率资源但没有利用的信用记录,接入成功率是指用户请求分配且获得分配的概率,为公平起见,接入成功率越低的用户分配的可能性就越大。

3频率切换方法

由于认知用户使用授权用户暂时未使用的授权频段,一旦授权用户出现,认知用户需要立即采取相应措施以免对授权用户的使用造成干扰,或者当认知用户使用的非授权频段的频谱环境恶化,也需采取措施来防止业务受到重大影响,另外,电力系统中复杂的电磁干扰进一步加剧了无线环境的复杂度,带来了更大的干扰,影响频谱资源的使用,在此条件下,除共享频率之外,频率切换也是有效解决措施之一,设计合理的目标频段切换机制对切换性能有着十分重要的影响。本文在此基础上提出一种基于加权的多参量目标频段切换算法,认知基站根据认知用户的业务特性和需求进行计算选取目标切换频段并分配,这样就有利于进一步降低认知用户的复杂度,综合考虑多种选择因素,弥补单一属性选择的不足。

4结束语

电力通信是支撑智能电网发展的重要技术,无线通信作为其中的一部分,发挥了重要作用,但由于无线通信频率资源和电力行业的限制性因素,需结合新的技术来解决无线频段资源短缺以及无线传输可靠性等问题。本文将认知无线电技术引入电力无线通信,提出了理论上的频率资源管理算法,旨在提高电力无线通信系统的性能。下一步将开展具体的仿真实验工作,对理论研究算法效果进行验证和优化。

作者:姚继明黄莉田文锋黄凤朱亮单位:中国电力科学研究院

第8篇

1短距无线通信的基础实验

1.1蓝牙无线通信实验实验环境。硬件:SemitARM9200开发板,PC机1台,串口线(公母)1条,USB电缆1根,网线1条,TTP66031块,9V电源。软件:RedHat9.0以上Linux操作系统。(1)蓝牙协议栈移植实验。本实验选择了Linux环境下广泛使用的蓝牙开源协议栈BlueZ。学生通过将BlueZ移植到嵌入式平台的完整过程,理解蓝牙协议的层次结构、同步/异步链路的建立以及常用的蓝牙Profile,为蓝牙应用功能的开发奠定基础[7]。(2)蓝牙无线数据通信实验[8]。本实验通过软件控制蓝牙实现串口数据无线传输的功能。通过对软件源代码的剖析,使学生理解通过协议栈控制蓝牙设备的过程以及建立异步数据链路的方法,便于学生理解软件协议栈与硬件设备之间的配合工作。(3)蓝牙无线语音通信实验[9-10]。本实验通过软件控制蓝牙实现语音无线通信功能。通过对软件源代码的剖析,使学生理解建立蓝牙同步链路以及用同步链路传输语音的方法,作为蓝牙电话网关设计的基础。

1.2WiFi/IEEE802.11b/g无线通信实验实验环境:硬件:SemitARM9200开发板,PC机一台,串口线(公母)1条,网线1条,WLAN11gUSB适配器1个,9V电源1个,无线路由器1个。软件:RedHat9.0以上Linux操作系统。本实验通过嵌入式主机上的802.11b/g无线接入模块,向100m范围内的WLAN终端设备提供无线接入功能,并与WLAN终端进行无线数据传输,提供文件传输的示例软件。1.3ZigBee无线通信实验实验环境:硬件:SemitARM9200开发板,PC机一台,串口线(公母)1条,网线1条,ZigBee模块2个(1主、1从),9V电源1个,5V电源2个。软件:RedHat9.0以上Linux操作系统。开发板:输入cd/mnt/SEMIT_ProjectdZigBee进入该文件夹。输入./send就可以看到通过串口传来的温度信息了。

2短距无线通信与异构网络融合的系统实验

2.1蓝牙无线通信与GSM/GPRS网络融合的系统实验实验环境:硬件:SemitARM9200开发板,PC机一台,串口线(公母)1条,USB电缆1根,网线1条,TTP6603一块,9V电源。如图1所示。软件:RedHat9.0以上Linux操作系统。在开发板:输入cd/mnt/SEMIT_Project/Bluetooth_Cellphone/Bluetooth_Cellphone_Server输入./server。在PC上输入:cd/mnt/SEMIT_Project/Bluetooth_Cellphone/Bluetooth_Cellphone_Client在PC端用USB电缆连接TTP6603在PC端:输入./Bluetooth_link。通过蓝牙,按如上的操作界面提示进行操作,就可以实现在PC端与GSM网络通话了。其中,嵌入式主机为蓝牙电话网关,实现了蓝牙短距无线通信与GSM网络的融合。

2.2WiFi短距无线通信与广域网的融合实验拓扑图如图2所示。在开发板:输入cd/mnt/SEMIT_Project/Multinet/802.11输入./PC1_init。在PC2端:输入.PC2_init。输入ping172.27.0.1和ping192.168.0.56,如果ping的通,说明通过WiFi成功的实现了PC机与广域网的通信,以及PC机之间的互相通信。

2.3WSN与广域网的融合系统实验[14]实验拓扑图如图3所示。实验环境:硬件:SemitARM9200开发板,PC机1台,串口线(公母)1条,网线1条,ZigBee模块2个(1主、1从),9V电源1个,5V电源2个。软件:RedHat9.0以上Linux操作系统。在开发板:输入cd/mnt/SEMIT_Project/WSN/WSN_Client在PC机:输入cd/SEMIT_Project/WSN/WSN_Server输入./Server。开发板输入:./client192.168.0.22(PC机IP)在PC端就能看到开发板端通过网线传过来的温度信息了。

3短距无线通信的综合开发系统

实验研究[15]基于物联网应用的典型案例,我们利用Bluetooth、WiFi短距无线通信开发了完整的定位信息无线传输系统。如图4所示。其中,嵌入式主机起到主控作用,GPS模块用于接收定位卫星信号并进行处理,向嵌入式主机提供定位和标准定时信息。网关上的Bluetooth和802.1lb/g模块作为两种可选的短距离无线通信方式,能够将定位信息以无线的形式传送到其他设备,例如上图中带有Bluetooth和802.llb/g通信功能的手机或计算机。具体实验环境[16-17]:硬件:SemitARM9200开发板,PC机一台,串口线(公母)1条,网线1条,WLAN11gUSB适配器2个,GPS模块1个,9V电源2个,7.5V电源1个,无线路由器1个。实验拓扑图见图5。软件:RedHat9.0以上Linux操作系统。图5实验拓扑图PC机:输入cd/SEMIT_Project/GPS_Wireless/GPS_Wireless_Server输入./pc_config。在开发板:输入cd/mnt/SEMIT_Project/GPS_Wire1ess/GPSWire1ess_C1ient输入./ARM_config输入Ctrl+C即可停止程序运行。其中,GPRMC数据格式中,GPS的实用数据含义为:A=数据可用,N=北半球,E=东半球。

4结语

第9篇

1.1.1新开发的现场无线通信网络设备

该公司新开发的现场无线通信网络称为“带Cisco节点的OneWireless工业无线架构”,其中新采用的现场无线通信网络设备有CiscoWLAN控制器、CiscoAironet1552SOutdoorAP节点设备。OneWireless无线通信网络采用了支持标准的Cisco公司组态和拓扑结构统一的无线网络技术,包括使用冗余交换机、冗余的无线局域网控制器以及多重网络接入点MAP(mashaccesspoint)和根接入点RAP(rootaccesspoint),建立一个强大的和高可用性的网络。

1.1.2系统组成

该公司新开发的现场无线通信网络设备组成如图1所示。CiscoAironet1552SOutdoorAP节点设备和原有系统作为网关使用的多功能节点的功能完全一样,可以与ISA100.11a无线现场设备网络连接,作为无线现场设备的接入点;也可以与IEEE802.11a/b/g/nWiFi设备网络连接,作为无线WiFi设备的接入点;还可以用作IEEE的802.11a/n(Mesh网状)无线主干网络连接,实现多个接入点之间的相互无线通信,构建自组织、自愈合的无线主干网络。不同之处在于,该节点设备还支持802.11n,最大带宽可达300Mbit/s,所以速度更快,而多功能节点最大带宽只有54Mbit/s。该设备内嵌CiscosCleanAir技术,能够优化智能无线网络的通信,降低无线信号干扰,提高通信空间的无线通信质量,明显改善无线网络的通信性能,方便用户的使用。CiscoAironet1552SOutdoorAP节点设备共有5根天线。上面3根天线是主干网络和WiFi移动天线;下面2根是ISA100.11a无线仪表天线,可以同无线仪表通信,而且采用了Duocast技术,可实现同时接收数据,通信速度比1根天线时提高1倍,通信距离延长约67%。CiscoWLAN控制器用于管理CiscoAironet1552SOutdoorAP节点设备,可以降低网络设计和运行的维护成本。图1中,多台CiscoAironet1552SOutdoorAP节点设备作为网络接入点设备,接入支持ISA100.11a无线现场仪表和支持IEEE802.11a/b/g/nWiFi的无线设备(包括:图1中所示的移动工作站、无线振动变送器、摄像机、手持设备、无线携带式气体探测器等),多台CiscoAironet1552SOutdoorAP节点设备之间又可通过高带宽的IEEE802.11a/n无线Mesh回传网络通信。其中的1台CiscoAironet1552SOutdoorAP节点设备作为根接入点通过IEEE802.3有线以太网连接到CiscoWLAN控制器,CiscoWLAN控制器负责系统内的无线局域网功能,如安全策略、入侵防御、RF管理、服务质量(QoS)和流动性。无线设备管理器WDM可以支持集成ISA100.11a主干网和ISA100.11a现场设备的CiscoAironet1552SOutdoorAP节点设备,它具有无线现场网络的网关、系统管理器、安全管理器的功能。无线设备管理器WDM的无线现场网络容量为40台CiscoAironet1552SOutdoorAP节点或FDAP现场设备接入点、100台无线现场设备。

1.1.3与主机系统集成

基于R210版本的OneWireless和R400版本的ExperionTMPKS的无线网络与主机系统集成如图2所示,ExperionC300控制器通过WDM获取现场无线仪表的过程数据,C300和WDM的通信协议为ModbusTCP,在C300中把WDM组态为Modbusslave即可,或组态成C300和WDM的CDA内嵌式通信,ExperionPKS控制模块可以集成无线仪表的过程数据和报警信息,支持实时监视和控制,实现历史数据存储,这是在ExperionDCS的控制层L2实现的。在DCS中创建“WirelessDMZ”(无线隔离区),而现场移动操作终端、无线巡检手持设备、可燃气体监测、即时定位、视频信号和其他WiFi802.11a/b/g设备可通过无线主干网络与ExperionDCS的控制层L3路由器连接。控制层L2是监控层,而控制层L3是先进控制和先进应用层。

2艾默生过程管理公司产品

2.1新开发的现场无线系统设备

从DeltaV11版开始,提供了DeltaVS系列无线I/O卡(WirelessI/OCard)和781远程链路(WirelessFieldLink)组成的全冗余WirelessHART解决方案。在新的架构方案中,还可以看到采用CiscoAP节点设备作为主干网络节点,按其在网络中的功能也分为MAP和RAP。

2.2系统组成

上述新的结构将现有的1420无线网关的功能分为两个部件:无线I/O卡和781远程链路,无线I/O卡有2个EthernetI/O口实现与控制系统DeltaV局域网的有线连接,由远程链路实现与WirelessHART无线现场网络连接,这两者之间采用4根导线连接,最远距离达到200m。其中一对导线为无线I/O卡电源线,另一对导线为远程链路的通信线。虽然无线I/O卡可以安装在1级2区危险的环境中,但一般安装在控制室内,远程链路则远离控制室,可安装在防爆等级更高的危险的环境中,如1级1区。DeltaVS系列可接入最多120个无线I/O卡和781远程链路,每对冗余的781远程链路可接入最多100台无线变送器。采用接入点的方式时,某应用于油井的工业无线系统设备组成如图3所示。MAP安装在WirelessHART原有网关附近,以有线以太网方式与网关连接,采集该井口区域无线现场设备的信息;多个MAP又以WiFi无线方式将多个井口的无线现场设备的信息传送到RAP,然后与控制系统以ModbusTCP/IP,OPC等方式连接。

2.3与DeltaV主机系统集成

从DeltaV11版开始,提供了DeltaVS系列无线I/O卡和781远程链路组成的完全冗余的WirelessHART解决方案,如图4所示,可与所有的DeltaV和AMS的应用实现本地集成。无线I/O卡直接挂在控制网络上,本身就是控制器的一个节点,DeltaV提供的组态工具也完全支持无线I/O卡和无线仪表的组态、设备监视等功能,系统还可以自动识别无线I/O卡和无线设备,可方便快捷地进行安装和调试。新的DeltaV架构以冗余远程

链路的形式实现全冗余无线网络,全冗余包括DeltaV通信网络、24V(DC)电源、无线I/O卡远程链路以及自适应Mesh网络本身的多条通信路径。 3横河电机公司产品

3.1新开发的现场无线通信网络设备

该公司早期开发的现场无线系统设备包括YFGW710无线现场集成网关和无线现场设备,YFGW710提供网关功能和系统管理器的功能,并直接连接无线现场设备。新开发的现场无线设备有YFGW410现场无线管理站、YFGW510现场无线接入点、YFGW610现场无线介质转换器。YFGW410具有ISA100.11a无线网络管理功能(即系统管理器和安全管理器的功能)和网关功能;YFGW510现场无线接入点为主干路由器,除可接入现场无线设备外,还可提供IEEE802.11a/b/g(无线局域网)及100BASE-TX和100BASE-FX有线连接;现场无线介质转换器YFGW610在YFGW410和YFGW510之间主干通信的连接接口作连接转换,4端口介质转换器YFGW610安装在YFGW410和YFGW510之间,将YFGW410下层的金属网络连接(100BASE-TX)的接口转换成与远程YFGW510的光纤网络接口连接(100BASE-FX)。

3.2系统组成

新开发的全集成式多应用无线通信网络设备组成如图5所示。其中,现场无线子网A由YFGW510的现场无线接入点接入子网内现场无线设备的数据,再通过光纤通信传至YFGW610现场无线介质转换器,转换成YFGW410现场无线管理站可接收的下层金属网络连接信号(100BASE-TX);现场无线子网B由YFGW510的现场无线接入点接入子网内现场无线设备的数据,再通过100BASE-TX直接接入YFGW410现场无线管理站;现场无线子网C由YFGW510的现场无线接入点接入子网内现场无线设备的数据后,再通过无线LAN传到无线LAN接入点,然后与YFGW410现场无线管理站连接。当然,也可通过早期的YFGW710无线现场集成网关以Modbus/TCP的方式接入主机系统。在信息网络层次,设有现场无线OPC服务器、现场无线管理器、NTP服务器,现场无线OPC服务器的软件,提供一个基于OPC基金会规格创建的接口。该服务器软件通过OPC接口与带现场无线管理站或现场无线集成网关系统的主机连接。现场无线管理器用来执行现场无线网络的设置和管理。NTP服务器是网络时间协议服务器,用于现场无线系统进行精确的时间管理,现场无线系统要求NTP服务器与现场无线管理站或现场无线集成网关相连以共享NTP服务器。1对YFGW410现场无线管理站通过同步电缆彼此连接,对主机系统和YFGW510的现场无线接入点提供冗余的无线网络管理和网关功能。在图5所示的每一个现场无线子网中,可安装1个或多个YFGW510现场无线接入点,可连接多达100台现场无线设备。1对YFGW410现场无线管理站可以连接多达20个现场无线子网以及500多台现场无线设备。

3.3与主机系统集成

无线系统可与横河电机目前主要的CENTUMVPDCS连接,即可在CENTUMVP操作和监视屏幕上显示现场设备的测量数据。无线系统与CENTUMVP连接有两种方式:在FCS现场控制站通过子系统以太网通信模块通信(见图6)和通过通用子系统网关(GSGW)通信。在FCS现场控制站通过子系统以太网通信模块(ALE111)通信,要求CENTUMVP为R4版本。菲尼克斯公司产品该公司的WLAN接入点可与多台RAD无线网关组成回传网络,这些设备都集成了802.11b/gWLAN收发器,通过WiFi将采集的所有信息传送到WLAN接入点,然后以标准的Ethernet接口与主机系统相连,如图7所示。

第10篇

该层用来建立包传输机制和实现媒体访问控制,MOAP系统中仅存在一个主设备,其他皆为从设备。主设备与从设备之间可以建立通信,从设备与从设备之间不能进行通信。本规范定义由主设备传输至从设备的数据包称为下行数据包,简称下行包;由从设备传输至主设备的数据包称为上行数据包,简称上行包[1]。

2应用层

应用层由LL(ILowerLayerInterface,低层访问接口)和OAS(ObjectAccessStandard,对象访问规范)两个实体组成。基于MOAP协议的数据包传输仿真为验证MOAP协议的时效性,这里用NS2(NetworkSimu-lator)仿真软件来模拟MOAP通信协议中数据包的传输过程及数据包传输的时延。仿真实验场景设置如下:假设桥梁测点网络监测区域为300m*300m的正方形中,其测点总数为20个。根据目标模型在测量区域内生成目标轨迹,设置每个节点vmax为50m/s,amax=10m/s2,1=50,2=100,场景持续50s,流量的固定码率(ConstantsBitRate,cbr)为1Mbit/s,协议采用的是MOAP通信协议。

3基于MOAP协议的无线桥梁监测系统示例

3.1监测点传感器的设置

某跨桥的总长为500m,其跨径布置为90+2×160+90m,由三个T型桥柱组成对称结构。在各跨箱梁根部支点截面、L/4截面和L/2截面,设置桥梁监测测点,埋设应力和位移传感器,以测试箱梁和墩身结构的实际应力和应变[2]。该桥梁的测点中包括14个应变测点和6个位移测点,总共20个测点。其布置示意图如图2所示。

3.2上位机软件界面

桥梁监测数据采集系统采用MFC库,使用VS2010作为开发工具,C++作为开发语言进行开发,综合利用MFC提供的各种通信方法来实现系统的功能。主界面如图3所示。无线桥梁监测系统设备配套的上位机处理软件,用于在上位机上对传感器进行动静态数据采集和处理,并为进一步分析提供数据。软件界面主要包括以下几块:(1)菜单工具栏:位于界面的最上面,提供菜单和工具按钮快捷操作,主要包括配置操作、网络操作、静态采集、动态采集等;(2)网络结构:位于界面的左边,以“桥梁—采集点—节点”三级展开的模式给出无线传感网络的拓扑结构,图中给出了20个节点的网络配置结构;(3)采集控制:位于界面的右边,提供相关控制操作,图中主要标出开始动态采集命令行;(4)状态栏:界面最下边,在进行网络通信的时候,任务栏将显示当前通信状态和进度。

3.3MOAP协议数据包传输实例

以下以在桥梁监测数据采集系统中动态采集为例,对其数据包进行解析。给出监测数据包为:发送包:34054100640000000000002ee09597接收包:0405410101e67f对发送包的分析如下:数据链路层中的数据包中控制字34转化为二进制为00110100,001代表当前版本的默认号,1代表是下行包,0100与从设备收到数据包中的地址进行比较,与自身地址一致时才可响应该消息;05代表采集器的唯一编号;41代表执行的是动态操作的指令;数据域中第一个0064对应的十进制是0100代表的是采样率,第二个0064代表是实时同步采样率;00002ee0中2ee0代表的是采样时间和采样次数的积,转化为十进制后为12000次,则代表动态采集12000个数据;9597代表CRC校验。从数据包的传输过程中可以看出:(1)应用层数据包在传输的过程中加一个字节的指令,该指令可以判断上位机中所发的命令;(2)数据链路层数据包在应用层数据包中加上控制字、地址和循环冗余校验。控制字主要是用来判断是上传还是下发指令,还包括是否是广播通信;地址用来说明具体是给哪个具体的硬件下发指令;(3)物理层主要负责透明传输原始比特流。

4结语

第11篇

1.1TD-SCDMA无线通信技术的应用现状TD-SCDMA技术是ITU研发出的第三代移动通信空间接口技术。其特点为上下频段统一,能通过对时隙配置提供无线承载。TD-SCDMA无线通信技术可以支持匀速为8kb/s~2Mb/s的所有3G业务。TD-SCDMA系统采用时分双工模式,但是由于载波占用的宽带为1.6MHz,TD-SCDMA系统提供的速率有一定的数据限制。目前,TD-SCDMA矿用通信系统采用BBU+RRU方式,因没有办法直接使用太环网,当某个中间RRU故障会导致整个链上的RRU无法工作,维修、扩容比较困难。

1.2WCDMA无线通信技术的应用现状WCDMA技术与TD-SCDMA都是ITU正式的第三代移动通信空间接口技术规范之一,该无线通信技术集CDMA、FDMA技术优势于一体,是一种系统容量大、抗干扰能力较强的移动通信技术。WCDMA与TD-SCDMA相比,技术较为成熟,并且发展空间大,在扩频的基础上能够获得巨大的经济效益,此外,还支持所有的3G业务。WCDMA作为产业链最为成熟的技术,不仅可实现语音通信功能,还能提供高速率数据和图像传输功能。但其成本较高,使得多数煤矿企业望而止步。

2煤矿井下无线通信的技术难题

电磁波在矿井隧道中不能很好地进行传播这已是公认的事实。一直以来,井下通信的技术难题是制约煤矿安全的重要因素之一,下面将从3个方面进行论述。

2.1巷道的环境条件对电磁波的影响煤矿井下巷道一般比较狭窄,弯曲延伸,存在多个分支,且分布在不同的地下平面。巷道的截面宽度不同,且巷道四周为煤层,粗糙不平。这一特殊的传播环境对电磁波的传播特性产生重大影响。电磁波频率对传输的速度有较大的影响,巷道截面尺寸对电磁波传输也有影响,截面的尺寸与巷道内电磁波频率成正比。此外,矿井下有照明线、动力线、钢轨等纵向导体,这些线路的存在都会对电磁波的传输产生一定的影响。

2.2井下环境机电噪声干扰严重如今,井下作业机械化与自动化设备的应用,不可避免地会增加噪声的强度,但是这一问题并未引起人们的重视。通信技术中,噪声是衰减和损耗通信质量的又一个重要因素。机械设备的作业一般是24h不停歇,因机械设备自身配置量大,启动频繁,所产生的电气噪声频谱较宽。由于信号微弱会导致井下通信困难,噪声问题是井下移动通信需解决的技术难题。

2.3接收点有用信号十分微弱无线电在井下的传播可以被看作在一个特定的空间内进行,由于电磁波在传输的过程中受到煤岩层及磁导率的影响,因而其传播速度并不是恒定不变的。煤矿井下的管道由于表面比较粗糙,且分布不均,这些都会对电磁波的传输造成影响。对于某个接收点来说,接受机本身信号微弱,在干扰之后很可能接收不到信号,这种特性的存在破坏了有用信号的传输,最终导致电磁波传输距离减低为数百米,从而使得井下通信非常困难。

3无线通信技术的发展方向———Femtocell技术的运用

Femtocell是根据3G技术发展和无线技术宽带化发展方向而推出的一种低功率、超小型化的移动基站。它的运用在一定程度上提高了煤矿井下的安全性。Femtocell通过IP协议将用户最先具备的ADSL/LAN宽带进行线路连接,远端由专用网关实现从IP网到无线网的连接,具备安装便捷、能够自动配置、直接使用的优点。

3.1Femtocell的技术优势Femtocell技术的运用能够最大范围地覆盖宏小区不能覆盖的地方,可以减少来自宏小区基站的高功率开销并提高宏小区基站的性能。此外,辐射更低,手机电池也更耐用,这些优势都优于其他无线通信技术。当前在煤矿企业中,设备供应商主要是将NodeB和RNC功能集成于一个接入设备的扁平化架构,由于Femtocell网关的接口是Iu接口,扁平化架构可以将SGSN/GGSN功能集成于Femtocell接入设备,其技术优势在于符合下一代移动网络的发展趋势,并在减少节点时提高网络的可靠性。

3.2Femtocell的系统优势Femtocell技术采用的是小型化设备,可以随时使用,并能够维护系统安全,增强灵活性。系统内部采用电信级标准设计,确保系统的稳定可靠性,无线通信能够共享技术的应用,使系统的稳定性及可靠性大大提高,并能够满足设备的资源需求。Femtocell系统设备运营均衡,工作状态较为稳定。此外,Femtocell技术系统的运用采用的是国际通用的通信标准设计,设备可与终端设备兼容,并能够与多家主流设备的制造商生产的用户交换机进行交换。

4结语

第12篇

无线通信网络和有线网络由于具有一定的共性,所以也无可避免的会面临不少相同的安全问题,比如病毒攻击、黑客入侵等。不过由于无线网络本身开放性、移动性、传输信道的不稳定性等特点,所以会具有一些有线通信网络不一样的问题:首先,与有线网络的私密性不同,无线网络相对比较开源开放。如有线网络具有明确的实体边界,电力自动化无线通信网络却没有确定的物理边界,比如WLAN,它的接入点的信号由于发向天空,在没有控制措施的情况下,无线覆盖范围之内具有一样接收频率的使用者就可以获取发送的信息,甚至可以经由接入点访问上一级的网络。所以无线通信网络的开放性,可能会引起非法信息接收和违法信息服务等相关的安全问题。第二,无线通信网络的传输信道比有线网络不稳定,容易变化。电力自动化无线网络由于传输环境是不确定的,随着用户的移动而产生变化,会受到多种外界因素的干扰影响,引起信号质量的起伏不定,以致通信中断的情况出现。所以,无线网络由于传输信道的不稳定会造成通信质量的不稳定,进而影响其安全性。由于以上无线通信网络的固有性特点,决定了它的安全问题主要体现在如下五个方面:

(1)监听攻击:空中的通信信号被截取,信息被非法获取并被计算机系统分析。

(2)插入攻击:利用监听获得用户身份信息等,伪装成合法用户,借助无线通信的信道进入系统,再控制系统。

(3)无线网络干扰:指发射较大功率的相同频率信号干扰无线信道的运作。

(4)未授权信息服务:部分用户在未经授权的前提下使用系统信息资源。

(5)移动IP安全:终端用户在一定区域内漫游的情况下,管理信息以及用户信息可能存在安全泄露威胁。

二、无线通信网络安全问题的解决策略

对于以上五个方面的问题,我们一一进行分析,并提出一定的对策。

1反监听攻击

为了预防以及遏制监听攻击的问题,首先要避免空中信号被拦截情况的发生。可以采用不易被侦测到的信号加密技术,如直接序列扩频调制或跳频扩频调制的方式。在该技术的前提下,加强对重要信息的保密处理,也就是万一空中信号被非法截取后,必须要一定的分析计算工具才能破解相应信息,比如用户系统的ID等。

2放插入入侵

如果非法用户采取窃听获取了用户的信息,他也就可以伪装成正规用户,借助无线信道传输信息系统、进而掌握系统的指挥权。为了预防这种情况的出现,应采取接入控制技术。身份认证是接入控制技术的关键,用户想进入系统必须通过身份编码识别系统的认证才行。目前,与无线网络的身份认证有关的协议主要有RADIUS协议、IEEE802.1x协议、扩展认证协议(extensibleauthenticationprotocol,EAP,包括EAP-TLS、EAP-SIM、EAP-MD5、EAP-OTP)等。申请者、认证者、和认证服务器三个部分组成了一个典型的接入控制系统。图1主要体现了WALN的接入和控制结构。申请者表示为用户站点(STA),认证者是接入控制器部分(AC),包括认证服务器(authenticationserver,AS)。

3预防未授权信息服务

虽然用户可以获得合法的授权,并享受相应的信息资源的服务,并不代表就能查阅任意资源的,系统将分权限管理。如果用户想要获得访问权限,必须要提交身份认证,并在系统的检查通过的情况下,才能获得访问权限,该方法可以充分阻止未授权信息服务。但是结合无线通信网络开放性的特点,仅仅通过检查用户权限,并不能全面预防未授权信息服务,必须有条件的接收用户。接入点发射出来的无线信号会被加密,接收机没有正确的密码将无法正确的打开信息。

4移动IP安全

移动IP用户可能会受到多种攻击和干扰,但最主要的便是拒绝服务(DOS)、窃听等。某个破坏者尝试阻止一个用户的正常无线网络通信,让该用户的信息无法传递,既可以成为拒绝服务。DOS主要分两种情况:第一种是破坏者破坏用户传输到节点的数据包;第二种是破坏者用大量垃圾信息包干扰用户主机。DOS攻击经常发生在破坏者利用假注册对特定移动节点的破坏上,这种情况会引起合法用户的移动节点无法传输,甚至合法用户传向移动节点的数据包被破坏者截取。破坏者窃移动节点与家乡之间的信息交换称为被动监听。破坏者可能通过物理终端接口进入网络。在这个共用的网络环境下,合法用户的信息都可能暴露在破坏者的监听下。窃听者同无线信号设备接收信息,因此将变得无迹可寻。所以这种窃听防不胜防,最合理的办法便是采用点对点加密技术。破坏者的主动行为主要变现为插入攻击,通过窃听移动节点与家乡之间的信息交流经过,阻止以及中断移动节点的通信并且插入和家乡的传输过程。端到端信息加密是解决这个问题的最好方法,一般会采取虚拟专用网(VPN)的方法来实现,这样就算信息被截取,破坏者只会得到虚假的资料。

5无线干扰

根据相关的数据显示,无线干扰问题不仅发生次数较多,而且可以造成很大的破坏。一旦破坏者采用发射较大功率的相近信号破坏无线信道的正常运行,这种攻击一般是故意而为的。对于此问题的应对方法,不仅可以通过无线电管理及时查找干扰源、排除干扰源的方法,来解决无线干扰以外,还可以采取应用载波检测—跳频通信技术。通过发射机对信道载波使用情况进行实时的监测与判定,一旦出现频道被非法占用的情况,立即变换通信所用的频道。跳频通信不仅可以通过随机的方式更换频道,也可以改变图形运行,结合纠错编码,能够阻止一定条件下的恶意破坏。

三、结语