时间:2022-02-26 18:25:01
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇数学教学论论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
1.文科生数学基础薄弱,学习兴趣不浓。我国的应试教育让多数数学成绩较差的学生在高中阶段选择了文科,因为高考中,文科数学试卷相对理科容易得多,致使文科大学生进入大学后数学基础普遍偏低。对文科大学生来说,起点更高的高等数学以其高度抽象的概念、严密的逻辑和精确的推理,让许多大学生望而却步。他们认识不到高数中所蕴含的丰富的人文资源,传统教学中大量的逻辑推理和计算又让他们感觉枯燥乏味,厌学情绪严重。
2.教师教学手段落后,缺乏教学技巧。第一,多数教师从思想上轻视文科大学数学的教学,他们虽然教学经验丰富,但对文科大学生的数学基础、接受能力、抽象思维水平把握不准,同时教学方法上简单地认为文科大学数学的教学就是理工科高等数学的一种“减”和“简”,基本上还是采用满堂灌的注入式教学方法。第二,许多文科大学数学教师为数学专业硕士或博士,他们在学习高等数学的过程中很少关注数学与人文类专业的关联性,教学仅仅是纯粹地传授数学理论,再加上针对文科大学生,他们缺乏新的授课手段和技巧,使文科生学习负担加重,自信心减弱,畏难情绪普遍,对大学数学的学习兴趣与热情不够。
3.文科数学课程建设发展较慢。文科大学数学课程建设虽然取得了一些进展,但成效并不显著。在教材建设方面,由于我国各高等院校办学层次与水平的参差不齐,院系结构、学科布局的千差万别,各种地缘因素引起的诸多差异,以及教学目标、教育理念模糊带来的诸多问题,虽说目前已陆续出版了一些针对性相对较强的教材,但其使用效果并不十分理想。直接参与教学过程的相关师资人员出于工作考核和职称评聘等考虑,把主要精力往往放在自身的课题研究方面,对文科大学数学课程建设及相应的教学研究没有有效关注。
二、大学文科高等数学教学改革的对策
21世纪的人才应具有的三大能力是自我创造、自我发展和自我完备,为此,教育过程不能停留在传统的知识传授上,而应转变为培养学生自主获取知识和运用知识的能力上。在教与学这一矛盾统一体中,学生是主体,教师则退居为协助者与促进者。因此,只传授数学知识远远不够,更应关注的是教会文科生“数学的思考”,培养其数学的思维方式,即观察、归纳、演绎和推理的能力,通过新颖的教学模式与技巧激发文科生的求知欲与创造欲,让文科生在更高的层次上领悟数学的精神,增强其主动学习的能力。为此,笔者认为应从以下六方面去着手。
1.转变教学观念。在《数学学科专业发展战略研究报告》中讲到“数学教育对非数学类专业大学生的作用”时总结了“数学工具”、“理性思维”、“数学文化”、“审美情操”、“终身学习”五个方面的作用。针对文科生感性思维重过理性思维的特点,应重点培养其“理性思维”、“数学文化”、“审美情操”、“终身学习”等方面的能力,而“数学工具”则要放在次要的位置上。目前,由于师资力量的限制,许多高校对文科大学数学教学不够重视。要提高文科大学数学的教学质量,必须从文科专业的学科建设和发展的要求上明确文科数学教师的教育职责,更新教育观念和转变教育思想。教师要以文理相融、互动发展的宽广视野去主导教学活动的全过程,满足现代人文学科创新的要求,塑造高素质的文科创新人才。
2.提高教学水平。在学校的教学活动中,学生直接面对的是教师,教师自身对知识的掌握程度、精神风貌、治学态度、进取心和责任心等,都直接或间接地影响着学生。钱伟长先生认为:在高校里,不搞研究,就不会是个好教师。只有高素质的教师,才能培养出高素质的学生。教师的知识创新、技术创新以及教学创新是教育创新的根本。一位优秀的文科大学数学教师,不仅应具备渊博的专业知识、丰富的教学实践经验,还要具有令人赞叹的个人文采以及风趣生动的授课技巧。除了要注重教学方法外,教师还应不断地加强新知识的学习、新问题的研究,关注新技术的应用,要不断地以新的知识充实自己,成为热爱学习、学会学习和终身学习的楷模。
3.革新教学内容。目前,文科大学数学内容包括一元微积分、部分线性代数、微分方程和概率统计初步,是最基础和应用最广泛的高等数学知识。在教学中,不应只对这些教学内容进行空洞的讲授,而应引导文科大学生随时感悟数学的理性思维方法。同时,要打破传统数学课程,满足现代人文学科创新的要求,使数学模型和数学实验成为革新传统数学教育的内驱力,并逐步使文科数学课程成为造就“数字化”文科专业人才的课程,塑造高素质的文科创新人才。由于文科学生在以后的学习和工作中可能根本用不上数学知识,因此文科大学数学的教学目的不是培养他们的运算能力,为后续课程打下良好的数学基础,提供必要的数学工具,而是拓展学生的知识面,提高逻辑思维能力,提高学生对数学本质的认识,培养数学思想方法。因此,文科大学数学的教学内容应该包括高等数学理论、数学模型、数学文化和数学思想的内容。
4.更新数学教材。文科数学教材不应简单地在工科教材上进行删减。对文科生开设高等数学课从内容和结构上都应体现自身的特点,其中会涉及两方面内容:一是教材的内容;二是教材如何编写。笔者认为,内容应该与工科高等数学有别。如果以“T”来代表数学科学的深与广,那么文科高数题材内容要浅些,没必要具备理工科数学的深度,但广度上较理工科要更广一些。在当前文科数学微积分、微分方程、线性代数、概率统计等传统内容的基础上,新教材更应注重以史料为背景,概念、方法发现发展为主线,数学思维、数学哲学的概括为总结,把美学、趣味方法的练习作为补充,可增加诸如运筹学、离散数学、现代逻辑等现代数学及其思想的内容以及数学文化的相关内容。在教学时有所取舍和侧重,在数学教学中使学生得到思想的升华,达到素质教育的目的。
5.改进教学手段。庞大的数学体系中包含着很多数学方法,既有宏观的思想方法,也有解决具体问题的技巧性方法。在文科大学数学教学中,要使教学内容更为生动化、立体化、动态化、直观化,强化教学内容的感染力和表现力,必须运用现代教育技术,充分利用和组合各种学习资源,扩展学习空间,突破单一化的局限,可以图文并茂、情景交融,彰显教材的表现力,既增大了信息量,又拓宽了视野。比如,微积分中的求极限、面积、体积等问题,针对文科大学生直觉和形象思维发达的思维优势,如果采用多媒体进行教学,可以让学生直观地看到变量变化的过程,这样不只印象深刻难以忘记,还有利于增强他们对知识的理解,使学习更加有趣,真正做到因材施教。当然不是所有的内容都适用多媒体。对于一些例题的演算,采用多媒体效果并不理想。如果使用板书,可在讲解演算中与学生进行互动,启发他们的思维,使学生潜移默化地掌握分析方法和计算技巧,这样可大大提高教学质量和效果。总之,教师应从知识的传授者转变为能力的培养者,通过恰当的教学手段实现以学生为中心的转变,使课堂教学更加轻松有趣。
6.拓宽考试模式。针对数学基础相对薄弱的文科学生,仅仅一张考卷定乾坤的考试方法显然是不太科学的,因为文科学生学习数学的目标决定了不能单纯以解题的逻辑严谨性、方法的灵活性或题目的难度来考查学生的水平。针对这种特殊情况,首先,改革传统的试卷内容。考卷可以用概念的思想表达和计算的实际应用等比较适合文科学生的方式进行;其次,降低卷面成绩的比例,适当增加读书报告、专题论文、小组讨论和简单建模等考核形式。
三、结语
[论文摘要]探索新时期中专数学教学,以适应新时期中专教学的特点,是当今中专数学教学改革的重要任务。
在我国现行教育体制中,中专教育作为职前教育以其特有的形式存在。其主要任务,就是培养具有一定的基础理论和较强的动手能力的中等专业技术人才。使其就职后即可成为车间、班组的基础技术骨干。因此,中专的教学体制和形式也必须围绕这一中心来执行。数学课程作为一门重要的基础理论和应用工具,更应着重于实践技能的发掘和培养,为其后继的专业课程打下良好基础。但就目前中专学校数学课程的教学形式而言,其重点仍然是理论知识的传授,以课堂教学为主,没有摆脱老的框框,违背了中专培养目标。笔者结合多年的教学体会,对中专数学教学形式存在的问题和变革方法,谈一些粗浅的认识。
一、制约教学形式变革的几个主要因素
中专数学教学脱离实践的一个很重要的原因就是由于我国几十年来在学校一直实行的那种教师讲课,学生记录;课堂听讲,课后作业的教学模式,不论是中、小学,还是中专和大学。从教学大纲、教材、教师备课、讲课到学生作业、考试等诸环节都是几十年一贯制。这就在无形中形成了一种传统的观念,认为这就是正规的教学形式。不论是教师还是学生,已经习惯于这种规范化教学。殊不知这种规范化的教学形式,不仅使教师陷入了一种僵化的模式之中,而且也使学生只能被动地按照教师的讲授理解知识,无法发挥自己的主观能力。
其次,中专数学教学大纲和教材的编排及课堂教学的环境,也限制了教师教学形式的发挥。作为教师,也希望通过不同的教学形式收到良好的效果。但由于受教学大纲、教材的约束和教学环境的限制而显得力不从心。只能在有限的范围内力使自己的授课生动活泼一些,提高学生的学习兴趣。然而这些作法因脱离不了总体的限制,往往收效不大。特别是作为课堂教学的主体、知识的接受者——学生,对教学形式的变化往往又显得不能适应,反而事倍功半。
再者,中专学校的学生,一方面要使自己适应教师的教学方式,适应教学环境,排除外界干扰。另一方面又要熟练掌握所学知识,通过考试。而学生在一节课内完全集中精力听讲是不大可能的,课后还必须去复习、巩固课堂内容。繁重的课程使学生无暇对所学知识做深层次的理解和探索,因此数学课程大多是前面学后面忘,达不到教学的真正目的。即使有少部分较好的学生掌握,往往也是停留在表面上。
二、对中专数学教学形式改革的一些看法
第一,应该在观念上有所转变。这里包括教师观念的转变和学生观念的转变。教师应该认识到教与学是一个整体,相互补充、相互促进。不应把自己放在教学的中心位置,应使自己的教学手段成为引导和促进学生掌握知识的动力。更应善于让学生自己发现问题、解决问题。决不能仅仅是为了讲授课本内容而上课,那只能使数学课程教学陷入僵化模式。而作为学生更应充分认识自己是教学的主体,应主动去汲取知识,不能只是被动适应教师。要善于从教师的引导中发掘本质问题,掌握其实质,并能加以引伸,提出更深层次的问题去探索,做到先入为主。
第二,现行中专数学教学大纲与教材已采用多年,是一套系统性很强的教材,不失是一部好教材。但因为教学大纲的要求和教学计划、教材的编排,使得教师必须按部就班、面面俱到进行教学。按照中专学校的培养目标,一些理论性较强的概念应该舍去。应删减必学内容,增加应用部分,缩短整个教学时间,使教师能够根据专业特点选排教学内容,增加灵活性,使学生切实学有所用。这就要求教师充分理解和掌握本专业的专业要求和基础理论,对教学的侧重点做到心中有数。
第三,教学中应注重实践性教学。长期以来,人们普遍认为中专数学课程作为基础理论课,无须有太多的实践性教学环节。其实不然,任何一门学科的形成,都是由实践到认识、再由认识回到实践这样一个循环过程,从而逐步上升到新的理论高度。数学课的理论性较强,但从中专学校的培养目标来看,更应重视其实践环节,增强感性认识,加深对所学知识的理解。例如:拱桥形状可视为抛物线,让学生实地测量计算就能引起学生的兴趣;电路中L-C振荡回路所产生的渡形在示波器上显示为正弦曲线。同学们通过观察不仅能理解正弦曲线的概念,若进一步介绍阻尼振荡和无阻尼振荡,还可以使同学们了解正弦曲线在电学中表示的波形是一种理想状态。将边长为1的正方形纸片一分为二,再将剩余部分一分为二。重复这一步骤至无穷,这个过程涉及了多种数学概念,数列、等比数列前n项求和、数列极限、无穷小量及级数等等。教师对这些概念加以引伸可以使学生由感性认识提高到理性认识,由浅入深地接受新概念。此外,如今计算机发展速度十分迅速,随之而来的是丰富的计算机软件,包括教学软件,都可以在教学中加以应用。这些新颖的教学形式和手段,都能起到增强理解、提高兴趣的作用。
他致力于小学教育管理和教学研究30余年。治学严谨、教书育人,善于探索教学规律,具有“教风正、教法巧、抓得实、效果好”的特色,常把激发兴趣、注重“双基”、教给方法、培养习惯、发展能力融于一体,以提高学生的整体素质。曾培养多位青年教师在省级以上小学数学课堂教学竞赛和论文评选中获一、二等奖。在全国30多家省级以上报刊发表教育、教学论文200余篇,教研成果《学生学习主动性的培养与发展》入选《世纪文典》一书。由他撰稿、主讲的电视教育评论《注重学生“参与”,着眼素质提高》等在中央教育电视台和福建电视台播放。他的事迹被收入《中国特级教师辞典》一书。主要著述有:《概念教学与能力培养》、《把思维的方法教给学生》、《基础·能力·素质》、《研究学法改进教法》等。
长期以来,数学教学一直停留在知识型的教学模式上。教学中,过于强调对数学概念、法则、性质、公式的灌输与记忆,忽视了对这些知识的产生、发展、形成和应用过程的揭示和探究,不善于将这一过程中丰富的思维训练因素挖掘出来,也不善于将知识中蕴藏的丰富的思想方法加以暴露,学生学到的是无本之木,无源之水的知识。随着教学改革的不断深入,已有不少教师认识到数学教学的本质应是“数学思维活动过程”的教学。在这一“活动过程”的教学中,应暴露数学概念的形成过程、规律的探索过程、结论的推导过程及方法的思考过程等。要让学生在原有知识和经验的基础上,在主动参与中,通过操作和实践,由外部活动逐渐内化,完成知识的发展过程和“获取”过程,使学生既长知识,又长智慧。下面谈谈我的做法和体会。
一、概念形成过程的教学
数学概念是人们对数学现象和过程的认识在一定阶段上的总结,是以精辟的思维形式表现大量知识的一种手段。在概念教学中,我首先暴露概念提出的背景,暴露其抽象、概括的过程,将浓缩了的知识充分稀释,便于学生吸收。
例如,“体积”概念的教学,就应紧扣概念的产生、发展、形成和应用的有序思维过程来精心设计。
1.首先让学生观察一块橡皮擦和一块黑板擦,问学生哪个大,哪个小?又出示两个棱长分别是5厘米和3厘米的方木块,问学生哪个大,哪个小?通过比较,学生初步获得物体有大小之分的感性认识。
2.拿出两个相同的烧杯,盛有同样多的水,分别向烧杯里放入石子和石块,结果水位明显上升。然后引导学生讨论烧杯里的水位为什么会上升?学生又从这一具体事例中获得了物体占有空间的表象。
3.引导学生分析、比较,为什么烧杯里的水位会随着石块的增大而升高。在这一思维过程中,学生就能比较自然地导出:“物体所占空间的大小叫作体积”这一概念。
4.接着我又让学生举出其它有关体积的例子,或用体积概念解释有关现象,使体积概念在应用中得到巩固。如先在烧杯里盛满水,然后放入石块,问学生从杯里溢出的水的多少与石块有什么关系?经过观察、分析,学生便能准确地回答:从杯里溢出的水的体积与石块的体积相等。接着再把石块从水中取出,杯里的水位下降,学生立即说出,水位下降的部分,就是石块所占空间的体积。这样,既提高了学生的学习兴趣,又加深了对新学概念的理解。因而,“体积”概念的建立过程,是通过观察、比较、分析、抽象概括的过程,体现了学生在教师的引导下,环环相扣、步步递进、主动参与了这个“从感知经表象达到认识”的思维过程,学生在知识的形成过程中认识并掌握了数学概念,学到知识的同时又学到了获取知识的方法。
二、规律探索过程的教学
课堂教学是师生的双边活动,教师的“教”是为了诱导学生的“学”。在教学过程中,我常根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探索新知识,发现新规律。这对学生加深理解旧知识,掌握新知识、培养学习能力是十分有效的。
例如,教学“能化成有限小数的分数的特征”时,课始,我就很神秘地请学生考老师,让学生随意说出一些分数,如1/2、5/6、7/25、7/15……我很快判断出能否化成有限小数,并让两个学生用计算器当场验证,结果全对。正当学生又高兴又惊奇时,我说:“这不是老师的本领特别大,而是老师掌握了其中的规律,你们想不想知道其中的奥秘呢?”学生异口同声地说:“想”。从而创设了展开教学的最佳情境。我紧接着问:“这个规律是存在于分数的分子中呢?还是存在于分数的分母中?”当学生观察到7/25与7/15,分子相同,但7/25能化成有限小数,而7/15却不能时,学生首先发现规律存在于分母中。我追问:“能化成有限小数的分数的分母有什么特征呢?”学生兴趣盎然地议论开了:有的同学说分母是合数的分数,但7/15不能化成有限小数,而1/2却又能化成有限小数;有的同学又说分母应是偶数的分数,但5/6不能化成有限小数,7/25却可以化成有限小数……这时,我不再让学生争论了,而是启发学生试着把分数的分母分解质因数,从而发现了能化成有限小数的分数特征。正当学生颇有大功告成之态时,我又不失时机地指出8/24与6/24,为什么分母同是24,化成小数却有两种不同的结果?学生的认识又激起了新的冲突,从而再次引导学生通过实践、思考,自己发现了必须是“一个最简分数”这一重要前提条件。学生在知识内在魅力的激发下,克服了一个又一个的认知冲突,主动地投入到知识的发生、发展、形成的过程中,尝到了自己探索数学规律的乐趣。
三、结论推导过程的教学
数学是一门逻辑性很强的学科,它的逻辑性强,首先反映在系统严密、前后连贯上,每个知识都不是孤立的,它既是旧知识的发展,又是新知识的基础。遵循小学生的认识规律,引导学生运用已有知识去推导新的结论,才能发展学生的学习能力。例如,教学《面积单位间的进率》时,启发学生:我们已学过长度单位,知道每相邻两个单位间的进率是10,就是1米=10分米、1分米=10厘米等。那么,现在学习面积单位,它们每相邻的两个面积单位间的进率是多少呢?这一数学结论我并没有直接告诉学生。凡新旧知识间有联系的,我都要让学生运用已有的结论,通过自己的思考,推导出新的数学结论。如,可以让学生拿出边长1分米的正方形,先用分米作单位量一量边长,说出它的面积是多少平方分米。然后再想想用厘米作单位,边长应是多少厘米,它的面积是多少平方厘米。从而推导出1平方分米=100平方厘米。紧接着再让学生用左手拿着1平方分米的方块,右手拿着1平方厘米的方块,看看1平方分米含有多少个(10×10)平方厘米,以便牢固地记住1平方分米与1平方厘米间的进率是100的结论。用同样的方法也可以推导出1平方米=100平方分米。最后得出结论:每相邻两个面积单位间的进率是100。
四、方法思考过程的教学
过去我讲课时,急于代替学生思考,把一些计算或解题的方法和盘地教给学生,这种教学,学生吃的是现成饭,学得快,忘得也快,更谈不上自己去寻找方法。为了改变这种状况,我只在教学重点的地方设问,在关键处启发,然后让学生动脑、动手寻找方法解决问题。思考过程是一种艰苦的脑力劳动过程,我不仅要求学生勤于思考,而且还要善于思考。
例如,教学《分数除以整数》时,当讲完分数除法的意义后,出示例题“把4/5米铁丝平均分成2段,每段长多少米?”引导学生理解题意后,列出算式:4/5÷2。这是一道分数除以整数的算式,怎么计算呢?我并没有把分数除以整数的方法告诉学生,而让学生分组进行讨论。小组通过集体讨论后,选派代表上讲台介绍各组解决问题的方法:
第一种方法:先把“4/5”化成小数,4/5÷2=0.8÷2=0.4(米);
第二种方法:按照分数和分数单位的意义解决问题,把4/5米平均分成2段,就是把4个1/5平均分成2份,每份是2个1/5米,所以,4/5÷2=4÷2/5=2/5(米);
第三种方法:按照分数乘法的意义来解决,把4/5米平均分成2段,求每段长多少米,就是求4/5米的1/
2是多少,用乘法计算,也就是4/5÷2=4/5×1/2=2/5(米)。
数学教学论文3000字(一):新课改理念下初中数学教学的策略论文
摘要:随着我国社会生产力的发展,我国综合国力不断增强,随之,我国的教育事业也迎来了全新的机遇与严峻的挑战。在这新课改的关键期,教学质量的提升显得尤为重要。如何为学生的发展创造良好环境、提高学生学习效率、培养学生综合的学习素养成为了广大教师应引起重视的问题。本文针对新课改实践中的切实存在的问题,阐述了一些行之有效的教学策略,希望可以为广大教师群体提供参考的依据。
关键词:新课改;教学策略;初中数学
数学是三大传统科目之一,因此,初中数学课堂教学的创新十分重要。在初中数学学习中,我们更应该突出学生的主体性,不仅关注学生的学情更要关注他们的心理状况。我们应加深学生对知识重难点的理解,并且在教学过程中培养学生的数学逻辑思维能力,同时使他们的心理得到健康的发展。新课改关注教学理念及教学设计思维的转变,注重教学技能与解题技巧。[1]在新课改环境下,教学质量的提升显得尤为重要。所以初中数学教师应作为教学的研究者与学习者,遵循素质教育原则,不断更新思想观念与教学策略,从而引导学生进行更加高效的学习。
一、初中数学课堂常见问题
通过调查研究,笔者认为,大部分初中数学教师教学观念较保守,常常采取较古板的教学模式,以自我为中心,强调教师的权威性而忽视学生学习的自主性与创造性。当学生感到思想的束缚时,他们的学习兴趣常常会大打折扣。[2]这种以教师为主体的填鸭式教学模式也会令学生更容易出现走神与注意力不集中的现象。而数学是一门需要理解的学科。仅仅通过直接无意义的记忆学习方法很难真正达到教学目的,更别说能够举一反三了。在这种古板的教学模式下,许多教师自身的职业素质与专业水平也不够高,尤其是一些年轻的初中数学教师,综合的能力与专业知识能力还有待提升。如果想要实质性地提升数学水平,提高教师的数学计算能力就是其中最首要的。传统教学中应试教育的特点也常常会给学生带来过重的心理压力。一直盯着成绩提高的目标盲目地完成各种练习,占用了学生大量的课外时间,也令学生们身心俱疲。成绩排名的变动也会给学生们的心灵无形地施压,导致学习效率的降低,最终形成恶性循环。
二、新课改理念下的创新性教学策略
(一)创设情境,培养兴趣
“良好的开端等于一半的成功。”作为一名人民教师应该时时铭记这句话,在课堂上创设生活情景,引起学生学习的好奇心和求知欲,进一步激发学生的学习兴趣.初中数学教师应该充分的将数学基础知识与现实生活情境联系在一起,可以增添更多的趣味性,使得学生能够更加积极主动的进行学习,激发他们对于数学这门学科的兴趣。与此同时,因为数学这门学科不是独立的,而是与其他学科有着密切關系的。因此在生活当中,我们无处不能发现数学知识的影子。举个例子,当初中数学课程涉及到利润、成本等问题时,教师就可以创设一个超市买卖商品的故事情景,让学生们来扮演买家和卖家的角色,模拟购物的活动。在实际的演练中,对成人世界有一个具体形象的模仿,能让学生不断地拓宽自己的思路,在自主交流学习中获取数学知识,在角色扮演中学会价格与质量之间存在的关系,使得每一个学生都能够乐于参与到数学课堂的学习中来,让他们能够亲历整个过程,对知识留下深刻的印象,从而保证学生们扎实地掌握了数学的基础知识。传统的初中数学课上,教师与学生间缺乏一定的互动,导致教学氛围相对来说比较沉闷,从而导致学生们的数学学习兴趣比较低。新课程改革之后,由于不同学生有着不同的性格,在数学课堂当中,教师就应当针对不同的性格来做出不同的教学互动来激发他们的学习兴趣,使得他们不仅在数学课堂中能保持很高的学习热情,在课后也能自主地去温故知识,加深学习印象,提高各自的学习成绩。
(二)信息化技术的使用
随着科学技术不断的发展进步,社会慢慢朝着信息多元化与网络化的方向发展。新课改要求全体教师必须转换传统的数学教学思维模式,运用多媒体工具来辅助教学,从而化抽象为具体。在数学课堂教学过程中也应该重视利用新兴的信息技术。对于初中学生,进行数学图形的抽象知识学习,通常需要具备一定的逻辑思维能力与丰富的想象力,而生动、形象的教学模式还可以显著地提高学生对于数学几何学习的积极性。[3]比如说,在进行“角的平分线”教学时,可以借助几何画板向学生们生动地展示角平分线逆定理、性质、定理和图象分解形式,从而知道学生根据相应的数据和图形的变化情况来认识和掌握角平分线的定理。借助多媒体,还可以在“相似三角形”的教学过程中实现动态演示图形,用几何画板制作的两个三角形一直保持相似,而三角形的大小能够随意改变,形状却保持不变。多媒体的使用能够开拓学生的眼界,丰富课堂的学习内容.可以极大地提高学生的空间想象力,进一步地做好知识落实工作,有助于初中数学教学效果的提升,进而实现科学化和信息化相结合。同样地,教师也可以积极的构建课外学习的“内部网络”,通过班级的微信群帮助引导学生,更加方便的为学生服务,教师也可以组织学生观看优秀教师的教学视频,这样就可以打破传统的教学方式,开阔学生的视野,也是为提高数学教学质量打下坚实的基础。[4]
(三)创新方法,解放思维
随着人民生活水平的提高,家庭、政府与社会都十分注重教育质量,现阶段我国推崇人才强国战略,因此开展了新课改与素质教育等活动。那什么才是素质教育呢?从根本上来说,素质教育指的是受教育者的综合素质的提升,不单单是强调科学文化知识方面的提升,更多强调受教育者能力、个性与创造力,思维、心理与思想品德等方面的全方位的提升。随着新课程改革如火如荼的展开,现在德、智、体、美、劳五育并举的教育理念又一次被提上日程。然而,在现实的初中数学课堂教学当中,我们仍然可以看到大部分教师依然只是在一味地强调分数与学习质量,而这恰恰是与新课改的要求背道而驰的。在此情况下,现在的初中教育亟待改组和重构,进行教学内容、方式、模式的不断更新、完善和调节,紧紧围绕学生来开展数学教学。而从数学这门学科来看,它具有较强的逻辑性,对受教育者的思维能力也有着高要求,所以教师在教学活动中不能急功近利,而应该做到循序渐进地帮助学生打好基础,让他们在数学学习的道路上越走越远。教师应该选择合理的教学方法,引导课堂教学的改革向更好的方向前进,进而不断提升其教学质量。传统数学教学模式使得学生的数学思维局限在应付试卷中的题型上,而这种思维方式会对学生的整个数学学习过程产生负面的影响。而在新课改下的数学教学中,教师应当努力引导学生,让他们产生创新性思维和探索性思维,在面对新的数学定义时,尽量减少让学生死记硬背的情况,而是将此大的概念分解成为易于学生理解的内容,让学生能够慢慢了解这个定义的形成原因和形成过程,从而使学生不是采用死记硬背的方式去记忆,而是在理解的基础上加深巩固自己的记忆,并在面对实际问题时能够快速反应、活学活用、举一反三。
三、结束语
总之,新课改下对初中数学的教学提出了很多的新要求。我们必须不断提高自身的教学质量,提高课堂效率。但是教师也常常会需要面对一些这样或那样的问题,但是无论如何我们都应坚持以学生为中心,激发学生学习兴趣,尊重学生个性发展,培养他们的数学思维与能力,为他们构建更加平等、自由、和谐、开放的课堂环境,使得学生能够全身心地投入到数学学习中去。[5]从而让学生在不断学习进步的过程中,发现数学学习的乐趣,发现生活中的数学之美。
数学教学毕业论文范文模板(二):初中数学教学与信息技术多媒体的整合研究论文
【内容摘要】随着科技的不断进步,信息技术已经完全融入到教学应用中,初中数学教学和信息技术多媒体的相互融合已经不为罕见了,它对于初中数学教学的革新和调动学生对于数学学习的积极性有着很重要的作用。因此本文基于初中数学教学的现状,着重分析信息技术多媒体与初中数学教学整合研究。
【关键词】初中数学教学信息技术多媒体
一、信息技术多媒体对于初中数学教学的重要性
信息技术的不断革新促使教学从“黑板”到“多媒体”逐渐转变,初中数学知识点众多,逻辑较为抽象,学生不易掌握,使用多媒体进行教学可以使教学变得直观,使复杂的知识点变的系统化,学生也更易理解。使用多媒体技术打破了传统的灌输式讲授的教学方法,让数学课不再枯燥,课堂也变得生动有趣,学生对于学习的积极性也逐渐加强,可以有效的提高课堂效率,因此信息多媒体技术对于初中数学教学的水平提高有着必不可少的作用。
二、初中数学教学的现状
要想将初中数学教学和信息技术多媒体相互融合,必须先了解初中数学教学的现状以及存在的问题,通过分析问题所在,找出解决方案,提升教学效率,提高教学质量。以下是我对当前初中数学教学现状作出的两点分析。
1.过于重视多媒体技术的使用
多媒体技术对于提高初中教学水平固然重要,但是有些老师过于重视多媒体的使用。40分钟的一节数学课,有的老师过多的把知识点累积在多媒体课件上,导致学生无法掌握住教学的重点,把过多的关注点放在形形的外部因素上,我们要知道多媒体在教学中起到辅助作用,过于重视多媒体技术应用会使学生的注意力分散,不能把更多的精力放在对于知识点的理解上,教师也无法按计划完成教学任务,导致教学质量下降,课堂效率低下。
2.教师无法熟练的使用多媒体
有些教师过多注重多媒体技术应用,而有些教师却不会熟练地操作多媒体。尤其对于四十或五十岁的中老年教师,多媒体技术对他们来说是一种新型的技术,他们很少接触,而且很多教师不愿意花时间去学习,致使他们在课堂上很少使用多媒体,从而与新型的课堂教学脱离轨道,使他们的课堂缺乏创新性,学生对于数学的兴趣也无法提高。
三、初中数学教学与多媒体技术整合的措施
很多学校已经应用多媒体技术进行教学,但是并不是所有的学校都能够合理的使用多媒体技术,多媒体技术与注重教学的融合还存在很多问题,所以我们必须提出相关的措施进行改变。
1.正确对待多媒体的使用
我们都知道多媒体教学对于初中数学教育成绩单提升有很大帮助,所以学校应该普遍使用多媒体,对于没有接触新事物的老教师,应该积极进行培训,告诉他们多媒体在教学中的重要作用,鼓励他们多使用多媒体进行教学,比如初中数学开始接触二次函数,单独依靠黑板讲解二次函数,不能直观的使学生理解,可以使用多媒体来讲解二次函数的产生,这样就变得非常生动有趣。
除此之外,我们也不能太过于重视多媒体而忽视了学生的主体地位。在教学中学生为主体,教师为主导,而多媒体只起教学的辅助作用,对于复杂的函数图像来说可以使用多媒体进行教学,对于那些简单的学生可以解决的问题,则无需使用多媒体,这样我们可以摆清学生、多媒体、教师和课堂的作用,借助多媒体来提高教学质量。
我们可以使用多媒体,但是要合理使用,注意要将课堂和多媒体相互融合,这样才能将课堂效率发挥到极致。
2.利用多媒体将抽象变为直观
对于那些初中数学别抽象难理解的知识概念,可以使用多媒体把它直观的展示出来。比如初中数学中的立体几何,很多学生的抽象逻辑思维并不好,很难想象出抽象的几何,这就导致了对一些较难的大题,很多学生都普遍解答不出来,从而使他的数学成绩是所有的学科中分数最低的,也就是所说的偏科现象。这时教师就可以利用多媒体将立体几何形象的展示出来,将抽象变为直观,对抽象的问题进行整合,使学生的视觉,听觉和直觉都结合起来,通过多媒体的形象表述,学生解答问题就变得会简单很多,而且这样可以使学生对于数学的积极性提高,还能提升课堂效率,提高教学质量。
3.运用多媒体拓宽学生的视野
初中生的学习任务繁重,课外活动参加较少,课堂也较为枯燥无味,所以,教师在教学过程中应该多加运用多媒体拓宽学生的视野。在初中数学教学中,除了必要的知识点汇讲之外,在有效的时间内可以在教学中可以穿插一些课外的知识,通过多媒体课件来扩大学生的视野,让学生在学习之外了解到一些另外的东西,并且可以对初中教材进行丰富的完善,加强学生对于数学的探索精神,让学生了解到更多的知识。
一、定势思维的内涵及创造思维的形成
1.定势思维的内涵及在教学中的表现定势是有机体的一种暂时状态。定势思维是指人们按习惯的、比较固定的思路去考虑问题、分析问题,表现为在解决问题过程中作特定方式的加工准备。具体地,定势思维主要有3种特性及表现方式。
①趋向性。思维者具有力求将各种各样问题情境归结为熟悉的问题情境的趋向,表现为思维空间的收缩。带有集中性思维的痕迹。如学习立体几何,应强调其解题的基本思路:即空间问题转化为平面问题。
②常规性。要求学生掌握常规的解题思想方法,重视基础知识与基本技能的训练。如学因式分解,必须掌握提取公因式法、十字相乘法、公式法、分组分解法等常规的方法。
③程序性。是指解决问题的步骤要符合规范化要求。如证几何题,怎样画图、怎样叙述、如何讨论、格式摆布,甚至如何使用“因为、所以、那么、则、即、故”等符号,都要求清清楚楚、步步有据、格式合理,否则就乱套。
定势思维通常有两种形式:适合定势思维和错觉定势思维。前者是指人们在思维过程中形成了某种定势,在条件不变时,能迅速地感知现实环境中的事物并作出正确的反应,可促进人们更好地适应环境。后者是指人们由于意识不清或精神活动障碍,对现实环境中的事物感知错误,作出错误解释。在教学过程中,教师要有目的、有计划、有步骤地帮助学生形成适合定势思维,防止学生形成错觉定势思维。
2.创造思维的形成过程
创造思维是指个人在头脑中发现事物之间的新关系、新联系或新答案,用以组织某种活动或解决某种问题的思维过程。它要求个人在已有知识经验的基础上,重新组合产生新的前所未有的思维结果,并创造出新颖的具有社会价值的产物。创造思维的产生因人而异,没有固定的模式。一般经历4个阶段。①准备阶段。这一阶段的主要任务是搜集资料和有关信息、储存经验,以便为创造做准备。②酝酿阶段。这一阶段的任务是消化、传换信息,在头脑里反复进行象征性的尝试,重新组合概念。③大悟阶段。这时头脑中事物各部分仿佛突然接通了,发现了新关系、新联系,构成了新形象、新假设,得出了新结论。④验证阶段。将产生的思维结果付诸实施。
集中思维和发散思维是构成创造思维的必要成份,逻辑思维是创造思维的基础,灵感的形成是创造性思维的关键。定势思维是夹杂在各种形式的思维活动中起奠基的作用。教师在教学中要认真把握,注意培养。
二、定势思维与创造思维
1.定势思维是集中思维活动的重要形式
课本内容是学生学习的根本所在,它是前人经验、智慧的结晶,从内容到方法,都有严格的规定,它需要利用固有经验,按一定模式去解决问题,而这正是完成基础知识和基本技能教学任务的需要。
2.定势思维是逻辑思维活动的前提
逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。数学教学中主要的思维活动是逻辑思维。如明确定义、推导法则、公式、证明定理、运用知识解决问题等活动,时时刻刻都在运用逻辑思维。在进行逻辑思维时,要经过一步一步的分析,多环节、多步骤地逐步将条件转化为结论,每一步都要“言必有据”并遵循推理的法则。这正是定势思维所要求的。
3.定势思维是创造思维的基础
定势思维一方面表现为思维空间的收缩,另一方面,思维者力求扩充已有经验、观念认识的应用范围,表现为思维空间的扩散。因此,定势思维又成为推动思维展开的动力。从这个意义上讲,定势思维可以成为类比、归纳、联想等发现手段的基础。
4.定势思维与创造思维可以相互转化
定势思维与创造思维是相辅相成的两个概念,而非对立。它们总是互相依赖,互相促进,并在一定条件下可以相互转化。当定势思维积蓄到一定程度时,就会由量变引起质变,转化为创造思维。每一次转化都使二者同时进入一个新的更高水平阶段,如此进行,人们的思维能力才能得到不断发展和提高。
5.定势思维对形成创造思维的消极作用
在强调定势思维积极作用的同时,我们也应该看到它的消极作用,错觉定势思维在数学教学中的影响是客观存在的。不少学生总是习惯于搬用已有的经验,被动记忆、机械模仿、生搬硬套,表现出思维的依赖性、呆板性,这些均是产生错觉定势思维的温床。如用6根火柴搭成4个三角形,这些三角形的每边都是一根火柴那么长。学生解决此问题感到棘手,怎么摆弄也摆不出4个三角形,其原因正是“平面错觉定势”的影响。
三、几个应该重视的问题
1.要重视定势思维自身形成的过程
数学教学的目的在于建立符合数学思维自身要求的具有哲学方法意义的定势思维。这种定势不仅是数学观念系统的重要组成部分,而且也是数学思维能力的具体体现。定势思维的作用不在于定势思维本身,而在于定势思维如何形成。例如,概念的教学,如果就概念讲概念,草率地把概念硬灌给学生,那么只能形成僵硬的概念定势;如果充分调动学生学习的积极性,从实际事例和学生已有知识出发,通过分析比较,引导学生步步深入地揭示概念的内涵和外延,抓住事物的本质,那么学生头脑中建立起来的就是积极的、活跃的“概念定势”,形成适合定势思维。上述两种教法,均是建立“概念定势”,究其过程是有本质区别的,我们在教学中应加以重视。
2.要淡化所谓的“解题规律”
在数学教学活动中,配备适量及适当的习题进行训练是必要的,但是过分地强调并不基本的解题技巧、方法和观点,突出所谓的“解题规律”是不科学的,无疑会使学生形成呆板思维。更有甚者,在学生未能理解的情况下,让他们死记一些解题的诀窍、程序或口诀,这是造成错觉定势思维的重要原因。有一位初中数学教师,将几何题分成几种类型,让学生死记硬背其规律,应付考试,效果不错,得到了部分家长的“称赞”,某种程度上助长了这种错误做法,这也是题海战术长盛不衰的一个重要因素。这种教学方法尽管在某些场合可以暂时取得良好的成绩(分数),但从长远来看,不利于学生思维能力的发展。难怪爱因斯坦曾说过:“现在的教学方法扼杀了人们研究问题的神圣好奇心,在学校里,甚至觉得自己象头野兽一样,被人用鞭子强迫着吃食!”这种状况确实是我们教育的悲哀,这不是在培养和发展人的创造思维能力,而是在“铸造”机器人。
3.正确处理好定势思维与创造思维之间的关系
创造是定势的突破,同时又是定势的产物,并非某些文章中所归纳的,定势思维是制造错误的发源地。消除定势思维的消极作用的关键在于克服错觉定势思维,发展适合定势思维。众多文章过多渲染定势思维的消极作用,无形中给中学数学教学带来了某些不良影响。如有的教师只重视创造思维能力的提高,不重视打好基础,导致学生成绩严重两极分化;有的脱离《大纲》和课本的要求,违背学生的认知发展规律,追求“高难度、高技巧、妙方法”,造成多数学生如入迷雾,不知所措,非但没有形成创造能力,而且必须学的知识也没能掌握。因此,创造思维的训练要有度,教师要注意把握学生掌握知识的阶段性、连贯性和贯力性,合理处理定势思维与创造思维之间的关系。促进定势思维的形成——突破——形成的良性循环,达到提高学生创造思维能力的目的。
参考文献:
1.张焕庭赵兴中《心理学》,江苏教育出版社,1986年6月
因此,在数学教学中,如何使学生领悟出数学知识源于生活,又服务于生活,能用数学眼光去观察生活实际,培养解决实际问题的能力,应成为每位数学教师重视的问题。下面就谈谈这方面的体会。
一、从生活实际中抽象出数学知识
数学研究的是客观世界的数量关系和空间形式,它来源于客观世界的实际事物。在小学数学教学中,从生活实际出发,把教材内容与数学现实有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时也使他们受到辩证唯物主义的启蒙教育。
1、从实际问题中抽象出数学概念、计算法则
小学数学中的许多概念都可以在现实生活中找到相应的实例。例如:在常见的数量关系工作时间×工作效率=工作总量中的工作效率,学生不易理解。为此,此时我在教学前,在班里举行了一次缝纽扣比赛。教学新课时,联系缝纽扣的活动,学生就容易理解工作效率,就是指单位时间内所作的工作量。
又如,小括号的教学可以这样进行:先出示8+6×5与6×5+8两道算式,让学生复习运算顺序。然后出示应用题:
工人老师傅上午工作3小时,下午工作4小时,每小时做12个零件,他一天共做几个零件?(要求列综合算式)
学生列式计算如下:
12×3+4=12×7=84(个),
教师设疑:先做加法,再做乘法,好像不对吧?揭示新旧知识之间的矛盾,在学生束手无策时,适时引出小括号。这样,通过问题的设计,矛盾的解决,使学生了解引进括号的原因和用途,懂得了先算括号里的数的道理。
2、从贴近学生实际水平的现实出发,一步步地引出概念
例如,面积单位可以这样教学:先出示大小差别比较明显的两个三角形,此时让学生比较它们面积的大小,得出:面积的大小可以用眼睛看出来;再出示两个等宽不等长、面积差不多的长方形让学生比较大小,得出:面积的大小可以用重叠的方法比较出来;然后出示不等长也不等宽、面积差不多的一个长方形和一个正方形让学生比较大小,学生深思后得出:可以画方格,再通过比较方格数的多少来比较面积的大小;最后出示两个方格数相等,但面积明显不等的图形,引导学生讨论,方格数相等为什么面积不相等?从这个现实问题中得出,方格的大小必须有统一的标准。这时引出面积单位,已是水到渠成了。这样组织教学,学生不仅掌握了面积单位的概念,而且了解了面积单位产生于解决实际问题的过程,受到了辩证唯物主义的启蒙教育。
二、运用数学知识解决实际问题
学习是为了应用。因此,教师应联系实际培养学生运用数学知识解决实际问题的意识和能力。
1、联系实际,增强学生的数学意识
数学知识在日常生活中有着广泛的应用,生活中处处有数学。学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?为什么?还可以让学生想办法找出面盆底、锅盖等的圆心在哪里。通过了解数学知识在实际中的广泛运用,培养学生用数学眼光看问题,此时用数学头脑想问题,增强学生用数学知识解决实际问题的意识。
2、创设情境,培养学生解决实际问题的能力
学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际的环境。例如,学了按比例分配的知识后,让学生帮助算一算本住宅楼每户应付的电费;学了利息的知识后,算一算自己在新星小银行存储的钱到期后可以拿到多少本息等。
在学了百分比的知识后,我和学生做了一个游戏,方法是:在一个布袋里放6个同样的小球,分别标上1~6六个数字,老师和学生轮流每次从袋中摸出2个小球,如果球上两数相加和为偶数,学生赢,加起来和为奇数,教师赢。比赛结果教师赢的次数多,然后引导学生讨论,并把各种情况一一列出,得知,和为偶数的有6种情况,和为奇数的有9种情况,老师赢的可能性占60%,学生赢的可能性占40%,所以老师赢的次数多。最后还指出,街头巷尾的有些赌博活动,坐庄者使的就是这种骗术,不要轻易上当受骗。
3、加强操作,培养能力
关健词:成人高等数学教学方法
成人高等教育从1986年实行全国统一招生考试,经过短短的二十多年的发展,已成为高等教育体系中重要的组成部分。根据中国教育网《2002年全国教育事业发展统计公报》的信息,裁止到2002年底我国高等教育本科、高职(专科)在校生1462.52万人,其中成人高等教育在校生554.16万人,占38.23%。
数学是成人高校一门十分重要的基础课,它是研究客观世界的空间形式和数量关系的科学,具有很强的概括性、抽象性和逻辑性,也是应用极其广泛的一门学科。在高新技术的信息时代,要求企业的职工尤其是企业的决策者与管理者具有良好的数学素质,具有抽象思维能力与解决间题的能力,具有对所从事的经济与生产活动做出定量分析与定性分析的能力。目前在技术界广泛流传一个说法是:“高新技术本质上就是数学技术”。为了培养高素质的员工与管理人才,适应现代化管理的需要,提高成人高等教育的数学教学质量,提高学生数学应用能力就显得尤为重要。
一、成人高等数学教学方法现状分析
1.忽视成人学生的基础,教学方法“普教化”、单一化。
一方面,由于近几年成人人学门槛越来越低,导致学生数学基础较差,学生欠缺基本的数学基础知识、基本技能,思维能力很差,分析问题解决间题的能力更有限,没能形成有效的学习方法。另一方面,由于许多成人高校依附于普通高校办学,或者干脆就是普通高校的一个分支,导致我国成人高等数学教育的教学方法长期以来沿袭或模仿普通高校的那一套,缺乏成人特色;教学条件和教学手段相对落后,缺乏起码的现代化教学手段,导致老师教学方法单一。这些都严重影响了成人高等数学教学质量。
2.忽视成人特点,缺乏理论联系实际。
成人学生的学习特点以间接兴趣为主,具有明确的指向性、不稳定性,只有感到所学内容“实际、实用、实效”,才会好学,学习质量才会提高。传统的高等数学教学忽视成人学习特点,注重知识的传授,忽视职业技能的培养,理论脱离实际。比如:学习《线性规划》的“单纯形法”,却不知道“单纯形法”的经济含义,在《企业管理》的学习中不会应用,更谈不上把经济活动中的实际问题化为数学问题,用数学知识和方法解决问题。在学员的毕业设计中几乎找不到用数学模型来解决生产过程与经营管理中实际问题的论文。由于数学教学的严重脱离实际,使得学生普遍觉得学习数学又费时,又难学,又无用,实在枯燥无味,学习起来既没有兴趣更缺乏动力。
二、改进教学方法的对策研究
1.生动有趣的直观教学方法
因为数学比其它学科更抽象,所以选用直观教学方法提高学生的理解能力。即利用图形、图表、情感等手段,通过学生的感知,使他们获得清晰的表象。心理实验表明,人们从视觉获得的知识一般能记住25%,只从听觉获得的知识一般能记住15%;如果人们能把听觉与视觉结合起来,能记住的就增加到65%。利用这一原理,综合调动学生的感觉器官进行教学,可以大大提高数学教学质量。
(1)描述形象化。《微积分》中蕴含着许多重要的数学思想、数学方法,这是课程中讲解的重点,却往往也是难点,这时举个例子、打个比方,形象化地描述,能够事半功倍。比如在讲左、右极限蕴含着一个重要的数学思想:两边逼近的思想。在给学生讲了一个两头狮子从两边合围捕牛的故事后,学生就轻松理解两边逼近的思想。
(2)理解情感化。充分利用学生感性知识理解数学,形象生动的语言会让人身临其境,增强理解能力。比如:在讲解极大值不一定比极小值大时,问学生一个问题:在自已的家族里,有没有叔叔比侄子小的情况?学生说“有”,课堂气氛非常活跃,学生一下子就理解了有时极大值比极小值小这个问题。
(3)文字图形化。图对于数学来说是不可或缺的,如果把图从数学中删去的话,就好比一只老虎没有了牙。对于一些难以理解的概念,把文字图形化,会让学员更轻松的理解和掌握。比如利用图象介绍连续这个概念。
(4)语言趣味化。讲导数可以求二阶导、三阶导、n阶导时,我们说就像影星伊丽莎白·泰勒,在她的第二次婚姻变成过去式之后猛然省悟,“为什么我一定要停在第二次呢?”以后她一而再,再而三的结婚,当然首先是离婚。在此你也可以一而再,再而三求导数。让学生在微微一笑中理解了一个平时去师磨破嘴皮都不见得能理解的知识点。
2理论联系实际的教学方法:
数学的根源在于普通的常识,数学实质上是人们常识的系统化,即数学是现实世界的抽象反映和人类经验的总结,所以数学教育应该源于现实,用于现实,应该通过具体的问题来教抽象的数学内容,应该从学习者所经历所接触的客观实际中提出问题。
(1)案例式教学方法。在成人高等教育财经管理类专业中,数学是核心课程,主要包括:微积分、线性代数和线性规划、概率论与数理统计,总结这些数学在经济管理类专业中的应用,发现数学的应用极其普遍。如:国民经济计划中的投人产出法;西方经济学中的边际效益;信息经济学中的博弈论;市场营销中的各种概率值计算;企业战略中的决策论;运输调度中的网络分析;建筑施工中的工期运筹等。所以在教学时采用案例式的教学方法,有针对性地选择一些问题进行理论分析,如:不同还款方式贷款购房的比较、多种商业保险款项的比较等。这样充分发挥了成人学生有一定工作和生活经验,问题意识强的特点,使成人学生更主动地参与到教学中来。
(2)“再创造”的教学方法。传统的教学方法就是将数学当作是一个已经完成的现成的形式理论,从定义出发,介绍它的符号、表达方式,再讨论一系列性质,从而得出各种规则、算法。这即不符合数学的被发现、创造的真实过程,也违背基本的教学方法,还会造成数学课程平淡无味。所以国际上著名的数学教育权威弗赖登塔尔倡导“再创造”的教学方法,他认为数学教学方法的核心是学生的“再创造”,就是给学生提供条件,在教师的指导下让学生能够重新创造性质、规则甚至定义。也就是按照数学家研究、学习数学方式来学习数学。“再创造”的教学方法强调的重点从教转向学,学生从观摹到亲身行动,体验参与。比如:用“一尺之捶,日取其半,万世不蝎”来引人数列极限;用中国人口的增长问题和学生共同探讨“指数增长和指数衰败”。由于能够引人到教学当中的案例不但有限,而且还受学生基础的限制,所以在教学中可以采用“再创造”的教学方法达到理论联系实际的目的。
十多年来,我国小学数学教学的改革发展,经历了一个逐步深入而又十分艰苦的探索过程。人们的注意中心先是放在“加强双基”上,进而重视“培养能力”和“发展智力”,以及如何教学生“学会学习”,现在又在探索如何用“素质教育”的思想来进一步指导小学数学教学改革,这是具有深远意义的一种有益尝试。
其中,从素质教育的高度来重新认识“非智力因素”,进一步充分发挥数学教学的情感教育功能,已成为数学教学研究的“热门”话题之一。
首先,现代心理学研究表明,学生的学习并不是一个“纯认识”的过程。正如人文心理学家罗杰斯所指出:学习本身就包括认识和情感两个方面。作为学生(学习的主体)在数学学习过程中,其智力因素担负着信息加工的任务,即对信息进行感知、加工、识记、保持和应用。它可以使人类积累的经验转化成个体的知识结构,属于主体的操作系统。而非智力因素担负着信息选择的任务,即对信息进行鉴别、筛选,当认为是有趣的、有价值时,主体便主动而有效地吸收,否则反之。这就是为什么有的教师一味加大知识信息量而不能真正进入学生头脑的原因。因此非智力因素对操作系统起着始动、定向、维持和调节的作用,它属于主体的动力系统。我们的教学如果只注重操作系统的过程,即认知过程,而忽略动力系统的过程,即情感过程,或者虽然有时也讲兴趣、动机、情感、意志,但充其量只作为吸引学生注意,保证上课不走神的一般条件,作为附加于教学活动之上可有可无、无足轻重的东西,就不能不说是一个很大的缺陷。从现代教学观看,在教学过程中两种系统是协同作用、互相依存、相互促进、密切配合的,因此数学教学必须努力实现学生的认知与情感、智力因素与非智力因素培养的和谐统一,在充满活力的教学过程中追求最佳的教学效果。
其次,从素质教育的角度看,小学阶段不仅是智能发展的关键期,也是情感和人格发展的关键期。数学教育的目标不只是传授知识和发展能力,也应该着眼于学生的整体发展。在传授某一知识,培养某一能力时,应注意使学生的知情意行各个方面都能得到协调发展。因而,情感教育应该成为数学学科教学整体目标中的一个重要组成部分。
第三,数学课堂教学不仅应该是进行情感教育的阵地,并且有发挥情感教育功能的条件与可能。教学过程不仅是师生双方信息交流的过程,同时也是情感交流的过程。人总是有感情的,教师对数学教学业务的精益求精、对数学学科的热爱,将潜移默化地影响着学生。教师对学生真挚的爱、积极的鼓励、会心的微笑、殷切的期望,教师为学生创设的愉悦、和谐的课堂气氛,必然会给孩子们创设良好的心理条件,1987年北京市曾对9所中小学学生进行过问卷调查,其结果反映,学生对“最喜欢的老师”与“最感兴趣的学科”的一致性高达99%。因此我们可以说,教师对事业和儿童的热爱,是数学教学中情感教育的总源泉。在课堂教学中,教师精心设计的教学活动,能激发学生的学习情感,必然激活和加速学生的认知活动。正如赞可夫所说:教学法一旦触及学生的情绪和意志领域,触及学生的心理需要,这种教学法就会变得高度有效。因此我们可以说:通过教学设计和采用有效的教学策略,激发学生学习兴趣,满足学生成就动机,是数学教学中情感教育的主要途径.那么如何发挥数学教学的情感教育功能呢?
1.首要的是师生合作。教学中要重视师生之间的积极的平等的情感交流,为学生创造一个良好的学习环境。“亲其师,信其道”,当学生对老师产生积极情感,那么他们就容易将这种情感迁移到教师所教的内容上去,这就是情感教育的迁移。
2.要充分利用教师自身的体态。情绪是感情的外在表现,教学中师生之间的情绪活动总是在互相影响、互相感染的。老师的面部表情、言语动作,甚至衣着都无时无刻不在影响着学生的情绪,这就是情感教育的感染。
3.人的情感总是在一定的情境中产生的。在数学课堂教学中,教师应注意结合教学内容揭示数学美,使学生感受到数学的无穷奥妙,促进他们对数学的热爱;应注意向学生提供生活中的具体事例,使学生感受到生活中数学无处不在,激发学习数学的热情;应注意通过巧妙的设疑,激发学生强烈的求知欲;应注意捕捉学生思维的闪光点,提高学习的自信心,激起他们继续学习的热情,等等。这就是情感教育的情境。
4.学生的天性是好动。我们的教学应以学生这一心理特征为出发点,教学中注意让学生多种器官并用,为他们动手、动口、动脑提供足够的素材、足够的时间和足够的空间,为他们自我表现和相互交流提供多种多样的机会,努力营造为学生所“喜闻乐见”的课堂气氛,以充分发挥情感教育的自主。
5.小学生正处在身心发展的阶段,离不开教师的诱导,所以小学数学教学中要强调正确发挥教师的主导作用。小学生对待老师的表扬奖励、批评惩罚和漠不关心有着绝然不同的心理体验。如果教师对学生漠不关心,学生有了进步不能及时得到表扬奖励,有了不足也不能及时得到批评和纠正,那么学生(尤其是自制力差的学生)也同样会以无所谓的态度对待学习。因此从教学艺术的角度看,就要求教师必须有强烈的责任感,在教学中能以表扬奖励为主、批评教育为辅,表扬与批评有机结合的方法,不断激发学生积极的学习情感。心理学实验表明,学习者如果能通过及时反馈知晓自己的学习状况,比不知晓者学习动机强。因此从教学艺术的角度看,就要求教师必须掌握能及时向学生反馈学习成就的评价形式,不断强化学生学习的积极情感,或纠正不健康的学习情绪,以充分发挥情感教育的可导。
总之,影响学生认知活动的因素是多方面的,影响学生情绪活动的因素也是多方面的。我们只有站到素质教育的高度,充分认识学科教学中情感教育的重要意义,注意利用和充分发挥情感教育的迁移性、感染性、情境性、自主性、可导性等功能,才能真正做到在数学教学中既教书,又育人。
关键词:新课标;中学数学教学;教学理念
实施新课程改革以来,笔者收获最大的就是自己的角色转变了。传统教学以讲授为主,新课改要求在数学教学中必须加强学生的自主探究、合作交流。
但是我们知道,纯粹的“探究”或“讲授”都不能产生良好的效果,还是将二者有机结合好。讲授法是我们所熟悉的,只要我们多思考、多研究,在讲授法中融入学生探究,少讲一点,留点时间让学生去探究,并想法使学生探究与教师讲解二者很好地结合起来,就能产生良好的效果。
学生学会探究,自己能获得一部会知识了,不正达到了“教是为了不教”的目标了吗?
教师讲得少了,自己的负担减轻了,上课也轻松了。
我们要养成一种习惯,那就是只要我们上课感觉很累,我们就得反思,是不是自己讲得太多了,学生参与的时间太少了,这节课的某些环节是否能够改进一下,改成学生活动,让学生去探究。思想一变,方法自然会有。教学需要我们做个有心人。
《数学课程标准(实验稿)》为数学教学树立了新理念、提出了新要求,中学数学教学正在发生巨大的变化。作为中学数学教师,我们应深刻地反思我们的数学教学历程,从中总结经验,发现不足,并在今后的教学实践中去探索和理解新的数学课程理念,建立起新的中学数学教学观。
目前我们的数学教学中存在着一些亟待解决的问题。反映在课程上:教学内容相对偏窄,偏深,偏旧;学生的学习方式单一、被动,缺少自主探索、合作学习、独立获取知识的机会;对书本知识、运算和推理技能关注较多,对学生学习数学的态度,情感关注较少,课程实施过程基本以教师、课堂、书本为中心,难以培养学生的创新精神和实践能力。分析我们的课堂教学,可以用八个字概括:狭窄、单调、沉闷、杂乱。由此而产生学生知识静化、思维滞化、能力弱化的现象。事实上,学生的数学学习不仅是简单的概念、法则、公式的掌握和熟练的过程,应该更具有探索性和思考性,教师要鼓励学生用自己的方法去探索问题和思考问题。
一、树立多元化的教学目标
“义务教育阶段的数学课程,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,有思维能力、情感态度与价值观等多方面得到进步和发展。”基于这样的理念,数学课程从知识与技能、数学思考、解决问题、情感与态度等四个方面树立其多元化的教学目标。
数学教学不仅要关注知识技能,也要关注情感态度,即将智力因素和非智力因素放在同等重要的位置上。数学教学不仅要关注问题解决,也要关注数学思考过程。即将结果和过程放在同等重要的位置上。
二、建立互动型的师生关系
数学教学是数学活动的教学,是师生交往、互动与共同发展的过程。教学中的师生互动实际上是师生双方以自己的固定经验(自我概念)来了解对方的一种相互交流与沟通的方式。在传统的教学中,教师的目标重心在于改变学生、促进学习、形成态度、培养性格和促进技能的发展,完成社会化的任务。学生的目标在于通过规定的学习与发展过程尽可能地改变自己,接受社会化。只有缩小这种目标上的差异,才有利于教学目标的达成与实现。
这首先要求教师转变三种角色。由传统的知识传授者成为学生学习的参与者、引导者和合作者;由传统的教学支配者、控制者成为学生学习的组织者、促进者和指导者;由传统的静态知识占有者成为动态的研究者。
一旦课堂上师生角色得以转换和新型师生关系得以建立,我们就能清楚地感受到课堂教学正在师生互动中进行和完成。师生间要建立良好的互动型关系,就要求教师在备课时从学生知识状况和生活实际出发,更多地考虑如何让学生通过自己的学习来学会有关知识和技能;在课堂上尊重学生,尊重学生的经验与认知水平,让学生大胆提问、主动探究,发动学生积极地投入对问题的探讨与解决之中;应灵活变换角色,用“童眼”来看问题,怀“童心”来想问题,以“童趣”来解问题,共同参与学生的学习活动,成为学生的知心朋友、学习伙伴。
其次,要求教师以新角色实践教学。这要求教师破除师道尊严的旧俗,与学生建立人格上的平等关系,走下高高在上的讲台,走到学生身边,与学生进行平等对话与交流;要求教师与学生一起讨论和探索,鼓励他们主动自由地思考、发问、选择,甚至行动,努力当学生的顾问,做他们交换意见时的积极参与者;要求教师与学生建立情感上的朋友关系,使学生感到教师是他们的亲密朋友。
三、引入生活化的学习情境
新课标指出:数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”这就是说,数学教学活动要以学生的发展为本,要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源。
例如,笔者在讲授八年级“平方差公式”这节内容时,首先是出示了一道这样的问题作为引入:小明去市场买糖,这种糖每千克9.8元,他买了10.2千克糖,给售货员应该给多少钱?就在售货员用计算器算钱时,小明一下说出了应该给99.96元钱,售货员大吃一惊,结果她算出来和小明说得一样。然后笔者就问学生小明是不是很聪明,同学们都说是,笔者接着说小明为什么算得这么快,并不是比你们聪明很多,而是用的是我们今天所学得知识来算的,你们学完也会和他一样聪明的。
学生顿时对这节课有了很大兴趣,听讲也很专心,这节课达到了很好的效果。同时也达到了让学生把所学知道用到现实生活中的目的。
四、选用开放性的教学内容
新的数学课程改革强调,数学学习并不是单纯的解题训练,现实的和探索性的数学学习活动也要成为数学学习内容的有机组成部分。
开放性的教学内容首先表现在开放题的应用上,以开放题为载体来促进数学学习方式的转变,弥补了数学教学开放性、培养学生主体精神和创新能力的不足。数学开放题的类型很多,如:某中学搞绿化,要在一块矩形空地上建花坛,现征集设计方案,要求设计的方案成轴对称(可以用圆、正方形或其它图形组成),如何设计?(这是一道结论开放题,有助于考查学生的发散思维与创新精神)
在开放题的使用中要注意,开放题中所包含的事件应为学生所熟悉,其内容是有趣的,是学生所愿意研究的,是通过学生现有的知识能够解决的,是可行的问题;开放题应使学生能够获得各种水平程度的解答,学生所做出的解答可以是互不相同的;开放题教学应体现学生的主体地位。
当然,教学实践是一个复杂的过程,理论是不可能完全应用于实践中的,这就需要在今后的教学实践中,大胆尝试,细心领会,发现问题,积极寻求解决问题的方法。
参考文献:
[1]张奠宙.中国数学双基教学[M].上海:上海教育出版社,2003.
随着多媒体设备在各中小学校的普及使用,多媒体在教学中发挥着越来越大的作用。以往在形式上、方法上比较保守的教学方式亦将随着多媒体课堂的出现而在发生巨变。利用计算机、网络、投影、音响等设备将能更合理、更形象生动地辅助数学课堂教学,提高数学课堂教学的趣味性、效益性,使之更精彩地呈现在师生面前。
一、创设形象生动的课堂情景
在数学课堂教学中,如果能激起学生学习数学的兴趣,可以说课堂教学已收到一半的效益,另一半就看教师如何运作了。课堂教学中教师要善于设置不同层次的疑点,引导学生生疑;要善于利用不同事物、不同的方式,创设各种新颖的、巧妙的、有趣的、针对性强的问题情景,引导学生积极主动地、自由地去想象、思考、探索,去解决问题或发现问题;尤其是数学教学,知识的逻辑性强,甚至比较抽象,一般教学辅助器材难以作出形象生动的演示,让学生具体理解真理,这就需要发挥多媒体的巨大功能。
如在教授“圆柱和圆锥”的内容时,圆锥的侧面展开图是一个扇形,圆锥的母线相当于展开图中扇形所在圆的半径,圆锥底面的周长相当于扇形的弧长。这一点许多学生不理解,教师在教学时就可以利用多媒体辅助教学,在大屏幕上画出一个扇形和圆锥,向学生提出问题:看看这两个图形有什么不同之处?(一个是平面图一个是立体图)当把扇形卷起来又能成为什么图形?学生在动手操作后,得出的图形是圆锥;既然扇形和圆锥有一定的联系,那么如果要求圆锥的侧面积,应该如何思考。这一问题一提出,很多同学肯定会陷入困窘中。随着学生对问题兴趣的产生,教师就可以抓住机会,利用预先设计好的动画过程:让圆锥的侧面慢慢展开,时停时展把整个过程清晰地展示给学生看,同时在圆锥上用不同颜色标出母线及圆锥的底面,从动态的角度让学生仔细观察这一过程,生动形象的展示很明白地告诉学生:圆锥的侧面积就是展开的扇形的面积。在轻松愉快的课堂中,学生既学到到了数学知识,有培养了学习数学的兴趣,为以后学习数学奠定更好的基础。
二、激发学生无穷的探索欲望
每个人都会有一种探索精神,就看它是睡眠在这个人心中还是活跃于他(她)的脑门之外。对于数学教学,如何唤起学生探索数学奥妙世界的欲望,比数学教学本身更加重要,教师应当做学生的引路人。使用多媒体教学,能够更容易更好地实现这一点。
教师可以结合学校实际情况,有意识地为学生创造更多探究性活动的机会,让学生亲自动手操作、实验、猜想和归纳,培养他们的科学精神和创造意识,形成获取新知识、运用新知识解决问题,并用数学语言进行交流的能力。多媒体可以使学生在较短时间内多种感官并用,提高对信息的吸收率,加深对知识的理解,从而激发学生的求知欲。例如在教学“轴对称”的内容时,通过电脑动画的操作,让“对称”的线条活动起来,让学生自己体验在拖动鼠标的过程中发现诸如“在河边什么地方修建水泵站可以使到在河同侧的两个村庄使用的水管最短”的问题,大大增强了学生追求新知、独立思考、独立解决问题的能力。
除此之外,多媒体课堂还可以通过网络资源共享,在课本内容的基础上大大丰富相关内容,并给学生提供更多趣味无穷的例子、数学人物故事、数学前沿知识等等。在使用多媒体进行课堂教学中,教师不仅教给学生课本的内容,还丰富了学生的知识面,激发学生对形象生动的数学世界的不断探索,并在此基础上培养学生的创新精神。新课标课程标准对初中数学的教学目的有这样的阐述:“使他们能够运用所学知识解决简单的实际问题,并逐步形成数学创新意识。”显而易见,多媒体课堂不仅使数学课堂更加生动精彩,也更能培养学生的创新意识和对未知数学世界的探究。
反馈是控制论的一种重要基本原理。它是指控制系统把信息输送出去,然后把其作用的结果返回来,并对信息的再输出发生影响,起到控制作用。通过反馈,可以不断地矫正偏向和失误,逐步达到预期的目的。一般说来,反馈与矫正有如下几条原则。
(一)适时反馈,及时矫正
在教学视导过程中,发现有两种不正常现象:一种是备课。教师根据主观意识,提前几天或几个星期备课,个别的教师甚至将纸张发黄的陈旧教案拿到课堂上照本宣科,不考虑学生现有知识基础和学习中出现的新情况,结果怎样呢?本来学生已经掌握的内容教师在津津乐道,而学生难于理解掌握的内容却蜻蜒点水,甚至根本没有涉及,教师陶醉于少数优生“热热闹闹”的发言,而多数学生一知半解。另一种是作业。有些教师要求学生数学作业本必须有四个,这样一来,学生做的练习最快也只能在三天后见到,有时一个星期后才见到,甚至一个单元的测试卷半个月或一个月后才与学生见面。这样反馈来的问题再不是一两个,而是一大堆,此时,师生双方都感到矫正无从下手。学生学习中出现的问题,教师若能及时发现,及时设法解决,就不会出现这种现象。
反馈与矫正要落到实处,就必须切实抓好当堂了解、当堂消化、节节夯实、层层达标、分步到位。也就是说反馈要适时,矫正要及时。
(二)真实反馈,准确矫正
反馈来的信息是否真实,矫正的方法是否得力对反馈与矫正的效果起关键性作用。如果信息虚假或不全真实,那么教师就发现不了问题或不能全面地了解情况,也就不会采取及时、正确的矫正措施。教学实践表明,要做到真实反馈,准确矫正,一般要注意以下三个方面。
首先,培养学生勤学好问、独立思考的优良学习习惯。有经验的教师都注意引导学生上课集中精力,勤于思考,积极动口、动手。这样学生提供的信息才是深层次的而不是表面的,是全面的而不是片面的,是真实的而不是虚假的。
其次,建立民主、平等的师生关系。在教学中教师必须注意克服师道尊严的作风,经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而取得学习进步的甜头。
再次,透过现象,抓住本质。教师在获取信息后,应认真分析其问题的实质,产生问题的原因,然后有针对性地设计矫正方案。不要被表面现象所迷惑,就题论题,就事论事,否则矫正就是低效的或无效的。
(三)主动反馈,自觉矫正
反馈与矫正有良性与恶性两类。反馈与矫正在教学中总是循环往复的,即反馈----矫正----再反馈----再矫正。良性的反馈与矫正不论从知识、技能、智力、习惯、情感的哪一方面来看,都是一种在不断地解决老问题、提出新问题的过程中,由低层次向高层次前进的教学活动;而恶性的反馈与矫正则是问题不断重复堆积的微效或无效的教学活动。
要避免恶性循环,师生双方必须做到主动反馈,自觉矫正。因为反馈来的信息往往是教和学两个方面的问题,属于教的问题,教师应注意主动地去发现和收集,及时自觉矫正或调控,不能等待。属于学的问题,教师要主动辅导,及时令其矫正。再说,学生的主动性和自觉性必须靠教师有意识地培养,光有教师的主动性,而没有学生的自觉配合,其结果仍然是恶性的反馈与矫正。当然,如果教师只强调学生的主动和自觉,而不注意自身的主动和自觉,结果同样会是恶性的反馈与矫正。
(四)矫正反馈,反馈矫正
反馈与矫正是紧密联系的一个体系。矫正首先是为了解决问题,在解决问题的过程中,往往会发现信息不真,这时应对反馈进行矫正。如果不注意这种矫正,那么矫正也就不准。
对一个问题进行矫正之后,是否就真正解决了问题,还需进行再反溃在教学视导过程中,发现有的教师常这样埋怨学生:“这种问题我已对你讲过多次了,怎么还不知道。”出现这种现象有两个原因:或是当时的矫正走了过场,没有真正解决问题,或是隔了一段时间后没有再去矫正,使矫正效果消失了。因此,矫正后相应地要设计巩固提高的反馈方案,检测矫正效果,获取新的信息,在更高层次上施以反馈矫正。
二、反馈渠道与途径
常规教学过程的备课、教学、批改、辅导、考试、评价就是教学反馈的主渠道,一般来说,反馈渠道与途径有以下几个方面:
(一)备课时充分估计
经验丰富的教师在备课时能预测到学生在课堂上对知识的理解、技能的掌握、方法的运用所出现的问题,并有针对性地设计教法。把问题解决在初发阶段,这样教师的主导作用就能得到较好的发挥。缺乏经验的教师往往做不到这一点,那么就应在教学实践中勤于观察与思考,逐步学会站在学生立场上思考问题,设计教案。
(二)上课中勤于捕捉
上课是获取信息的主渠道。教师仅凭过去的经验或主观愿望去估计是不行的,必须在课堂上认真观察学生反应,及时调整教法。有的教师讲授时不注意观察学生的神态,也不去听取学生的反映,等到批改作业或阅卷时才发现问题一大难,这样就不利于及时反馈与矫正。
(三)板演时注意收集
板演是学生暴露思维过程的重要渠道。对学生板演中暴露出来的错误,教师不仅要指出其错误所在,还要正确分析产生各种错误的原因,指出应该怎样纠正错误,并在下次板演或作业中有意安排类似的练习,让学生及时矫正。
(四)答问中随机提炼
学生在回答教师提问时,很容易暴露思维过程中的错误,或概念理解错误,或定理法则运用条件不足,或思维方法不对等。教师既要善于鼓励学生积极思考问题和敢于提问,又要善于根据不同层次的学生回答问题的不同角度,随机提炼出反映问题本质的一般性和特殊性问题,使矫正有的放矢。
(五)作业里逐一分析
作业是教学反馈的主渠道,但教师须对不同的学生进行认真的分析,学生的作业一般来说有四种类型:?1.独立完成的;2.讨论后完成的;3.独立完成一部分,?抄袭一部分;4.全部是抄的。教师对抄袭来的整洁、正确的作业切不可感到满足,这种潜伏期一旦长了,差生面就越来越大,差的程度就越来越严重。
因此,对不同的学生、不同的问题应逐一分析,做好作业档案记载,以便做到有效反溃。
(六)阅卷中仔细归类
在考风正的前提下,每次单元测验或期中、期末考试试卷中都会暴露出大量的问题。问题越多,我们就越要注意归类,切不可眉毛胡子一把抓。整理归类得当就能力矫正工作提供可靠的依据。
(七)讲课后及时小结
讲课后小结并非被大多数教师所重视,其实讲课后立即回顾本堂课的成功之处和值得改进的地方,以及学生中出现的主要问题和产生这些问题的原因,及时分析应采取的矫正措施,并简明地记在本节课教案后面,这样既可作为下节课的矫正内容,又可作为下一次再教时的重要参考资料。若能长期坚持,注意积累和整理,便是切合实际的难得的教学经验。
(八)复习时注意强化<成功的复习,一般是在一个单元的基础知识、基本技能、基本思想方法梳理之后,结合该单元教学中收集到的学生易混易错问题的基础上,加以提炼,择例精讲,从不同的角度、不同的侧面、不同的题型予以强化矫正。
三、矫正类型与方法
要使教学矫正效果好,必须准确诊断学生在学习中出现的问题,然后对症下药。经过实践,归纳起来大体有如下几种矫正类型与方法。
(一)少数人的问题个别矫正,群体性的问题集中矫正在作业批改和试卷评阅过程中,要认真做好学生在每章每节练习或检测中所出现的问题的记载,然后看哪些问题属少数人的,哪些问题属群体性的。属少数人的问题不能集中矫正,只能利用课余时间或自习时间个别矫正,属群体性问题要舍得花时间,集中在课堂上矫正,否则就会大面积影响或阻碍后继内容的学习。
(二)简单问题立即矫正,复杂问题专题矫正在课堂教学中,教师观察问题要敏锐,对学生回答的问题和黑板上板演出现的问题要反应敏捷,快速作出判断,哪些问题属简单问题,哪些问题属复杂问题,属简单问题就立即当面矫正,属复杂问题就专题矫正。如果当即矫正有困难,就选择合适的时机矫正,既不能敷衍了事,也不能因解决某个复杂问题,冲淡了主题,更不能时机未成熟硬性解决。
(三)关键性问题重点矫正,一般性问题自我矫正例如列方程解应用题,对于不同类型的实际应用问题,根据题意找等量关系就属关键性问题。?如若这一问题解决得好,?其它问题便迎刃而解。因此,若找“等量关系”出了问题,就必须把它放在突出的位置加以矫正,至于设未知数、解方程就属于一般性问题,教师可启发学生自我矫正。
(四)概念性问题对照矫正,技能性问题逐步矫正应用概念出问题,这在日常教学中是普遍的,特别是学生在运用相近、易混的概念时,常犯张冠李戴的错误。如在使用“补角”、“邻补角”等概念时常易出错,这时就应对照概念,引导学生反复比较,找出各自的本质属性以及异同点,然后对照练习。至于这两个概念在解有关几何题中准确熟练运用的问题,则属技能性问题,这要逐步矫正。
(五)预料中的问题设计矫正,出乎意料的问题灵活矫正。
教师备课时应根据学生的具体情况和教科书的内容以及教师自身的经验充分预料每章每节教学可能遇到的问题,在此基础上设计好重难点知识。对于课堂上出现的意料之外的问题,则要具体问题,具体分析,灵活矫正。
(六)经常出现的问题变式矫正,偶然出现的问题重视矫正有些错误一两次矫正不能生效,甚至采用同一种方式矫正,学生还有厌烦情绪。一般来说,对于那些经常出现差错的问题,教师应遇到机会就要进行矫正,要反复矫正,更重要的是变换形式矫正。同时,教学中还不能放过任何一个学生所偶然出现的任何一个问题。这样,反馈矫正才能真正得到落实。
它对当前学习既有积极的作用,也有消极的影响。
在小学生学习数学的活动中经常碰到学生思维定势的消极影响,其产生的原因是什么,又该如何克服呢?
一、思维定势消极影响产生的原因
1.日常生活概念的干扰。
例如在几何初步知识教学中,学生往往易受词的生活意义的影响,如果词的生活意义与几何概念的科学意义一致,有利于概念的形成,反之则起负迁移作用。
如“垂直”在日常概念中总是下垂,是由上而下,所以当学生在接受“自线外一点向直线作垂线”时就由于日常生活经验的干扰,只能理解点在上方,线在下方这一种情况,以致产生认为点在其它方位时作垂线是不可能的错觉。
2.原有书写格式的干扰。
不同内容的知识,都有规范格式的书写要求。但对于小学生来说,由于其思维缺少批判、开拓的品质,往往容易产生书写格式的错误干扰,表现为短时间内的不适应。常见的错误有:①计算小数乘法时列竖式②求4的倒数是多少列式为4=1/4;?③将60分解质因数为2x2x3x5=60;④解方程受递等式的影响:4X=80=80/4=20等等。
3.已有知识经验的干扰。
小学生受年龄和认知心理的局限,对数学的本质属性理解不深,容易被非本质属性所述惑,由于已有知识经验的积累限制,对后面新知识容易产生思维障碍。
如低年级学生学习实际数(量)进行比较的方法,小明比小英高13厘米,则小英比小明矮13厘米,到高年级学习分率比较时受前面知识的干扰,看到甲数比乙数多25%,则错误地推导出乙数比甲数少25%。
4.已有认知策略的干扰。
学生利用迁移规律通过已有知识的推导学习新知识,由此及彼,触类旁通,不失为提高教学效率的一种捷径。思维过程中的正迁移固然对学习有启迪作用,但已形成的认知策略对后继学习的消极影响也不可忽视。如有学生这样计算,产生错误的原因在于受已学过的带分数加减法法则:“整数部分、分数部分分别相加减”的影响,结果误入歧途。
5.新知识对旧知识的后摄干扰。
如学生接连演算几道进位加法后,出现不进位的加法,有些学生仍然在前一位上进上1后再加,?即先前的演算经验形成一种动力状态,支配了眼前的演算思维而产生错误。再如学习了正方形的面积计算公式后对正方形的周长计算产生了负作用,部分学生分不清公式的适用范围。
6.教师教学习惯的干扰。
某些教师的教学习惯有时也会成为消极定势的根源。低年级教师往往因知识比较简单,教学中总是按照固定的思路(模式)讲课,学生被动地按照一定的程式机械重复地进行某种练习。心理学实验表明:某种单一的信息反复刺激大脑,就会产生思路上的惯性,势必造成知觉偏差,易导致定势的消极效应。如在二年级教学除法应用题时,某教师作这样的小结:列除法算式时总是较大数除以较小数,以致学生认为“3元钱买6支铅笔,平均每支铅笔多少钱?”列为“3÷6”是错误的。
二、克服思维定势消极影响的措施
1.建构促进调整。
消极心理因素的影响是随着认识结构的扩充和更新而产生,并又随着认知结构的更新与完善逐渐地部分地得到克服。只有建构才有利于“同化”、“顺应”,有利于消除思维定势的消极影响。如教学周长与面积时,可让学生比较左图中甲和乙谁的面积大?谁的周长长?以防学生受“面积大,周长也较长”这一不正确的经验的影响。因此教师应及时帮助学生扩充完善学生原有的认知结构。
2.变式防止泛化。
小学生对于相似刺激往往容易产生泛化,这就要求应用变式的规律组织学习。
如“顶”和“底”的教学,可以画出不同位置的等腰三角形,使底边在顶角的上方、右方和其它位置,学生通过这些变式图形,就会排除“底”一定在“顶”下边的定势干扰,防止了思维僵化,从而正确理解几何图形中“底边”、“顶角”这些概念的本质。
3.比较扫除障碍。
有比较才有鉴别,有鉴别才能避免定势的负效应,把干扰及时消灭于萌芽状态之中。教师要善于指导学生运用比较方法,通过比较分析、找出异同、发现问题,使学生对知识的可利用因素和易混的因素进行辨析分化,这是最有效的方法。
如“一根铁丝长5米,?①截下去1/2米,还剩多少米?②截下1/2还剩多少米?”
可启发引导学生主动参与比较,提高自觉克服负效应的积极性。
4.反馈利于强化。
一般地说,学生初步练习时产生的错误在教师的指导下比较容易纠正和克服。
因此教师应及时地纠正学生的不良思维习惯,强化正确的思维方法。
5.反思克服惰性。
教学中要帮助学生形成反思与评价的习惯,善于从策略上、方法上评价与反思,?可使学生不拘常规、不死套模式,加速思维的优化与畅通。(1)鼓励学生多思、多想、善思、会想,如教学4600÷1500时,可启发学生想:①怎样算简便?
②余数是100还是1??为什么??这样可以提高学生思维的深度,提高思维质量。
(2)?多角度多方向的解题。学生解题时常会按习惯了的单一思路去思考数学问题,教学中要鼓励学生多角度变换思维方向。比较2/17、3/19、5/23的大小,可另辟捷径用统一分子的方法去解决,以克服思维的依赖性、呆板性、懒惰性,提高思维的灵活性。
6.突破促进创造。