时间:2022-12-13 11:38:01
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇cdma技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
论文关键词:复合实物期权,3G投资,项目投资价值
一、事件及背景分析
中国已经逐渐进入广泛使用第三代移动通信技术(俗称3G)的时代,但对电信运营商而言,3G网络的建设和运营具有规模大、分阶段、周期长和未来不确定性较高等特点。如何评估3G项目的投资价值一直是广为关注的焦点。传统的项目投资价值分析方法不能满足对不确定性较高的项目进行定价的要求。复合实物期权定价模型能更贴切地反映在3G项目中的多重期权特性,更适合对阶段性较强的项目进行价值分析。本文将运用复合实物期权模型对澳门基于cdma技术的3G项目进行定价分析。
澳门3G项目(CDMA技术标准)的建设具有明显的阶段性,其投资历程如下:
表1-1 澳门CDMA投资历程
时间
事件
意义
投资计划
2005年3月10日
中国联通中标获得澳门CDMA牌照
正式进入澳门移动通信市场
-
2005年5月27日
中国联通获准经营采用CDMA2000 1X系统的公共地面流动通信电信网络及提供跨地域流动电信服务,有效期为8年。
中国联通获准提供CDMA漫游服务的权利
首年投资1.71亿澳门元,建成CDMA 1X制式网络,以提供漫游服务
2005年10月18日
CDMA澳门流动电信网络开通
开始提供CDMA漫游服务
-
2006年8月10日
中国联通获准经营采用CDMA2000 1X系统的公共地面流动通信电信网络及提供两个频段内运作的公用地面流动电信服务
中国联通获得本地运营CDMA服务牌照。CDMA2000 1X可平滑升级到3G网路。
2006年计划增加投资4800万澳门元,在后续二年内累计投资额不低于4000万元
2007年5月29日
中国联通获正式建立及运营3G的牌照
建立及运营CDMA2000 1X EV-DO系统,真正提供3G服务
为建立3G业务,首年将投资4000万澳门元;随后三年累计投资超过9000万澳门元
2008年7月27日
中国联通将包括中国联通(澳门)有限公司100%股权在内的CDMA业务转让予中国电信
[论文摘要]3G的时代已经来临,其主要技术标准WCDMA和CDMA2000谁优谁劣自然引起了我们的关注。本文从各个方面对两个技术标准做了全面的对比研究。
一、引言
上世纪70年代末,诞生了被称为第一代蜂窝移动通信系统的双工FDMA模拟调频系统,但由于模拟系统固有的先天缺陷,在90年代初被以TDMA为基础的第二代数字蜂窝移动通信系统所取代,相对FDMA系统有诸多优点,如频谱利用率高,系统容量大、保密性好等。与此同时产生了以CDMA为基础的数字蜂窝通信系统,相比TDMA系统具有低发射功率、信道容量大、软容量、软切换、采用多种分集技术等优点。
随着网络的广泛普及,图像、话音和数据相结合的多媒体和高速率数据业务的业务量大大增加,人们对通信业务多样化的要求也与日俱增,而一代二代系统远远不能满足用户的这些需求,所以诞生了第三代移动通信技术,它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。国际上承认的3G标准有三个:CDMA2000、WCDMA以及TD-SCDMA,这里主要从各个方面做WCDMA和CDMA2000的对比研究。
二、WCDMA和CDMA2000的综合比较
由于WCDMA和CDMA2000这两种技术都是将CDMA技术用于蜂窝系统,许多的思想都是源于CDMA系统,因此WCDMA和CDMA2000有许多相试之处:从双工方式上看,WCDMA和CDMA2000属于FDD模式。WCDMA和CDMA2000都满足IMT-2000提出的技术要求,支持高速多媒体业务、分组数据和IP接入等。但它们在技术实现、规范标准化、网络演进等方面都存在较大差异。
WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。
CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。
1.WCDMA与CDMA2000的物理层技术比较
WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。
(1)这两个标准的物理层技术相似点可以归纳为以下几点:
①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。
②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。
③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。
④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。
(2)两个标准的物理层技术差异可以归纳为以下几点:
①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。
②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。
③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。
④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。
2.WCDMA与CDMA2000网络接口的比较
3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。
WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。
3.WCDMA和CDMA2000网络演进的比较
(1)WCDMA的网络演进技术
现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。
(2)CDMA2000网络演进技术
主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。
窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。
①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。
②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。
③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。
三、WCDMA和CDMA2000在我国的前景
对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。
在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。
WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。
由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。
参考文献:
[1]TeroOjanpera,RamjeePrasad.朱旭红译.宽带CDMA:第三代移动通信技术.北京:人民邮电出版社.
论文关键词:3G-EVDO,无线局域网络,税源监控系统
税源监控系统是税务机关利用现代信息技术对税源信息进行全面采集、分析和利用的税务信息化应用系统。一般由企业端和税局端组成。安装在企业的企业端系统功能是用于对企业进行税源信息监控、采集和数据传输;安装在税务机关的税局端系统功能是用于接收所采集的税源信息,并对信息进行分析和利用。税源监控系统是税务机关对重点税源企业进行实时监管的重要工具,应用先进信息技术提高系统功能,对税务机关降低税源监控成本,提高税源监控实效,从源头堵塞税收流失具有重大意义。
一、无线监控技术简介及3G-EVDO优势分析
1. 无线监控技术简介
目前无线监控技术实现上有下面几种方式:
(1)模拟无线数据收发模块实现。该类监控数据传输距离主要由发射机的发射功率来决定,监控范围受发射距离的限制,范围小;数据在空中传播,易受电磁等干扰,数据可靠性不好;模拟传输没有很好的加密模式,安全性不好;数据传输率很低,不能满足税源监控要求的从企业原料采购到成品销售的多个重要环节产生的数据采集及时性、准确性、安全性等要求。
(2)GSM网络实现。这类监控通信方式是依托全球的GSM网络,它的最大特点是打破了距离的限制,从而可以实现远程监控。主要是利用GSM短消息业务或语音业务进行业务监控。语音业务就是利用语音信道进行通信,把各种信息转化成语音信号计算机论文,通过语音信道发送。缺点是:由于网络传输不稳定,短信中心容量等问题,信息发送不可靠,并且缺乏安全性;消息的发送到接受很多情况会有较大时延,加上内容长度限制和GSM上网速度只能达到9.6kbps,这种网络环境无法满足企业税源实时监控和准确性的要求。
(3)GPRS网络实现。GPRS是由中国移动推出的2.5G服务,是在现有的GSM系统上发展出来的一种新的分组数据承载业务论文服务。GPRS与GSM语音的根本区别是,GSM的基础是电路交换,GPRS的基础是分组交换。因此,GPRS特别适用于突发性的、少量的数据传输,也适用于偶尔的大数据量传输。和GSM相比的优点是传输速度较快,缺点是数据传输速度偏低,有跳跃性,只能满足部分视频监控的要求。
(4)3G-EVDO即CDMA2000 1x EVDO,是3G系统CDMA2000的演进版本,基于CDMA的集群技术。3G-EVDO系统设计的基本思想是将高速分组数据业务与低速语音及数据业务分离开来,利用单独载波提供高速分组数据业务,而传统的语音业务和中低速分组数据业务仍由 CDMA2000 1x系统提供,这样可以获得更好的频谱利用效率,网络设计也比较灵活,抗干扰能力强、信号穿透能力强、系统容量大。1x EV-DO 于2001 年被ITU-R 接受为3G 技术标准之一。
2. 3G-EVDO技术优势分析
3G-EVDO是基于CDMA系统的升级,兼容了IS-95系统的空中接口技术,在升级上只需进行软件方面的升级。而CDMA网络经过7年多的建设,通信网络覆盖全国,基础设备完善齐全,将会是最快升级到3G网络的系统。通信过程中不会产生脉冲式射频,当在周围各种强电设备密布的情况下,不会给其他电器设备造成射频破坏。3G-EVDO通信网络覆盖全国,并成为成熟和稳定的网络,为无线局域网络税源监控系统提供一个稳定、安全的接入环境。3G-EVDO系统本身网络的安全性就好,传输过程中满足IP化和多媒体化的需求,系统具备视频编解码处理、网络通信、自动控制等强大功能计算机论文,直接支持网络视频传输和网络管理,使得监控范围达到前所未有的广度。比较符合以后的发展方向。3G-EVDO可提供高达153.6kps的无线数据通讯带宽,采用信道资源分配方式,可确保基于无线局域网络的税源监控系统企业信息传输的实时性。目前从技术先进性上来看,3G-EVDO是各种无线网络通讯技术中最新的改良技术,在网络安全、传输、解码、分配、覆盖等方面都有着明显的优势。
二、3G-EVDO技术在税源监控中应用的意义
伴随着网络技术3G业务应用范围不断扩大,基于3G系统的无线局域网络监控系统将会用到各个领域,3G技术与税务信息化的结合也是大势所趋。目前国内有关无线局域网税源监控系统产品多数为针对2G无线网络系统进行开发的,由于税源监控图像所包含的信息量非常大,而2G通信系统本身又具有带宽小、抗干扰能力差、衰落严重、误码率高等特点,税源监控数据传输容易掉包的问题没有得到很好解决,无法达到实时监控的作用。如何将远程的监视、系统遥控、监控无线化有机地结合起来,做到既可以基于无线网络进行远程的监视、遥控和图像的传输,又具备通常税源管控的功能,并且投入费用合理,能够更加有效地确保系统运行稳定,将安全防范技术提高到一个新的水平,是目前税源监控信息化的应用的最大需求. 开发基于3G-EVDO无线局域网络的税源监控系统实现税源监控管理网络化、无线化、远程化具有积极的现实意义,主要体现在以下几个方面:
1.有利于实施全方位的税源动态监控
基于3G-EVDO的企业无线局域网络税源监控系统,可深入企业生产经营全部环节,进行实时监控、采集企业生产、经营真实信息,实施全方位的税源动态监控和纳税评估,对提高税源信息采集质量、加强信息共享和综合分析利用、查找和堵塞征管漏洞、提高税源管理实效具有重大意义。
2.有利于解决复杂工业环境下有线网络税源监控技术难题
有关税源监控系统的开发与应用,在国内也已有少量报道,但企业现有的局域网络都是有线网络,在工业环境复杂的企业生产环境中有线网络的应用受到环境的很大限制,存在布局困难、损耗大、传输距离短、分布范围有限、运行成本高的缺陷。无线局域网络监控系统具有无限的无缝扩展能力,可组成非常复杂的监控网络。无线网络监控系统是监控和无线网络传输技术的结合,它可以将不同地点的现场信息实时通过无线通讯手段传送到无线监控中心。
3.有利于降低税源监控成本
目前从技术先进性上来看,3G-EVDO是各种无线网络通讯技术中最新的改良技术,在网络安全、传输、解码、分配、覆盖等方面都有着明显的优势,具有综合成本低计算机论文,只需一次性投资,性能稳定可靠,维护费用低,无需专人管理的特点。建立无线局域网络税源监控系统,有利于提高税收行政管理的效率、降低税源监控成本,解决有线局域网络下监控中存在的监控点多、传输距离远、覆盖范围宽、实时性强、适应复杂的生产环境等技术瓶颈。。
三、基于3G-EVDO的无线局域网络税源监控系统设计
1.总体目标
在目前已有的基于有线网络传输的企业税源监控系统基础之上,以3G-EVDO集群技术替代现有的有线网络监控、数据采集与传输,设计实现基于3G-EVDO集群技术的无线局域网络税源监控系统。相比现有的有线网络税源监控系统,系统功能可在以下方面达到提升:
(1)税源监控范围扩大。基于3G-EVDO集群技术的无线局域网络税源监控系统可实施全方位的动态税源监控,对企业生产经营的采购、生产、库存到销售都进行了全方位的动态监控,实现对企业生产经营的全过程的数据信息进行实时采集传输和分析利用。使税务管理部门能够全面了解企业的实时经营情况,全面掌握税源信息,减少税收流失论文服务。
(2)税源监控能力提高。基于3G-EVDO集群技术的无线局域网络税源监控系统不再受企业地理位置的限制,适合远距离传输,数字信息抗干扰能力强,不易受传输线路信号衰减的影响,能够进行加密传输,可以在数千公里之外实时监控现场。特别是在现场环境恶劣或不便于直接深入现场的情况下,数字视频监控能达到亲临现场的效果。即使现场遭到破坏,也照样能在远处得到现场的真实记录。
(3)税源监控实效提升。系统采用3G-EVDO集群技术、视频压缩编码等诸多先进的信息化技术进行信息采集与传输,由于对视频图像进行了数字化,可以充分利用计算机的快速处理能力,对其进行压缩、分析、存储和显示。通过视频分析,可以及时发现异常情况并进行联动报警,从而实现无人值守。提高税源监控范围、质量和效率。
2.技术路线与技术关键
(1)技术路线:系统从设计到开发采用基于无线局域网络税源管理思想,利用3G-EVDO集群技术、视频压缩编码等诸多先进的信息化技术进行数据无线网络传输的新型系统,运用H.264视频压缩编码技术和3G-EVDO无线网络数据传输解决方案,通过建立统一的信息采集机制、统一的数据信息监控机制,构建面向应用监控、预警的信息化系统。采用跨平台跨数据库的设计技术、J2EE技术、三层/多层结构技术、3G通讯标准、TCP/IP协议等技术进行分析设计和数据交换标准。
(2)技术关键:基于3g-EVDO无线局域网络技术税源监控应用研究,提供3G网络接口实现数据传输、共享、分析、预警;网络带宽自适应技术,根据网络带宽自动调整视频帧率计算机论文,适应爆发性、大容量数据传输;基于无线网络的点对点、点对多点、多点对多点的远程实时企业生产经营现场监视;具有面向异构网络环境的综合管理能力。
3.技术创新
(1)采用3G-EVDO 、H.264视频压缩编码技术等网络通讯新技术,实现企业生产经营“购、产、存、销”关键经营环节监控,解决传统网络传输方式的无法适应监控点多、传输距离远、覆盖范围宽、实时性强、适应复杂等网络税收监控瓶颈问题,实现实时数据传输、接收,保证信息的安全性、稳定性、准确性、及时性;
(2)采用3G-EVDO 、H.264视频压缩编码技术等网络通讯新技术在企业生产关键环节实现实时的税源信息采集,从源头控制发票开票信息的不实,通过技术手段对企业真实的经营信息的分析,测算销售数据,与纳税申报信息比对,实现异常预警。
(3)采用3G-EVDO网络通讯新技术通过一个系统将多种系统整合在一起,将信息自动化,财务分析,税源监控功能集于一身,实现对各类税源信息的传递、交流、共享、存储、协同,实现数据集成及数据的集中展现,做到全方位税源实时控管,有效解决企业,税务机关,政府,生产者之间信息不对称问题。真正实现了监控系统的数字化、网络化和智能化。
【参考文献】
[1]尹逊政,路勇.一种基于GPRS技术的远程监控解决方案[J].计算机应用,2006,Vol.15(5):27-30.
[2]任雷.固定监控与移动无线图像传输技术[J].赤子, Vol.2009(16).
[3]范文博,姚远,张其善.基于GPRS技术的数据采集远程网络监控系统.无线电工程[J],2004,Vol.34(1):21-24.
[4]林国镜.科学化税源管理[M].北京:中国税务出版社,2009:18-19.
论文摘要:随着3G牌照的颁发,WiMAX作为3G的第四标准遗憾出局,WiMAX是偃旗息鼓还是绝地逢生,本文主要就其能否回归主流给予探讨,从WiMAX技术优势、国内国际形势等方面进行论证。笔者对WiMAX的规模化商用持肯定态度。
从2001年6月信息产业部将第三代移动通信(简称3G)正式提上议程开始,3G进军中国的脚步在各种传言和猜测中走过了近8个年头之后,终于在今年初工信部为国内三大运营商颁发了包括TD-SCDMA、WCDMA、CDMA2000在内的第三代移动通信牌照,但同属3G标准的WiMAX并未获准运营。中国电信集团公司科技委主任韦乐平韦乐平指出,移动WiMAX定位的是3G的标准,却拥有了3.5G+的性能,采用的却是4G的核心技术,所以其位置比较尴尬。可以说,把WiMAX作为3G或者3.5G已经为时已晚,而作为3.9G或者4G又来的太早。那么在技术飞速发展的今天,WiMAX是否已成昨日黄花呢?
1、 WiMAX优越的技术特征
WiMAX(又称IEEE 802.16标准)是一项基于标准的技术,主要用在城市型局域网路。由WiMAX论坛提出并于2001年6月成形。它可提供最后一公里无线宽带接入,作为电缆和DSL之外的选择。根据是否支持移动特性,IEEE 802.16标准可以分为固定宽带无线接入空中接口标准和移动宽带无线接入空中接口标准,其中802.16a、802.16d属于固定无线接入空中接口标准,而802.16e属于移动宽带无线接入空中接口标准。
(1)实现更远的传输距离:WiMAX所能实现的50km的无线信号传输距离是无线局域网所不能比拟的,网络覆盖面积是3G发射塔的10倍,只要少数基站建设就能实现全城覆盖,这样就使得无线网络应用的范围大大扩展。
(2)提供更高速的宽带接入。据悉,WiMAX所能提供的最高接入速度是70Mbit/s,这个速度是3G所能提供的宽带速度的30倍。
(3)提供优良的最后一公里网络接入服务。作为一种无线城域网技术,它可以将Wi-Fi连接到互联网,也可作为DSL等有线接入方式的无线扩展,实现最后一公里的宽带接入。用户无需线缆即可与基站建立宽带连接。
(4)提供多媒体通信服务。由于WiMAX较Wi-Fi具有更好的可扩展性和安全性,从而能够实现电信级的多媒体通信服务。
(5)优越的移动性。WiMAX可以再100Km/h的速度下使用,而WIFI则不行,3G则会严重影响连接速度,所以WiMAX在移动中的优势更加明显。
2、WiMAX的星星之火
尽管WiMAX有比其他3G标准更为出众的技术优势,但随着国内3G牌照的正式,WiMAX在中国的发展陷入低迷。
早在08年10月工信部无线电管理局副局长谢飞波曾明确了我国对移动WiMAX(802.16e)技术的态度。他表示移动WiMAX(802.16e)尚未通过中国通信标准委员会审定,“因此不能作为中国的国家标准,不能在中国使用。”实际上,中国从一开始便对移动WiMAX(802.16e)持反对态度,认为移动WiMAX(802.16e)好几个技术问题一直没有得到解决,所以不能通过一个技术问题没有完全澄清的标准。其中最主要的就是移动WiMAX(802.16e)在频段上与国家正在大力推广的TD标准有冲突。如果在国内使用移动WiMAX(802.16e),将给本来就频段资源紧张的TD造成冲击,这显然是工信部不愿意看到的局面。
今年1月工业和信息化部正式发放了TD-SCDMA、WCDMA和CDMA2000三张3G牌照后,国内三大运营商开始大力推广不同制式的3G业务,而不在牌照之列的WiMAX就已经很少被人提及了。同时中国电信董事长兼CEO王晓初在收购CDMA业务会表示,CDMA网络的演进路线首先考虑在中心城市升级EV-DO Rev.A,并等待LTE的发展。 这是中国电信高层首次公开明确全球第三大CDMA网络的技术走向:C网将会向3G EV-DO升级,并且在后3G制式上选择LTE。
WiMAX在国内似乎已无路可走,但今年7月、8月WiMAX的好消息陆续传来,
在国内继今年4月我国台湾地区开通 WiMAX服务之后,最近又有消息称,大陆将引入台湾地区电信运营商的WiMAX试验网,由工信部与地方政府共同选择两三个城市来进行试点,此项工作有望在8月底展开。另外还有消息称,国家广电总局将在30个城市展开WiMAX的网络建设。
在国外,美国政府设立总额为40亿美元的宽带刺激基金,可能会帮助目前的WIMAX产业链走出困境;华为CDMA和WiMAX产品线总裁赵明接受路透专访时表示,WiMAX于去年启动,并将在城市人口较多、但固定线路网络基础较差的新兴市场获持续快速发展。同时赵明表示:“今年(WiMAX全球销量)在5亿美元左右,明年应该能到约10亿美元。”;世界知名市场调查公司InfoneticsResearch的最新报告指出在用户对带宽和VoIP需求的推动下,印度、俄罗斯、巴西等国WiMAX增势强劲。报告还评测了全球各地的WiMAX发展趋势。同时报告指出,在中国虽然目前市场很有限,但如果自主的3G技术TD-SCDMA未能点燃市场,监管部门对WiMAX的态度可能将会软化,从而引导更广泛的WiMAX市场增长。同时WiMAX论坛主席RonResnick 宣布“2009全球WiMAX高峰会议”将于2009年10月22日-23日在北京举行。
InfoneticsResearch公司WiMAX、微波业务和移动设备类主管分析师理查德·韦伯(RichardWebb)表示,第二季度已经显示出WiMAX市场已经越过了谷底。WiMAX自08年开始至今的低谷期已越过,星星之火终于点燃。
3、WiMAX的规模化商用只是时间问题
据中国通信网报道,中国台湾工业技术研究院(ITRI)信息与通信研究实验室(ICL)副总裁兼总监Paul Lin透露,内地将对WiMAX设备以及CPE产品解禁,国家广电总局将在30个城市展开WiMAX的网络建设。 WiMAX的解禁不再是空穴来风。
WiMAX的应用是多种多样的,无线、宽带、公共安全的这些应用在中国主要取决于频率的资源,2.5GHz、3.5GHz、700MHz都有不同的应用。WiMAX目前应用主要是作为无线宽带接入领域的一个很好的补充。而由于其低廉的宽带费用较为适合中国农村地区的宽带市场。
而WiMAX要实现规模化商用,主要依托于两个方面:(1)TD的经营是否能够点燃中国市场,目前喜忧参半,由于TD整个产业链还很不成熟,整个产业链的成熟由中移动一家推进也不现实,这需要大量的时间和投资。因此中移动想要迅速发展TD,必须结合WiMAX,因为双方都是建立在低成本语音的基础上,同时具备高性能的数据。WiMAX的信道非常宽,在WiMAX宽带移动连接基础上,可以顺利实现TD-SCDMA的低成本和高性能数据。(2)WiMAX在700MHz频率上的应用,该频率资源依属于国家广电局,如果国家广电局介入则WiMAX的腾飞则指日可待。因为国家广电局现有的硬件资源和WiMAX所具备的远距离传输能力,可以让其在短期内建成一张覆盖全国的WiMAX无线宽带网络。
【关键词】多径衰落;分集接收;RAKE接收机;MATLAB
1.绪论
在移动通信系统之中,由于城市建筑物和地形地貌的影响,传输信号经过无线信道传播,使得接收到的信号出现时延、频率和角度扩展等变化。其中,时延扩展将直接导致码间串扰,频率扩展将导致传输信号的时间衰落,角度扩展将导致信号的空间衰落,这些情况都将严重影响通信质量。在CDMA移动通信系统中采用RAKE接收机来完成分集接收,从而保证了系统可以获得较高的通信质量。本文采用MATLAB仿真软件对RAKE接收机进行仿真。结果表明:RAKE接收机能更有效地克服多径传输造成的干扰,将多径衰落信道分散的信号能量收集起来,从而降低信号误码率,提高通信质量。
在CDMA移动通信系统中采用RAKE接收机来完成传输信号的分集和接收,从而能够保证系统可以获得比较满意的信号传输结果和通信传输质量。在本文中,采用MATLAB软件对RAKE接收机进行编程和仿真,还通过比较分析选择式合并,等增益合并和最大比值合并这三种不同的合并方式情况下,RAKE接收系统的信号误码率的变化情况,用来说明不同合并方式对RAKE接收系统的效率的影响。
2.RAKE接收技术
2.1 RAKE接收信号合成矢量表现
RAKE接收机的基本原理就是将那些幅度明显大于噪声背景的多径分量取出,对它进行延时和相位校正,使之在某一时刻对齐,并按一定的规则进行合并,变矢量合并为代数求和,有效地利用多径分量,提高多径分集的效果。
不采用RAKE接收时,多径信号的合成矢量如图2-1所示。采用RAKE接收后的合成矢量如图2-2所示。
由于用户的随机移动性,接收到的多径分量的数量、大小(幅度)、时延、相位均为随机量,因而合成矢量也是一个随机量[1]。若能通过RAKE接收,将各路径分离开,相位校准,加以利用,则随机的矢量和将可以变成比较稳定的代数和而加以利用。当然这一分离、处理和利用的设想是在宏观分区域含义完成的,而不可能是针对所有实际传播路径而言的。
根据可分离路径的概念,当两个信号的多径时延相差大于一个扩频码片宽度,可以认为这两个信号时不相关的,或者说路径是可以分离的。反映在频域上,即信号的传输带宽大于信号的相干带宽的时候,认为这两个信号时不相关的,或者说路径是可分离的。
由于CDMA系统是宽带传输系统,所有信道共享频率资源,所以CDMA系统可以使用RAKE接受技术,而其他两种多址技术TDMA、FDMA则无法使用。
2.2 RAKE接收机的设计与仿真
2.2.1 系统设计
设计和仿真中的CDMA系统仅涉及到扩频调制、多径衰落信道、扩频解调模块,没有包含信道编/解码、交织等部分,也没有考虑CDMA系统的扩频调制解和调级上的RAKE接收机的误比特性能[2]。RAKE接收机的结构设计如图2-3所示。
其中,发送端发送的信号在信道中遇到3个障碍物而产生反射,那么本次模型中传输路径数=3;在瑞利衰落信道中,假定产生的3径信号互相独立,那么,以第1径信号的传输时延为标准时间0,第2径信号的传输时延为,第3径信号的传输时延为,其中是扩频码的一个码片时间。3条路径的信号合并后加载上加性高斯白噪声(AWGN)。在接收端进行分集的过程是,首先对每径信号分别进行相应的时延同步,然后对每径信号分别进行解扩。因为在瑞利衰落信道中3径的传输时延是[0,,],那么在接收端3径的同步时延就是[,,0]。接下来将3径信号进行RAKE合并,这里所采用的合并准则是等增益合并方式。
2.2.2 参数配置
(1)用户参数设计
用户数=1,发送端首先产生随机信号,然后使用Walsh码进行扩频,扩频因子取=16;之后信号通过DPSK调制器产生DPSK信号。因为多径时延也是独立的。在假设RAKE接收机中的信道估计单元对延迟和相位的估计都是准确的情况下,可以仅考虑加性高斯噪声和瑞利衰落对RAKE接收机接收性能的影响。图2-4是经过扩频后的信号。
(2)噪声的产生
是一一对应的关系。根据以往的研究发现,在噪声均方值的时候,仿真出的效果比较明显。则,令。信道中的高斯白噪声的单边功率谱密度为:
在接收端,噪声与载波相乘,其单边功率谱密度变为,双边功率谱密度即为。仿真中,让信号通过瑞利衰落后加载上高斯噪声,以实现噪声对RAKE接收机性能的影响[3]。
(3)瑞利衰落信道的产生
在前面计算噪声的功率谱密度时,有令,因为是服从瑞利分布的,其均值和方差分别为。又因为,所以可以推出瑞利衰落参数。瑞利衰落信道的抽样时间为1/10000,多普勒频移是100Hz,方差为。利用MATLAB自身函数产生瑞利衰落信道。
图2-5是通过瑞利衰落信道后的传输信号的仿真图。图2-6是加载了加性高斯白噪声后的传输信号。
2.2.3 仿真结果
传输信号通过瑞利衰落信道后,加载加性高斯白噪声。此后,每一径的信号通过各自的时延矫正以后,经过解扩就进入了RAKE接收合并模块。每条径解扩后的信号如图2-7所示。之后,信号进入RAKE合并器,合并方式采用等增益合并方式,经过图2-8所示的判决后,即可得到系统的输出信号。
图2-9为RAKE接收机误码率仿真曲线图,其中横坐标为信号干扰噪声比,指信号功率与噪声和干扰功率之比,纵坐标为误码率。由图2-9可知RAKE分集接收能有效地减少多径衰落的影响,降低误码率。由仿真结果可以看出,无论无论是否使用RAKE接收机处理信号,信噪比越大,误码率就相应的减小;在使用RAKE接收机处理信号后,同等信噪比条件下,信号的改善效果更好,抗干扰能力就越强。
经研究发现,根据扩频带宽的选择,多径环境下可能有几路到几十路可分离的多径信号,有的多径信号只包含很少的信号能量,所以,RAKE接收机不需要分集接收所有的多径信号[4]。为此,除了根据信道的特性,选择适当的RAKE支路外,还可以在RAKE接收机的每个支路设置一个门限,当信号的电平低于门限值时将该支路关闭,以防止信噪比很低的分集支路对RAKE接收机的影响。
3.结论
本论文是建立在RAKE接收机的分集重数对RAKE接收机误码性能影响的情况进行的分析和比较。在用户固定的RAKE接收机中,RAKE接收机的分集重数越多,搜索到的多径就越多,它主要是由信道的时延扩展决定的。在一定的码率下,延时扩展越大所需要的抽头数就越多,这样,在时延扩展很大的信道中,需要大量的抽头数,这将使得系统的复杂度很高。有时在硬件上很难实现。
通过RAKE接收机的原理的研究,应用MATLAB软件设计了RAKE接收机仿真程序,软件仿真结果与理论相符,RAKE接收机在采取多径合并后,能更有效的收集信号能量,恢复出原始信号,达到了预想中的效果。
参考文献
[1]朱秋明,徐大专,陈小敏.瑞利衰落信道模型比较与分析[J].四川大学学报,2009,41(6):238-241.
[2]郭文彬,桑林.通信原理——基于Matlab的计算机仿真[M].北京邮电大学出版社,2006:196-199.
[3]叶金岭.基于FPGA的Rake接收机的研究[C].天津大学硕士学位论文,2005:9-11.
【论文摘要】经过20多年的发展,中兴和华为等中国电信设备制造企业通过不懈的努力,已经在很多重要技术领域取得重大突破。中国的电信设备制造企业在成功地实现了从优秀企业到卓越企业的跨越之后,下一个关键的挑战是如何使企业基业常青。本文认为,要想获得长久的发展,中国的电信设备制造企业必须进一步加强技术实力、市场运营能力和资本运营能力。
华为在20年前还是作坊式的小企业,如今销售额达到160亿美元;中兴通讯由一间300万元成立的小公司成长为年收入510亿元人民币的大型企业。为什么这两个曾经不起眼的企业却创造了惊人的业绩?如何能使这些初步获得成功的企业基业常青?本文对此进行了分析和探讨。
一、中国通讯设备制造企业成功的因素分析
1、华为技术。(1)清晰的战略定位。从华为公司的发展历程可以看出,华为多年来一直坚持专业化战略,在产品开发上一直实施业内闻名的“压强战略”,在决定成功的关键技术上“以超过主要竞争对手的强度配置资源,要么不做,要做就极大地集中人力、物力和财力,实现重点突破”。20多年的发展中,“压强战略”始终贯穿于华为的研发、营销和企业文化建设等多各环节,这种清晰的专业化发展战略定位让华为心无旁鹜地致力于基础通讯设备的研发,最终被思科列为未来最具竞争力的对手。
(2)强大的技术研发能力。中国没有哪一家通信企业能像华为这样每年都拿出超过销售额10%的资金用于专门的产品研发,对一个前途未卜的3G持续投资上百亿美元进行开发。华为这个在中国土生土长的民营企业在NGN网络的研发上达到世界领先水平,顺利实现由中低端路由器向高端路由器的转换,最终拥有和国际通讯巨头同场竞技的实力。
(3)强势企业文化。华为公司奉行的是“狼性文化”,狼的三大特性:敏锐的嗅觉;不屈不挠、奋不顾身的进攻精神;群体奋斗。“狼性文化”的主要表现是:华为在产品研发上大手笔投入,为开发产品而不计成本;为了企业持续发展,积极进行像狼一样的市场攻伐。《华为基本法》第一条就写道:“通过无依赖的市场压力传递,使内部机制永远处于激活状态”。狼性文化促使华为始终为了自身的进步不停奋斗着。
(4)强大的市场营销能力。华为的营销战在业界历来以快、狠、准著称,不管是在创业初期推行的“农村包围城市”还是在发展过程中令对手叹为观止的客户关系经营,华为的目标只有一个:拿到订单,占领市场。作为公认的“营销帝国”,华为总能采用最有效的营销模式快速占领市场。
2、中兴通讯。(1)明确的战略定位。与华为的专业化发展战略不同,中兴一贯将自己的战略定位在多元化、差异化上。20多年来中兴通讯一向采取低成本稳定发展战略,至今成为惟一拥有全套自主开发、自主品牌基站及交换系统的中国厂商。在研发与营销投入上,中兴并不像华为那么大手笔,中兴租用的办公楼都是不显眼的办公楼。
(2)市场导向,而非产品导向。2003年中兴的销售额曾历史性地超过了华为。中兴超越华为主要在CDMA和小灵通两个产品上,表面上这只是两个产品的问题,但实际却是战略的问题。中国联通最开始选择IS-95A增强型CDMA技术而放弃CDMA1X这种更为先进的技术,其重要原因是建设经营CDMA网络的国家大都采用IS-95A技术。中兴认准中国必然会采用成熟的技术而非最先进的技术才能保证网络的安全可靠。
中兴通讯开发小灵通产品可说是运用了“蓝海战略”。虽然小灵通被认为是被淘汰的技术,但中兴通讯还是决定专门从事小灵通产品的设计和研发。在中兴看来,中国农村面积广阔,固定电话需求较少,用户分布零散,但仍然需要铺设大量的线路,缆线维护成本较高,小灵通通信可以解决有线通信实施过程中的难题。事实证明中兴通讯公司的决策是正确的,小灵通为中兴创造了丰厚的利润。
(3)“中庸之道”的企业文化。从中兴的发展历程可以看出,中兴一直采取稳中求进、低成本开发的战略,这与中兴的“中庸文化”有着密切关系。首先,中兴能够把握国内市场的每一个热点。从GSM、CDMA到小灵通以及到现在的TD-SCDMA,中兴几乎能够把握每一个国内市场的热点。如在手机终端产品呈爆发性增长的2002年,中兴通讯也没被落下。中兴通讯是国内唯一提供GSM、CDMA和PHS三大系列产品的手机生产企业,在CDMA、PHS手机上获利丰厚。其次,中兴拥有齐全的产品线。据说中兴拥有世界上最齐全的产品线,“不将鸡蛋都放在一个篮子里”是中兴始终坚持的做法。
二、中国电信设备制造企业可持续发展中的问题分析
1、性价比优势丧失。华为、中兴在海外市场的成功,很大程度上归于利用国内的人力成本优势,向电信市场提供更具性价比的电信解决方案,挑战成本极限。据统计,欧洲企业研发人员的年均工作时间只有1300—1400小时,而华为研发人员的年均工作时间却达到了2750小时,是欧洲同行的两倍。与此同时,华为研发的人均费用只有2.5万美元/年,而欧洲企业研发的人均费用大约为12—15万美元/年,是华为的6倍。正是依靠不计多干、苦干,华为在产品响应速度和客户服务方面反应较快,研发投入产出比接近大多数西方公司的10倍,这就是华为低成本的核心所在。
电信设备企业的几次大兼并,爱立信兼并马可尼、阿尔卡特与朗讯合并、诺基亚与西门子合并,除了增强产品线和扩大市场覆盖范围的考虑以外,最大的希望还是节省成本。当华为还在奋力追赶北电、朗讯等二流电信设备商时,全球的电信设备市场只剩下爱立信、阿尔卡特—朗讯、诺基亚—西门子、思科和摩托罗拉等五大玩家,华为以前产品的性价比优势逐步消失,而完成整合的巨头们下一步的目标则必然会对准华为。
2、缺乏市场应变的战略管理能力。国际电信巨头在短时间内完成合并使我们看到了他们优秀的战略管理和实施的能力。这种能力体现在对市场的清晰和完整的认识,对行业发展趋势的有效把握,对市场挑战和威胁的及时预警,对企业自身定位和战略的理性的思考。
中国企业刚刚进入国际化竞争,在灵敏度和企业战略应变上还需要加强。虽然华为也曾与马可尼谈判过收购,也曾同西门子商量过兼并,但是都没有成功。由于中国企业应对变化的战略不够明确和肯定,在落实的细节上过多地纠缠、犹豫不定,并且缺少跨国并购经验的经验,导致了落实行动的迟缓。
3、技术研发能力不足。由于外国企业申请的专利太多,目前在许多领域已经形成了坚实的技术壁垒,如当前移动通信领域大部分专利仍掌握在日、美、韩等国手中,而且这些国家都拥有移动通信领域的世界级企业,如三星、松下、爱立信、日本电气、高通等,专利的申请人也多是这些企业。现在由中国提交并被采纳为国际标准的数量较少,领域狭窄。在20世纪90年代以前,国外的大制造企业的科研投入一般为年销售额的4%左右,进入90年代后这种投入明显加大,为10%左右。近年为了研究和开发3G移动技术和其他新技术,国外有的大公司对移动通信的科技投入提升到16%。就科研投入的比例而言,中国一些大的通信设备制造商的科研投入比例也相当大,但由于中国通信设备制造商的生产规模无法与国外大型制造商相比,所以从绝对值看,目前国内通信设备制造商的科研投入仍然很少,与国外存在较大的差距。科技投入低导致了中国通信制造企业自主开发创新能力的薄弱,
三、结论
经过20多年的发展,中兴和华为这样的中国电信设备制造企业通过自己不懈的努力,已经在很多重要技术领域取得重大突破,但在规模、技术、品牌等方面与跨国企业的差距依然很大。中国的电信设备制造企业在成功地实现了优秀到卓越的跨越之后,下一个关键的挑战是如何使企业能基业常青。中国的电信设备制造企业必须进一步加强技术实力、市场运营能力和资本运营能力,这样才能在激烈的国际市场竞争中保证企业的长久生存和发展。
【参考文献】
[1]钱悦:世界主流通信制造企业整合对中国通信业的影响的研究[D].北京邮电大学,2007.
[2]成媛:我国通信设备企业发展战略比较研究[D].华东师范大学,2007.
[3]王学人:以资本经营战略推动我国电信企业国际化[J].WORLDTELECOMMUNICATIONS,2006(5).
【关键词】软切换因子 簇优化 射频优化 软切换参数
doi:10.3969/j.issn.1006-1010.2016.12.002 中图分类号:TN929.5 文献标志码:A 文章编号:1006-1010(2016)12-0009-06
引用格式:叶冠武. 基站簇优化改善CDMA软切换因子方案探讨[J]. 移动通信, 2016,40(12): 9-14.
1 引言
软切换是CDMA系统使用的一种切换技术,它是指当移动台处于小区覆盖边缘时,会同时收到来自附近不同基站或扇区的信号,移动台的分集接收机同时接收和解调这些信号,并切换到强于当前使用的、稳定的信号上。整个切换过程先接后断,在不影响用户感知的情况下,完成服务小区的过渡,保证了通话过程和通话质量。
CDMA系统支持3~6路软切换。如当移动台通过软切换同时与4个基站的信号保持通信时,将占用4个基站的资源,包括信道、链路功率、基站与BSC间的信息量等。因此软切换可以很明显地给上下行的覆盖带来明显的增益,而且掉话率比硬切换要低得多,但是软切换链路在所有链路中比例过大,尤其是下行,会带来额外的干扰。这样反过来影响覆盖和容量,同时占用大量基带处理单元,使基带的处理效率降低,造成资源的紧张和浪费。
无线网络规划与优化的任务之一就是保持软切换的开销低于要求的阈值,并且在上下行链路提供足够的分集。通过权衡网络质量和软切换这对矛盾体,寻找最佳平衡点。故通常使用软切换因子(或因子)这个指标来评估实际需求。本文主要对基站簇优化改善CDMA软切换因子进行探讨。
2 软切换因子优化的思路
软切换的因子的定义为:(含切换的话务量-不含切换的话务量)/不含切换的话务量。其实这只是一项对切换的统计,统计项很简单。含切换的话务量比不含切换的话务量高的原因在于手机通话时处于软切换模式比其它模式占用了更多的信道,可作粗略估计。
含切换的话务量=(不含切换的话务量中)非切换话务量×1+(不含切换的话务量中)2way切换话务量×2+(不含切换的话务量中)3way切换话务量×3+(不含切换的话务量中)3way切换话务量×4等。
网络中有多少话务量是非切换模式、有多少话务量是切换模式对应于软切换区域的大小及该区域的话务密度。假设话务密度是均匀的,假设网络中非软切换区域为55%,2way切换区域是30%,3way切换区域是10%,4way切换区域是5%,那么软切换因子将是:(1×55%+2×30%+3×10%+4×5%-1×100%)/100%=65%。
软切换因子越大说明软切换区域的比例越大、切换路数越多、软切换区域话务密度越大,因此浪费的系统资源也越多。但软切换因子也不是越低越好,因为需要保证一定的切换区域,而且在通话困难的区域多路软切换是有益的。优化软切换因子应从控制软切换比例的角度出发。
控制软切换比例常用的方法有射频优化法和系统参数调整法等。
(1)射频优化通常通过基站天线的调整进行优化,这是所有方法中最基础最重要的方法。通过基站天线的优化,可以直接简单地控制基站的覆盖范围,调整优化内容,包括天线方位角、俯仰角、天线型号(天线的水平波瓣宽度、垂直波瓣宽度、增益)、天线的挂高等。
(2)参数调整通常通过优化与软切换相关的参数来改善软切换因子,常用的调整参数有T_Add、T_Drop、T_Comp等。在郊区或山区有时会调整搜索窗参数Srch-win-A、Srch-win-N、Srch-win-R来辅助优化软切换因子。还可以通过降低功率,减少软切换路径数等方法改善软切换因子。
因软切换跟语音质量和掉话率密切相关,所以软切换因子也不是越低越好,要遵循一定的原则来调整。保证原先的覆盖,不能造成新的盲区;结合掉话率统计调整,调整后掉话率应该在可以接受的范围内;结合路测RXPower、Ec/Io值调整,调整后RXPower、Ec/Io值不能恶化。
3 簇优化改善软切换因子的实施
根据某市现网运行状况,该市区软切换因子优化采用了射频优化和参数调整(主要调整了T_Add、T_Drop值)两方面结合的方法进行优化。下文将介绍该方案的实现过程和实施前后的效果分析。
3.1 射频优化
射频优化是整个网络优化的基础,也是优化软切换因子最实用、最直接的方法。射频优化应结合路测信息,对BSC后台统计的小区话务量和软切换因子信息进行相应优化。射频优化的目标是减少基站的过覆盖现象、减少小区间的重叠覆盖、降低导频污染程度、合理分配基站小区的覆盖范围等。
(1)优化前期准备
1)根据ZTE网管统计取出BSC6近期软切换因子
提取了2015年4月7日至2015年4月13日晚忙时(19:00-20:00)的话务量(1X语音呼叫话务量、1X语音软切换话务量、1X语音更软切换话务量),换算成软切换因子后从指标看,BSC6的软切换因子都在83%以上,如表1所示。这远远超出软切换市区建议值65%的上限,对系统资源造成了不必要的浪费。因此该BSC所下挂基站覆盖区域非常有必要做软切换因子优化。
2)根据ZTE网管统计取出BSC6近期各小区的软切换因子并做分析
话务量大于10 Erl,软切换因子(含更软切换)大于170%,(1X语音软切换话务量+1X语音更软切换话务量)/(1X语音呼叫话务量)的基站共有23个。从这些站点分布可以明显看出,在津泰路以北、五四路和六一路中间区域占了一半以上,具体如图1所示:
提高取数标准,观察忙时话务量高于20 Erl基站的软切换因子(含更软切换)分布。这些站点仅6个,全部分布在上诉区域中。而在六一北、火车站区域就占了4个,分别是电建二公司、顺达大厦、银河花园和武警一支队基站。鉴于这种情况,针对该区域进行区域性基站簇优化,具体如图2所示。
3)确定优化区域后,对该区域进行全面路测
通过对路测数据单PN覆盖进行检查,发现部分基站的小区重叠覆盖严重,部分基站本身各小区间重叠覆盖严重,某些路段接收场强良好,但是Ec/Io差,导频污染严重,部分基站过覆盖严重。以上问题均需要通过天馈方位角和俯仰角的优化调整来进行处理。
4)统计调整前BSC6的掉话率
调整前BSC6的掉话率平均为0.22%,可以为调整后的指标做参考。
(2)优化调整过程
1)高软切换因子小区的排查
第一步先排查更软切换因子高的小区,这些小区主要是由于扇区过度重叠所致,进而造成软切换因子偏高。优先上站核查,通过调整这些站点小区的方位角来减少小区重叠覆盖。通过ZTE网管对更软切换因子高的小区做了筛选,筛选结果如表2所示。
第二步则对余下的高软切换因子小区做上站检查,调整该站和周边站点的天馈参数。
2)天馈调整原则和方法
天馈调整以保证原覆盖为前提,以突出主覆盖小区信号,减少重复覆盖区域为原则进行。
对覆盖重复区域,选择主覆盖小区,调整其他小区的方位角,错开其他小区。
对过覆盖的小区,下压天线方位角的方法进行优化。若是高站,降低其天线高度,机械倾角天线更换成有电调内置倾角的天线。
对导频污染严重的区域,突出主信号覆盖,调整其余小区天馈方位角。
对小区夹角小于90°的基站,做方位角调整,减少扇区间重叠覆盖,降低更软切换因子;通过删减一个小区,分裂另一个小区的信号进行覆盖。
对天线正对着高楼的,调整方位角避开大楼,减少反射;对天线正对着街道的,调整方位角与街道形成一定夹角,减少波导效应防止越区覆盖;对天线正对着湖面的,调整方位角,减少湖面反射,防止越区。
天线的机械下倾角不大于15°,防止天线波形变形,针对下倾角大于15°的情况,可通过内置倾角来调整。
市区内天线的选择也应遵循一定的原则:水平波束宽度选择65°为宜;垂直波束宽度选择7°~9°为宜;前后比25 dB为宜;应选择带上旁瓣抑制的天线;应选择带内置电调的天线。
3)调整前后各基站小区方位角对比
根据以上原则,调整了六一北路区域具备现场调整条件的11个基站共23个小区的天馈参数,调整参数如表3所示。
(3)射频优化调整结果
1)调整前后话务统计对比
调整前后该基站簇话务统计软切换因子曲线如图3所示:
2)调整前后路测结果对比
调整前该基站簇覆盖情况如图4所示。
调整后该基站簇覆盖情况如图5所示。
通过上述射频优化,该基站簇天线分布更为合理,改善了原导频污染区接收质量;软切换因子有所降低且变得比较平缓,周平均软切换因子从原来的0.9156降低到0.8845。从结果来看,通过射频优化,该区域的软切换因子得到了改善,同时也为进一步调整软切换参数并保持系统其它指标平稳过度打下了良好的基础。
3.2 切换参数优化
通过射频优化的结果来看,软切换因子已得到一定改善,下面进一步通过软切换参数优化,以期降低软切换因子。
(1)软切换参数优化
T_Add、T_Drop参数的优化调整及抬高其门限。该方法也有其弊端,可能影响到覆盖质量,Ec/Io受其他未进入邻区导频的干扰而变差,在覆盖较弱的地方可能导致掉话。因此T_Add、T_Drop参数的调整遵循从小到大,循序渐进的原则,与掉话指标和路测结果配合调整。
将BSC6的T_Add由28改为26,T_Drop由32改为30即T_Add为-13dB、T_Drop为-15dB,其余参数不做改动。
(2)软切换参数优化调整结果
分别截取调整前后一周的数据进行对比,得到调整前后该基站簇软切换因子曲线如图6所示:
调整后软切换因子变化累计了射频优化调整结果,通过上述射频优化及软切换参数优化,周平均软切换因子从原来的0.9156降低到0.8093。BSC6的平均掉话率由原来的0.22%变为现在的0.19%。可见软切换因子有明显降低,掉话率没有发生恶化。
4 结束语
通过基站簇的射频优化和软切换参数优化,软切换因子得到较大改善,掉话率没有发生恶化,该方案整体效果良好。通过基站簇优化,上述两种优化手段相结合的方法可适用于其他基站簇,使整个BSC的软切换因子进一步下降,从而保证了资源的合理利用,避免后期业务规模扩大造成拥塞等其他问题。
参考文献:
[1] 邓春梅,孙毅. 中兴通讯WCDMA系统高性能的软切换技术[J]. 世界电信, 2005(3): 55-56.
[2] 刁兆坤. 软切换对CDMA无线子系统的影响及控制[J]. 世界电信, 2003(1): 45-49.
[3] 李燕,王峰. 基于参数控制的WCDMA软切换的优化策略[A]. 2007通信理论与技术新发展――第十二届全国青年通信学术会议论文集[C]. 2007.
[4] 方启星. cdma2000高铁无线覆盖规划[J]. 中国新通信, 2010(13): 10-13.
[5] 刘宗仁. CDMA网络高软切换因子优化探讨[J]. 中国新通信, 2014(16): 111-112.
[6] 张慈秀. 降低软切换因子提升CDMA系统容量的探讨[J]. 中国新技术新产品, 2012(2): 18-19.
[7] 于兰,何峰. CDMA网络软切换因子研究[J]. 中国电子商务, 2014(4): 96-98.
[8] 华为技术有限公司. CDMA密集城区A3A7软切换及呼叫迁移技术文档[Z]. 2009.
[9] 朱志强,郭俊强,姜惠. 基于链路平衡的宽带CDMA系统软切换性能分析[J]. 中国电子商务, 2007(24): 146-148.
[10] 刘志平,杨大成. 软切换参数对CDMA 1X性能的影响及优化[J]. 无线电通信技术, 2004,30(3): 8-9.
关键词:MC-CDMA; 最优多用户检测; 次优多用户检测; 蚁群算法; 复杂度
中图分类号:TP274文献标识码:A
文章编号:1004-373X(2010)08-0157-03
Ant Colony Optimization Multi-user Detection Used in MC-CDMA System
YANG Yu-bing LUAN Ying-zi
(Xidian University, Xi’an710071, China)
Abstract:The detection technology is one of the key technologies which affects the systematic performance ofmulti-carrier code division multiple access (MC-CDMA) systems. The method of the optimum multi-user detection is analysed briefly. Taking the judge criterion of the optimum multi-user detection as its objective function, the performance of the multi-user detection of ant colony algorithm is compared to that of others multi-user detections. The result proves that the ant colony optimization multi-user detection has strong points of low-complexity comparing to the optimum multi-user detection, and has higher performance than MMSE detection in practical application.
Keywords:MC-CDMA; optimum multi-user detection; sub- optimummulti-user detection; ant colony algorithm; complexity
多载波码分多址(MC-CDMA)系统将正交频分复用(OFDM)与码分多址(CDMA)结合,具有较高的频谱效率与系统容量。在MC-CDMA系统上行链路中,由于多个用户的信号在不同子载波上经历了相互独立的衰落,从而破坏了不同用户特征序列的正交性,导致了严重的多址干扰。多址干扰是影响MC-CDMA无线通信系统性能的主要因素,而使用多用户检测技术可有效消除多址干扰。因此各种多用户检测方法成了MC-CDMA系统的研究热点。1986年Verdu提出的最优多用户检测由于具有非常高的复杂度而无法采用,因此,次优检测器的研究成为必要的任务。在此提出的蚁群算法多用户检测正是一种具有低复杂度并且性能很好的次优多用户检测器。
1 MC-CDMA系统模型
MC-CDMA发射机和接收机的框图如图1所示。其中xj是第j个用户的符号数据,Cj=[c1j,c2j,…,cNCj]T是第j个用户的的扩频码。每个信息符号先与扩频序列各位相乘,相乘后的每路信号调制到每个子载波上,若扩频码长为N则调制到NЦ鲎釉夭ㄉ稀R簿褪撬,一个原始数据符号通过扩频后,成为多个码片,每个码片在一个子载波上传输。这样一个符号的信息就在多个子载波上并行传输。经过信道后的接收信号进行和发送端相反的操作[1]。
图1 MC-CDMA发射机和接收机的框图
MC-CDMA系统中的多用户检测器实现框图如图2所示。
图2 多用户检测器实现框图
考虑采用BPSK调制的MC-CDMA系统,在同步的条件下,接收信号r可以用矩阵形式表示为:
Иr=hcAb+n(1)И
式中:r是接收信号的向量;h是信道频域响应;c是用户的扩频码矩阵;b是用户发送的比特数据,b∈{-1,+1};A为接收到的用户幅度对角阵;n为与发送数据不相关的均值为0,方差为σ的高斯白噪声。判决信号的充分统计量为匹配滤波器组的输出:
Иy=RAb+n(2)И
式中:y是匹配滤波器的输出向量;R是所有用户的扩频波形的归一化自相关矩阵[2]。
1.1 最优多用户检测算法
1986年 Verdu首先提出利用已知扩频码的结构信息与统计信息来克服多个用户之间干扰的多用户检测理论与方案。最优多用户检测器是根据最大似然序列检测(Maximum Likelihood Sequence Detection,MLSD)提出的。它采用的是Bayes后验概率最大原理,因此是一种最大似然估计算法。假设用户数为K,最优检测器可以看作在2K个解中寻找使下式的函数值最大的解:
ИJ(b)=2bTAr-bTHb(3)И
式中:b和A分别为用户发送的信息比特向量和幅度对角阵;r为匹配滤波器的输出信号向量;H为归一化的相关函数[2-3]。最优多用户检测器的复杂度和用户数成指数关系,根据最优多用户检测器的判决准则寻找最优多用户的检测结果成了一个解决组合优化的NP完全问题[4]。
1.2 蚁群算法多用户检测
基于蚁群算法在解决NP完全问题上表现出的优异性能[5],可以把这种智能算法引入到多用户检测问题上来[6-7]。本文主要阐述使用蚁群算法的多用户检测模型,误码率性能和复杂度比较。
1.2.1 蚁群算法用于多用户检测的模型
蚁群算法是意大利学者M.Dorigo于1991年在他的博士论文中首次系统地提出了一种基于蚂蚁种群的新型优化算法――蚁群算法(Ant Colony Optimization,ACO),并用该方法解决了一系列的组合优化问题。该算法受到自然界中真实蚁群的集体行为的启发,采用的正反馈机制具有较强的鲁棒性,优良的分布式计算机制,易于与其他方法结合等优点,在解决许多复杂优化问题方面已经展现出优异的性能和巨大的发展潜力。蚁群算法虽然是从研究求解旅行商问题(TSP)开始提出的,但它现在已经在求解多种组合优化问题中获得了广泛应用。像TSP问题、机器人领域、生命科学问题、网络路由问题、图像处理以及车辆路径问题等。蚁群算法已经成为国际智能计算领域中备受关注的研究热点和前沿性课题[8-9]。
本文通过对MC-CDMA中多用户检测问题(Mutiuser Detection,MUD)的分析,建立了一个基于蚁群算法的多用户检测问题模型,通过分析多用户检测问题与TSP问题的异同,针对多用户检测问题提出一种更为简单的蚁群算法实现思想。该思想可以描述如下:在TSP问题中,每一只蚂蚁所要完成的任务就是找到一条经过n个城市的一条路径。在每到达一城市后,蚂蚁都要先检查随身携带的禁忌表(Tabulist),然后依据转移概率在没有经过的城市中选择下一个将要到达的城市,并将这个城市添加到禁忌表中。在多用户检测中不失一般性,可以让蚂蚁按照从第1个用户到第K个用户的顺序进行判断,直到蚂蚁走完规定的节点数即用户数。这样在设计程序时就可以抛弃在基本蚁群算法中的禁忌表,降低程序的复杂度[7]。另外,因为每个用户的数据只有1或者-1两种可能,相当于蚂蚁每一次经过一个节点只有两条供选择的路径,转移概率的公式也会比TSP问题简单。在TSP问题中,往往是把城市之间的距离作为启发信息;在多用户检测问题中,因为各个用户之间的独立性以及每个用户所发送数据的平稳随机性,很难寻找到类似于TSP问题中城市间距离这样的启发信息,所以本文中直接将启发信息抛弃,仅利用信息素强度进行转移概率计算。由此可得到Уm只蚂蚁从第i个分支上节点转移到第jЦ龇种上节点的转移概率公式为:
Иpmij(t)=τij(t)/∑k∈1,2τik(t)(4)
至此就可以用蚁群算法的思想将多用户检测问题描述成如图3所示的一个路径选择问题。
图3 蚂蚁随机选择的路径
在这个模型中,K个节点代表着K个用户,上下两条路径分支上的节点分别代表第K个用户的数据+1和-1,蚂蚁按照一定的概率确定下一个节点是上面的节点还是下面的节点,每个蚂蚁走完规定的节点数K就得到一条路径。如下所示的是蚂蚁随机选择的两条路径:
路径1:+1 +1 -1 +1 -1 +1…
路径2:-1 -1 +1 -1 +1 -1…
1.2.2 蚁群算法的改进
本文从三个方面对蚁群算法进行改进:
(1) 为了使算法能够更好更快的找到问题的最优解,对蚂蚁初始路径的寻找做出了干扰。通过在匹配滤波器的输出做硬判决的值的这条路径上放置更多的信息素使蚂蚁趋向于选择某些节点。其他路径节点上信息素初值为一个正常数。
(2) 只给最优路径上增加信息素。即使用精英蚂蚁策略。每一次蚂蚁选完路径,根据一定的准则找出最优的几条路径,只给这几条路径的节点上增加信息素。这样可以更好地利用蚂蚁的正反馈信息更快的找到最优的路径。
(3) 设定最小最大信息素值,既扩大蚁群的搜索范围又不会很快陷入局部最优。
1.2.3 算法描述及步骤
(1) 蚁群算法初始参数设置,根据用户数设定蚂蚁个数及迭代个数,信息素挥发系数,初始信息素常数等;
(2) 计算节点上信息素的量,根据式(3)计算选择概率;
(3) 每个蚂蚁根据选择概率选择自己的路径;
(4) 完成路径选择之后调整每个节点的信息素量在设定的范围之内;
(5) 给最优路径上增加信息素;
(6) 信息素挥发;
(7) 判断最大循环次数是否大于设定最大次数,是,继续;否,进入步骤(2);
(8) 所有经过路径中的目标函数最大值作为全局最优解。
2 仿真结果及分析
本文在MC-CDMA系统上行链路同步的条件下所做的仿真。调制方式采用BPSK;16倍的Walsh码进行扩频时系统有16个用户;32倍的Walsh码进行扩频时系统有32个用户;信道为慢衰落的瑞利信道。
图4为16个用户时候传统匹配滤波器(CD),最小均方误差多用户检测(MMSE)和蚁群算法多用户检测(ACO)的误码率性能比较。
图4 误码率性能比较(一)
图5为32个用户时候传统匹配滤波器(CD),最小均方误差多用户检测(MMSE)和蚁群算法多用户检测(ACO)的误码率性能比较。
图4和图5是用户数分别为16和32的时候的传统匹配滤波器(CD),最小均方误差多用户检测(MMSE)和蚁群算法多用户检测(ACO)的误码率性能比较。可以看到在信噪比大于6 dB时候蚁群算法的误码率性能比MMSE好很多,在信噪比较小的时候二者性能相差无几,但都比传统的匹配滤波器的性能好。误码率10-3时候蚁群算法多用户检测性能比最小均方误差性能改善了约3.5 dB,而且通过增加改变蚁群算法中蚂蚁个数和蚂蚁搜索最大代数,还可以再改善误码率的性能。蚁群算法的参数设置是根据多次试验的结果最适合的配置在表1中列出。
图5 误码率性能比较(二)
表1 蚁群算法的参数设置
挥发系数初始信息素启发信息素最大/最小信息素量精英蚂蚁个数
0.256610/05
其中蚂蚁个数是用户数的2倍,16个用户数时候搜索次数是20,32个用户时候搜索次数是30。与最优多用户检测进行比较,最优检测器的复杂度在16个用户时候是216,而蚁群算法的复杂度[6]是16×2×20=640,蚁群算法的复杂度是最优检测器的复杂度的640/216= 9.8×10-3 。在32个用户时候最优检测器的复杂度是232,蚁群算法的复杂度是最优检测器的复杂度的32×2×30/232=4.5×10-7。通过试验表明蚁群算法用于多用户检测不仅可以减少复杂度,而且可以获得很好的性能,具有很大的实用价值。
3 结 语
本文首先对MC-CDMA系统中最优多用户检测方法做出了简要的分析,然后引入了蚁群算法多用户检测,并对蚁群算法和其他多用户检测性能做了比较。结果表明蚁群算法性能优于最小均方误差多用户检测,并且和最优多用户检测复杂度比值低于10-3数量级以上,随着系统中用户数的增多其复杂度并不呈指数增加而是线性增加。因此蚁群算法多用户检测在MC-CDMA系统多用户检测的应用中表现出了很大的优势,在系统用户数很多时可以达到实时实现的目标。
参考文献
[1]尹长川, 罗涛, 乐光新. 多载波宽带无线通信[M]. 北京: 北京邮电大学出版社, 2004.
[2]栾英姿, 李建东, 杨家玮. MC-CDMA系统采用多用户检测器的性能分析[J]. 华东理工大学学报, 2003(2): 185-190.
[3]DUA A, DESAI U B, MALLIK R K. Minimum probability of errorbased methods for adaptive multiuser detection in multipath DS-CDMA channels\. IEEE Trans. on Wireless Commun., 2004, 3(3):939-948.
[4]WANG S,J I X. New ant colony optimization for optimum multiuser detection problem in DSCDMA systems[C]. Heidelberg: ISICA, 2007.
[5]DORIGO M, BIRATTARI M, STUTZLE T. Ant colonyoptimization[J]. IEEE Computional Intelligence Magazine, 2006, 11: 28-38.
[6]LAIN J K,LAI J J. Ant colony optimisation-based multi-user detection for direct-sequence CDMA systems with diversity reception Communications\. IET Commun., 2007, 1(4): 556-561.
[7]HIJAZI SL, NATARAJAN B,DAS S. An ant colony algorithm for multi-user detection in wireless communication systems [C]. Washington: Proc. Conf. Genetic and Evolutionary Computation,2005.
[8]李士勇. 蚁群算法及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004.
论文摘要:近年发展起来的CDMA移动通信系统技术相对于FDMA、TDMA系统具有较大的容量,但由于多径干扰、多址干扰的存在,其容量优势并没有得到充分的发挥,如果在基站上采用智能天线可以降低这些干扰的影响,提高系统的性能。本文通过对智能天线的认识、优势的阐述,从而引发智能天线在现代移动通信中的重要性。
1引言
我们知道,天线有很多种,但大体上可分为三大类:“线天线”、“面天线”及“阵列天线”。阵列天线最初用于雷达、声纳以及军事通信中,完成空间滤波和参数估计两大任务。当阵列天线应用到移动通信领域时,通信工程师喜欢用“智能天线”来称谓之。智能天线根据方向图形成(或称为波束形成)的方式又可分为两类:第一类,采用固定形状方向图的智能天线,且不需要参考信号;第二类,采用自适应算法形成方向图的智能天线,需要参考信号。
本文在以下提到的智能天线都是指第二类,即(自适应)智能天线,这也是目前智能天线研究的主流。
2智能天线的技术现状
在分析研究智能天线技术理论的同时,国内外一些大学、公司和研究所分别建立了试验平台,用实验的方法来验证理论研究的成果,得出相应的结论。
(1)在美国
在智能天线技术方面,美国较其它国家要成熟的多,并已开始投入实用。美国ArrayComm公司将智能天线技术应用于无线本地环路(WLL)系统。ArrayComm方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同环境选用,现场实验表明在PHS基站采用该技术可以使系统容量提高4倍。
(2)在欧洲
欧洲通信委员会(CEC)在RACE(ResearchintoAdvancedCommunicationinEurope)计划中实施了第一阶段智能天线技术研究,称为TSUNAMI(TheTechnologyinSmartAntennasforUniver-salAdvancedMobileInfrastructure),由德国、英国、丹麦和西班牙合作完成。该项目是在DECT基站上构造智能天线试验模型,于1995年初开始现场试验,天线阵列由8个阵元组成,射频工作频率为1.89GHz,阵元间距可调,阵元分布有直线型、圆环型和平面型三种形式。试验模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片BDF1108完成波束形成,使用TMS320C40芯片作为中央控制。
(3)在日本
ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成,整块电路板大小为23.3cm×34.0cm。ATR研究人员提出了智能天线的软件天线的概念。
我国目前有部分单位也正进行相关的研究。信威公司将智能天线应用于TDD(时分双工)方式的WLL系统中,信威公司智能天线采用8阵元环形自适应阵列,射频工作于1785~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。
3智能天线的优势
智能天线是第三代移动通信不可缺少的空域信号处理技术,归纳起来,智能天线具有以下几个突出的优点。
(1)具有测向和自适应调零功能,能把主波束对准入射信号并适应实时跟踪信号,同时还能把零响点对准干扰信号。
(2)提高输入信号的信干噪比。显然,采用多天线阵列将截获更多的空间信号,也即是获得阵列增益。
(3)能识别不同入射方向的直射波和反射波,具有较强的抗多径衰落和同信道干扰的能力。能减小普通均衡技术很难处理的快衰落对系统性能的影响。
(4)增强系统抗频率选择性衰落的能力,因为天线阵列本质上具有空间分集的能力。
(5)可以利用智能天线,实时监测电磁环境和用户情况来提高网络的管理能力。
(6)智能天线自适应调节天线增益,从而较好地解决远近效应问题。为移动台的进一步简化提供了条件。越区切换是根据基站接收的移动台功率的电平来判断的。由于阴影效应和多径衰落的影响常常导致错误的越区转接,从而增加了网络管理的负荷和用户的呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。
4智能天线与若干空域处理技术的比较
为了进一步理解智能天线的概念,我们把智能天线和相关的传统空域处理技术加以比较。
(1)智能天线与自适应天线的比较
智能天线与自适应天线并没有本质上的区别,只是由于应用场合不同而具有显著的差异。自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目比天线阵列单元数少或相当。而在无线通信系统中,由于多径传播效应到达天线阵列的干扰数目远大于天线阵列单元数,入射角呈现随机分布,功率电平也有很大的动态变化范围,此时的天线叫智能天线。
对自适应天线而言,只需对入射干扰信号进行抵消以获得信干噪比(SINR,SignaltoInterferenceplusNoiseRatio)的最大化。对智能天线而言,由于到达阵列的多径信号的入射角和功率电平均数是随机变化的,所以获得的是统计意义上的信干噪比(SINR)的最大化。
(2)智能天线与空间分集技术的比较
空间分集是无线通信系统中常用的抗多径衰落方案。M单元智能天线也可等效为由M个空间耦合器按优化合并准则构成的空间分集阵列。因此可以认为智能天线是传统分集接收的进一步发展。
但是智能天线与空间分集技术却是有显著的差别的。首先空间分集利用了阵列天线中不同阵元耦合得到的空间信号的弱相关性,也即是不同路径的多径信号的弱相关性。而智能天线则是对所有阵元接收的信号进行加权合并来形成空间滤波。一个根本性的区别:智能天线阵列结构的间距小于一个波长(一般取λ/2),而空间分集阵列的间距可以为数个波长。
(3)智能天线与小区扇区化的比较
小区的扇区化可以认为是一种简化的、固定的预分配智能天线系统。智能天线则是动态地、自适应优化的扇区化技术。现在,我们来讨论一个颇有争议的问题。根据IS-95建议,当采用120°扇区时系统容量将增加3倍。由此是否可以得到结论,扇区化波束越窄系统容量提高越大?考虑到实际的电磁环境,我们认为对这一问题的回答是否定的。这是因为窄波束接收到的信号往往是由许多相关性较强的多径信号构成的。一般情况下,各径信号的时延扩展小于一个chip周期。这时信号波形易于产生畸变从而降低信号的质量达不到增加系统容量的目的。同时如果采用过窄的波束接收信号,一旦该径信号受到严重的衰落,则将直接导致通信的中断。另外,过窄的接收波束在工程上是难以实现的,并将成倍地增加设备的复杂度。
5智能天线的未来展望
(1)目前还没有一个完整的通信理论能够较全面地将智能天线的所有课题有机地联系起来,故需要建立一套较完整的智能天线理论;另一方面,高效、快速的智能算法也将是智能天线走向实用的关键。超级秘书网
(2)采用高速DSP技术,将原先的射频信号转移到基带进行处理。基带处理过程是数字算法的硬件实现过程。
(3)由于圆形布阵和二维任意布阵比等间隔线阵优越,同时阵列天线的数字合成算法能够用于任意形式阵列天线而形成任意图案的方向图,因而可考虑在CDMA基站中采用二维任意布阵的智能天线。
(4)在移动台中(如手机)采用智能天线技术。
(5)采用智能天线技术来改善移动通信信道中上下链路不能使用同一套权值的问题,以改善上下链路的性能。
(6)目前,智能天线技术的研究已不是单一地研究智能天线本身,应与CDMA的一些关键技术(如多用户检测技术、多用户接收技术、功率控制等)结合在一起研究。
关键词:无线网络;MAC;共享信道
1.引言
近年来,随着通信技术的不断发展,特别是无线网络技术的不断成熟,越来越多的领域开始采用无线网络技术。特别是随着嵌入式技术发展带来的众多便携式产品,它们大都采用无线网络技术实现上网功能。由于涉及到不同的应用场合以及其它的一些要求,产生了众多的无线网络技术。在众多无线网络技术中,基本的协议框架都是类似的,主要是细节的不同。在无线网络的众多技术中,MAC层至关重要。MAC作为介质接入控制协议,其主要的作用就是控制各个通信节点对信道的访问,解决冲突,实现高效的共享。论文将系统的研究常用的无线网络技术中的MA C层协议,并对其进行仿真。
2. 无线网络MAC层协议的研究
无线网络技术众多,满足不同距离、不同层次的需求,本论文主要研究与我们生活紧密联系的3类无线网络技术。它们分别是无线局域网、无线个人区域网和无线传感器网。其中,无线局域网主要应用于类似校园这样的近距离区域,它具有组网灵活、布线费用少、不受线路限制等多个方面的优点,应用十分广泛。无线个人区域网主要是应用于从几米到10米左右空间内的高效数据传输,是普通网络电缆的替代品。无线传感器网是近年来才兴起的,由大量价格低廉、低功耗的传感器节点所构成的无线网络系统。其传输速率较低。
由于上述3类无线网络应用的场景不同,所以采用的协议也有很大的区别。大多数无线局域网采用的协议包括IEEE802.11系列标准和HiperLAN标准;无线个人区域网一般采用的协议是蓝牙、HomeRF及IEEE 802.15系列标准;而无线传感器网络采用的是IEEE 802.15.4标准。
从上面的研究可以看出:不同的无线网络技术采用的协议相差很远,但作为实现网络信道共享的MAC层的功能都是一样的,那就是通过对每个试图对信道进行访问的设备进行控制来实现信道的共享。一般都采用多址接入技术。从这个角度看:MAC层协议主要包括:以FDMA、TDMA、CDMA为代表的固定分配类型,以CSMA/CA为代表的随机竞争类型以及以中心控制MAC层协议和分布控制MAC层协议为代表的按需分配类型。其中,固定分配类型采用的多址接入方案是将一条共享的信道划分为多个相互孤立的子信道,并将每个子信道分配给一个访问节点使用。主要应用于语音网络,由于网络数据传输具有突发性的特点,所以该类协议很少应用于数据传输。随机竞争类型是为了满足网络数据传输突发性的特点而设计的,所以它采用的接入策略是随机接入,并辅助一些冲突避免的方法。故它主要应用于数据传输网络。按需分配类型采用的策略是循环询问每个节点,若有数据,则发送,若无,则转向下一节点。
从上述的研究中,可以看出不同类型的MAC层的协议采用的控制策略是不同的,自然其应用场合也有很大的区别。现在,我们对应用于低速无线网络的IEEE 802.15.4标准涉及到的内容进行研究,从而对常用的MAC层协议有一个整体的认识。在该标准中,其MAC层协议采用的控制策略是随机竞争类型的CSMA/CA。其中,CSMA/CA分为两种类型一种是应用于星型网络的带时隙的CSMA/CA;另一种就是无时隙的CSMA/CA。带时隙的CSMA/CA在星型网络中主要是通过中心节点的超帧来实现对网络信道的控制。其中,超帧具有两个类型的周期,一个是网络中每个访问节点都可使用CSMA/CA控制策略的活动周期;另一个就是所有访问节点都处于休眠情况的非活动周期。超帧的活动周期分为三个部分:信标、竞争访问期和竞争空闲期。其中,若采用信标,那么MAC层在超帧的竞争访问期间采用带时隙的CSMA/CA策略,否则采用无时隙的CSMA/CA。在这两种状态下,均采用随机退让的冲突避让机制。在CSMA/CA策略中,当一个数传输请求到达时,MAC层随机延迟一个时间,然后对物理层请求信道状态检测。在带时隙的CSMA/CA系统中,信道状态检测和数据传输都被安排在时隙边界。在非时隙CSMA/CA系统中,信道状态检测将立即开始。
3. 无线网络MAC层协议的仿真
由于笔者主要研究了IEEE 802.15.4标准的MAC层协议,那么我们的仿真研究也针对它进行。我们采用的仿真工具是NS-2仿真软件,该软件在网络拓扑结构、网络传输的研究中具有很好的效果。在NS-2中仿真MAC层协议的主要步骤是:1.采用C++在NS-2中实现MAC层协议;2.定义分组及包头类型;3.绑定C++和Tcl中的相应类;3.编译连接;4.设置仿真场景和通信模型;5.NS仿真;6.文件分析,输出结果。由于篇幅原因,在此就不详细列出仿真具体的实现过程。通过在NS-2中进行仿真,我们就能清晰的看到MAC层协议的整个过程,并能对在具体网络中的其它内容进行分析,例如可以对其能量情况进行分析。
4.结论
MAC层协议在整个无线网络中具有十分重要的作用。由于应用环境的不同,在不同的无线网络环境中采用的MAC层协议具有很大的区别。论文系统的论述了MAC层协议涉及到的相关内容,并对其仿真技术进行了说明。可以预见由于便利性的需要,覆盖不同层次、不同距离的无线网络技术将会得到快速的发展,其MAC控制策略也将发生巨大的变化,所以深入的研究MAC协议具有十分重要的现实意义和理论价值。
参考文献:
[1] 张太,张晓敏,李莉.IEEE802.11 MAC层协议解析.山东大学学报.2oo2(6):22-26
【论文关键词】移动通信;3G;发展;展望
伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。
一、移动通信的发展历程
第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。
第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSMPhase2+,目的在于扩展和改进GSMPhase1及Phase2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSMPhase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。
二、第三代移动通信系统概述
第三代移动通信业务主要是话音和中低速数据,码率为384kb/s(局域网可达2Mb/s),因而可传送比目前GSM(第二代移动通信)更高码率的信息。随着多媒体业务的发展,2Mb/s的码率将越来越不能满足用户各种新的宽带业务的需要,因此国际上已开始研究第四代移动通信系统,第一步目标是10Mb/s以上。我们国内则尚未启动。因此需尽早开始研究其关键技术。需要解决的关键技术有:宽带多媒体移动通信系统的体系结构,包括频段、多址方法、无线接入技术、软件无线电的硬件和软件、多载波调制和OFDM技术、自适应天线阵、高效信道编码技术(如Turbo码)等。
第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:nextgenerationmobilecommunication)是必要的。第三代移动通信技术的基本特点:(1)全球统一频段,统一标准,全球无缝覆盖和漫游。(2)频谱利用率高。(3)在144kbps(最好能在384kbps)能达到全覆盖和全移动性,还能提供最高速率达2Mbps的多媒体业务。(4)支持高质量话音、分组多媒体业务和多用户速率通信。(5)有按需分配带宽和根据不同业务设置不同服务等级的能力。(6)适应多用户环境,包括室内、室外、快速移动和卫星环境。(7)安全保密性能优良。(8)便于从第二代移动通信向第三代移动通信平滑过渡。(9)可与各种移动通信系统融合,包括蜂窝、无绳电话和卫星移动通信等。(10)终端(手机)结构简单,便于携带,价格较低。
三、第四代移动通信系统
4G系统中有两个基本目标:一是实现无线通信全球覆盖;二是提供无缝的高质量无线业务。目前正在构思中的4G通信具有以下特征:(1)网络频谱更宽。要想使4G通信达到100Mbps的传输速率,通信运营商必须在3G网络的基础上进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍;(2)通信速度更快。人们研究4G通信的最初目的是为了提高蜂窝电话和其他移动终端访问Internet的速率,因此,4G通信最显著的特征就是它有更快的无线传输速率。据专家估计,第四代移动通信系统的传输速率速率可以达到10M~20Mbps,最高可以达到100Mbps;(3)通信更加灵活。从严格意义上说,4G手机的功能已不能简单划归“电话机”的范畴,因为语音数据的传输只是4G移动电话的功能之一而已。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端;(4)智能性更高。第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多目前还难以想象的功能;(5)兼容性更平滑。要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下较为容易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从3G平稳过渡等特点。
总之,随着新问题、新要求的不断出现,第四代移动通信技术将会相应地调整、完善和进一步发展。纵观移动通信技术的发展规律和第四代通信技术的优点,我们相信,不远的将来,人们将不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息。从而人们的学习、工作、生活将会发生更深刻的变化。
参考文献:
[1]胡可刚,王树勋,刘立宏.移动通信中的无线定位技术[J].吉林大学学报,2005,23(4)
论文首先分析了智能配用电通信网建设面临的问题,明确智能配用电通信网组网技术研究的重要性;随后,介绍了智能配用电通信网的定义、网络模型和体系结构;
最后,在分析的基础上,对智能配用电网的特殊应用场景与组网技术进行了深入研究,包括光纤和EPON/GPON技术、电力线载波通信(PLC)技术、GPRS/CDMA/3G公网无线技术等。论文的研究成果,能够为大规模智能配用电通信网建设,提供有力的理论指导。
1 引言
智能电网是当今世界电力系统发展变革的方向,它包括发、输、变、配、用和调度等各环节,应用新型控制技术、信息技术和管理技术,实现信息的智能交流。
目前,我国智能电网建设工作已经全面展开,随着智能电网技术的不断发展,智能电网的业务应用系统也逐步发展和完善,对电力通信网传输带宽和可靠性等方面提出了更高的要求和挑战。配用电通信网是电力通信网络平台的重要组成部分,是电力骨干通信网的向下延伸。
智能配用电通信网应具备较高的带宽和传输速率,以保障海量数据通信的双向、及时、安全、可靠传输,而无论采用何种通信技术,均有其优点和缺点。因此,智能配用电通信网并不适合用单一的通信技术组网。
此外,配用电网络是电网系统中规模最小、数量最多的末梢网络,但它是一个多节点、多分支、多交叉的复杂结构,这样的一个点数繁多、分布无规律的复杂网络特征,使得现有的配用电通信网大多为各地各部门根据实际需要分散建设,缺乏统一的网络规划。技术体制和建设标准各地相差甚大,电力通信基础资源不能得到有效利用。因此,智能配用电网组网技术研究的理论意义和应用价值日益凸显,成为一个重要的研究热点。
2 智能配用电通信网定义及其网络模型
智能配用电通信网是电力骨干通信网的向下延伸,是骨干网的接入层网络,向下覆盖到智能配电网各级站点、用户智能电表及室内通信终端、电动汽车充电站和分布式能源站点等相关设备,设备数目繁多,种类多样,且基本都处于中低压运营环境下。
由于设备有各自的用途,承担的功能和业务种类繁多,对通信质量和通信方式的要求也不尽相同。因此,智能配用电通信网是一个适用于不止一种通信技术和通信手段的通信网络,并且每一种技术都根据其技术特点有其相应承担的业务和适用场景。智能配用电通信网是一个多种技术并存的复杂的通信网络。
综合智能配用电通信的需求预测、信息流量实时性与安全性的分析与计算,智能配用电通信网以配网末端边界和用户智能电表为分界点,分为配电通信网、用户接入网和用户室内网三个层次。
配电通信网络范围主要覆盖配电网开关站、配电室、环网柜、柱上开关、公用配电变压器、分布式能源站点、配电线路等的通信网络,并向下延伸用于接入或汇聚用户接入网和用户室内网的业务,主要承担配电自动化以及用电信息采集的远程通信等业务。
用电接入网络范围主要覆盖智能用电公变出口至用户智能电表、电动汽车充电站、分布式能源站点等的通信网络,并向下延伸用于接入用户室内网,主要承担用电信息采集、双向互动用电、智能家居、增值业务等。
用户室内网范围为用户室内的通信网络,连接各种未来智能家居适用的智能终端设备,诸如家庭网关、智能交互机顶盒、IP电话、智能家电、智能家庭安全防护、智能家庭水气表抄手等等,用于实现双向互动用电服务、智能家电控制及增值业务服务等一系列智能家居通信的通信网络。
3 智能配用电通信网络架构
目前,配用电通信网承载的主要业务是配电自动化业务、用电信息采集系统业务和智能用电业务,从业务角度,配电自动化系统通信网络分为骨干通信网络和接入层通信网络,其中骨干通信网络实现配电主站到配电子站间的通信,对应了图2中的电力通信光纤骨干网;接入层通信网络主要实现配电子站到配电终端之间的通信,对应于图2中的配电通信网;
用电信息采集系统的通信网络分为远程通信网络和本地通信网络。其中远程通信网络实现用电主站和集中器之间的通信,对应于电力骨干光纤通信网和配电通信网。本地通信网络实现集中器和采集器及表计之间的通信,对应于用户接入网。智能用电业务则依靠智能电表和各个家庭智能用电终端之间的通信来实现。
4 特殊应用场景与组网技术分析
为了深入分析智能配用电通信网组网技术的特点,本文在特定的应用场景下分析相对应的技术。
4.1 EPON适用场景组网分析
基于前面提到的EPON技术特点和智能电网的建设需求和目标,未来的智能电网通信网的架设,光纤通信将是主要通信方式。采用光纤通信方式,对于配电通信网建设可铺设OPPC光缆,对用户接入网的建设,根据其双向互动、智能家居、增值业务等特点,可采用PFTTH光纤专网通信技术,保障其信道带宽、实时性、安全性以及可靠性。
智能小区用户室内网通信建设方式可采用以太网无源光网络(EPON)技术,在用户室内配置ONU终端,用户智能交互终端、智能机顶盒、IP电话、电脑、智能家电等设备通过以太网借口和ONU终端互联。实现语音、数据、有线电视、视频等业务的信号接入,满足智能家居和智能小区建设的要求。
智能电网骨干通信网建设将在很大程度上采用光纤通信,因此采用光缆来铺设智能配用电通信网具有先天优势,EPON技术的高带宽、安全性和可靠性方面的优势,将使其在经济条件满足的情况下成为智能配用电通信网接入的首选技术。
在经济发达的沿海地区和大中型城市中,可统一采用光纤和EPON技术来建设智能配用电网络,特别是在新建小区中,不需要重新布线,一次性敷设就可完成,采用EPON技术更加符合智能配用电网络的业务和用户对智能配用电通信网络的越来越高标准的需求,适应智能电网的发展,为实现智能城市和智能家居做更好的准备。
4.2 电力线通信适用场景组网分析
由于智能配用电网络是中低压电网,需要连接大量的用电设备,这给智能配用电通信网的建设带来了极大的困难。电力线载波通信(PLC)是一种现在比较成熟的技术,是电力系统的特有的通信方式,它利用电力线缆作为传输媒质,通过载波传输语音和数据信号的通信方式,使其不需要另外架设通信线路,这种特点,使其在智能配用电通信网络建设中仍然有很高的应用价值。
在配电通信网建设中可采用中压PLC通信,承载用电配变和调度信息的通信,在用户接入网建设中可采用宽带载波,为配用电网络自动化系统和集中自动抄表系统提供数据传输的通道。
在用户室内网建设中,电力猫和智能电表互联,IP电话、电脑、智能交互机顶盒等对带宽和数据速率要求较高的设备通过宽带载波和电力猫、智能交互终端互联;智能洗衣机、智能空调、智能热水机等需要传输控制信息的智能家电设备可通过窄带载波与智能交互终端互联:实现用户室内网络的组建和信息传输。
电力线载波通信建设智能配用电通信网无需重新布线,建设经济快捷方便,因而使用范围极广,在现在配用电通信网应用中依然是主流方案,但是由于其自身存在的技术缺陷,在未来智能电网通信网的建设中,它将起到一个辅助和补充的作用。
4.3 GPRS/CDMA/3G等无线技术适用场景组网分析
GPRS/CDMA/3G等公网无线技术在通信网络组建上面的优势非常明显,它通信方面的各种技术成熟度非常高,商业运作模式也非常成熟,这使其在建设通信网络是无需重新布线,预算、仿真、设备和商家支持方面都非常成熟,具有一套非常完整和齐全的产业链和网络建设方案。
鉴于公网无线技术的优势,在智能配电用通信网络建设中必然有其用武之地,在智能配用通信网、用户接入网中均能适用,把配用电通信网配变、接入各个环节和设备用无线通信的方式连接起来,进行通信。在用户室内网络建设中,可采用微功率无线技术,也可采用PLC技术。
适用GPRS/CDMA/3G等公网无线通信技术建设只能配用电通信网络建设成本很低,但是需要每年向公网运营商租用带宽,使用成本较高,而且由于配用电数据信息对数据的保密性要求较公网数据信息高,可靠性要求难以满足电力系统信息传输的要求,信息通过公网接入电力专网时应采取必要的安全措施,因此实际建设配用电通信网络中,应该以实际需要为准。决定是否采用无线公网技术以及在何处适用无线公网技术来组网。
5 结束语
当前有多种组网方式可以用来搭建智能配用电通信网。但是需要针对各自的场景采用合适的组网方式。
光纤和EPON、GPON技术建设智能配用电通信网,建设成本高、建设周期长,需要大量的光缆敷设和配套的设备建设,花费大,但是技术明显具有优势,在不考虑建设成本的情况下,一旦建成,将能满足智能配用电通信网的各种业务通信需求,满足未来智能电网的发展和需要,并且具有非常好的适应性和可扩展性。从长远角度来看,采用光纤和EPON、GPON技术建设智能配用电通信网价值巨大,应当首先选择。
电力线载波通信(PLC)技术建设智能配用电通信网,无需重新铺设线路、建设周期短、经济成本具有明显的优势,但其在信号衰减和带宽等方面的技术缺陷,导致其并不能完全符合智能配用电通信网的要求,特别是双向互动业务和语音、视频等增值业务的不断出现,对智能配用电通信网带宽、速率等指标提出了更高的要求。
电力线载波通信(PLC)技术在目前的智能配用电通信网建设中依然应用范围很广。可作为光纤通信的主要辅助手段,并且一旦解决其技术问题之后,依然大有可为。
GPRS/CDMA/3G等公网无线技术建设周期短、成本低,但是后期运营成本较高,并且一旦接人大量的用户,通信质量并不能够得到保证,与智能配用电通信的特点在根本上有着一定矛盾,但在一定范围内。其仍然有很高的应用价值,可以根据实际情况选择使用。
TD-LTE、WiMAX等技术作为无线专网来建设智能配用电通信网可靠性较高。通信量较大,具有很高的应用价值,但是其网络规范、标准体系上还不够完整,频率的使用上也有一定的问题。但是发展电力无线专网是解决电力通信的一大关键,特别是在一些地区,光纤通信和电力线载波通信等有线信道力有不逮的情况下,电力通信必须依靠无线方式解决。电力无线专网通信将在智能配用电通信网建设中占有相当的比例。
通过以上各种技术适用场景组网分析,综合技术特点、经济成本和建设周期等因素,再结合智能电网的发展前景和要求,智能配用电通信网建设应当以光纤通信技术为主,以电力线载波通信和无线通信技术作为补充的方式进行。