时间:2022-12-21 20:27:42
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇桩基础技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
地面河涌桥,桥宽42米,两向8车道,为城市主干道。桥两侧存在大量管线、管道。如采用地面托换方式,要交通疏解,管线改迁,河道断流,且存在跨河道的虹吸管,施工难度非常大。为降低施工成本,减少施工工期,采用矿山法隧道衬砌结构托换群桩基础施工技术进行施工。即先采用矿山法进行桩基托换处理,再采用盾构法进行剩余隧道施工。
二、施工技术原理
在地下采用矿山法开挖方式开挖出桩基托换空间,将侵入隧道或地下空间设施的既有桩基与新建地下衬砌结构相连接,然后待衬砌结构强度达到100%强度后,再将既有桩基沿衬砌结构面切断。利用新建的地下结构承受既有桩基传输向下的力,受力结构采用托换拱的形式。
三、施工工艺流程及操作要点
(一)施工工艺流程
隧道衬砌结构托换群桩基础施工工法施工流程主要有施工准备、矿山法施工及桩基保护--既有桩基钻孔、植筋--绑扎托换拱结构钢筋---混凝土浇筑--截桩施工。
(二)操作要点
1.施工准备
a.做好地质、管线调查,确定施工方法及方案;
b.组建施工班组、进行岗位培训、做好技术交底;
c.做好材料采购、设备选型与配置等准备工作;
d.托换桩基位置及附近布设监测点,监控桩基托换过程中的沉降情况。
2.矿山法施工
隧道衬砌结构托换群桩基础施工工法采用矿山法开挖露出桩基,矿山法开挖施工与常规的矿山法施工相同。需要注意以下几点要求:
a.根据现场地质情况
采用不同的施工方法。建议采用上下台阶或上中下3台阶法;地质围岩自稳能力相当差时,建议采用CD或CRD施工方法。
b、遭遇软卧地层
可采取超前小导管注浆方式进行超前加固。超前小导管长度2.5~3.0m,浆液采用水泥+水玻璃双液浆,浆液水灰比0.8~1.0,水玻璃波美度38。
c、根据地质情况采取不同的开挖方式
地质较硬时,可采取松动爆破的方式进行土方开挖;地质较软时,采用人工+机械开挖方式进行土方开挖。桩基周围采用人工开挖方式进行开挖,以减少对桩基的扰动。
d、土方开挖过程中
如果发生桩基沉降现象,必须对桩基周围进行注浆加固,待沉降得到控制后,再进行开挖施工。加固方式采用钢花管注浆加固方式进行。
3.桩基钻孔及植筋
a、钻孔
桩基全部露出后,在衬砌结构钢筋对应位置的桩基上钻孔,钻孔工具采用手持水钻或风钻。由于地下桩基直径一般较大,且隧道衬砌结构一般呈拱型,故钻孔采用两侧往中间对钻的方式进行施工,使钢筋以弧形的方式顺利穿孔通过。钻孔数量、孔径及角度应满足设计要求。为方便钢筋顺利穿过,钻孔孔径控制在结构钢筋主筋直径的1.5倍左右。一般分2种:外层钻孔供1根主筋穿过,钻孔孔径控制Φ50mm;内层钻孔供2根主筋穿过,钻孔直径控制Φ70mm。每处钻孔完成后,使用高压空气将钻孔内吹干净、吹干燥,然后利用砂浆泵对钻孔填充M15微膨胀水泥砂浆,砂浆稠度控制在60~80mm,砂采用中砂。钻孔充填密实后,将结构钢筋穿过钻孔,并进行密封处理。
4.托换梁钢筋绑扎
既有桩基的钻孔及植筋施工完成后,进行新建衬砌结构的钢筋绑扎施工。绑扎施工过程中,将桩基上的植筋锚入托换拱的钢筋中,形成整体。桩基中心两侧各750mm范围内结构钢筋应适当加强,增加箍筋设置。钢筋锚入的位置,不得有钢筋焊接接头存在.
5.托换梁混凝土浇筑a模板安装
由于桩基与隧道相对位置不固定,桩基段衬砌结构无法采用台车进行模板支护,衬砌结构模板采用55型1.2X0.3m定型组合钢模板,施工缝挡头模采用收口网封堵;模板主次梁楞分别采用预制工18工字钢楞及100X100mm方木;模板支架采用?48×3.0mm扣件式钢管脚手架满堂式布置;脚手架纵、横、竖向钢管之间采用直角扣件连接,与剪刀撑斜杠采用旋转扣件连接;脚手架立杆底部下垫10mm厚200X200mm钢板,立杆顶部及横向水平杆两端设置U型可调托撑。b混凝土浇筑衬砌结构混凝土采用商品混凝土,混凝土强度及抗渗等级根据设计要求确定。混凝土采用直接泵送入模方式进行混凝土浇筑施工,浇筑过程中同时进行振捣作业。衬砌模板安装过程中预留混凝土浇筑窗口,浇筑窗口布置形式为:于隧道两侧拱底、拱墙、拱顶分别预留3处窗口,于隧道拱顶设置混凝土浇筑管;浇筑窗口及浇筑管共设置3环,分别沿隧道纵向1/6、3/6和5/6浇筑长度处设置。混凝土浇筑窗口及浇筑管设置。
6.洞内截桩
托换的隧道衬砌结构混凝土达到设计强度的100%后,对侵入隧道净空内的桩基进行截除施工。桩基截除可采用绳锯或凿除等方式进行。截桩施工遵循“先截断,再外运,后破碎”的原则。为方便运输,每段桩基的截除长度控制在1.5m左右,通过龙门吊垂直运输至地面后采用油压炮机进行破碎。a截桩作业平台托换梁混凝土浇筑完成后,靠近桩基附近的2~3排脚手架暂时不拆除,进行加设剪刀撑、连接件、脚手板等必要的加固,以用作截桩施工的作业平台使用。b截桩施工为防止桩基截除过程中桩基倒塌,进而破坏作业平台,造成操作人员伤亡,桩基按照从下往上的顺序逐段进行截除施工。采用绳锯或人工手持风镐由下往上截除桩基。c断口处理桩基截断后,衬砌结构内的桩体断口必须及时沿二衬内轮廓打凿平整,然后使用砂浆找平、密封,避免断口部位处的衬砌钢筋以及桩基主筋长时间暴露而锈蚀。
7.测量与监测
确保工程建设安全的关键是全过程监测桩基的沉降情况,及时测量桩基的沉降情况,并与分析计算值比较,及时反馈指导设计和施工。(三)检测及结果隧道衬砌结构托换桩基基础施工过程处于安全、稳定、快速、优质的可控状态。托换过程中,对地面及桩基沉降进行了监测,实测最大沉降-15mm,小于设计的30mm沉降要求。
四、结束语
关键词:岩溶层地区;冲孔桩基础;冲孔桩施工;溶洞;漏浆;斜桩;卡钻
Abstract: Punching pile a pile foundation construction operation which widespread used in the construction of the building in recent construction projects, it is less susceptible to the limitations of the construction field, operating flexibility, environmental pollution, such as penetrating power is widely used, this papers combined construction experience, and listed some frequently asked questions and made a number of preventive measures and treatment methods.Key words: karst layer region; punching pile foundation; punching pile; cave; slurry leakage; raking pile; sticking
中图分类号:TU761文献标识码: A 文章编号:
冲孔桩一般适用于工业和大小建筑中,一般在填土层、粘土层、粉土层、淤泥层、砂土层、碎石土层、岩溶地层、裂隙发育地层施工。冲孔桩桩孔直径一般为600~1500mm,而最大直径可达2500mm,冲孔桩的深度最大大约可达50m。
建筑工程离不开冲孔桩的施工作业,但在施工过程中也出现各种施工问题,由于地质不同、环境各异也影响着冲孔桩质量,例如;在岩溶地区冲孔桩施工难度较大,质量隐患出现的概率较高,岩溶地层难以控制极易出现卡钻、漏浆、塌孔、偏孔、斜桩、混凝土流失等问题。
一、冲孔桩基础
冲孔桩基础是由冲孔桩机下桩成孔后构成的一种常用的地基形式,由冲孔桩构成,在土建工程方面广泛用到,桩基础在工艺上可分为预制桩和冲孔桩灌注桩,是一种挤土挤石成孔的桩深埋入地下作为建筑地基、桥梁基座所用,可保证建筑物的牢稳性。在建筑工程中冲孔桩基础是重要环节。
二、岩溶地质的情况
岩溶地区地质形成主要由于在灰岩中碳酸钙类溶解于含有二氧化碳的水中,经过一系列水解、电离等化学反应,灰岩特质改变,形成独特的岩溶地貌。在熔岩地区易形成溶洞、也有地下暗河的交错、而且溶洞内的内充填物复杂,不易估测;也有一部分空溶洞,不利于冲孔桩操作。
三、冲孔桩的施工
1、冲孔桩施工前的桩位检测
施工前要严格按照静压管桩的定位轴线并参照图纸进行测量放线,确定桩位中心,确定桩位,在每个桩位打入小木桩,并测出桩位的实际标高,在场地外设2-3个水准点,便于日后检测。
2、施工的主要流程
冲孔桩位的测量、冲孔桩平台的的搭建、冲孔桩护筒的制作、桩位的复测检查、冲孔机钻进、检测冲孔桩孔的深度、冲孔钻头钻到终孔处、第一次清孔、检测孔底沉渣;制作钢筋笼、钢筋笼吊装焊接、吊放导管、第二次清理冲孔桩孔、检测冲孔桩孔中沉渣的厚度、检测泥浆比重、灌注混凝土、拔出冲孔桩护筒、检测成品。
3、在冲孔桩基础的施工控制技术
冲孔桩基础中在埋设护筒时,要采用外“十”字的方法,在施工时先挖好护筒坑,要把护筒坑的底面整理平整,再放入护筒并检查护筒的正确位置,用粘土填充护筒的周围,保证坚实牢固,在冲孔桩基础建造中要随时检测护筒的位置,防止护筒的偏位,在操作过程中护筒的偏移不得超过50mm。冲孔桩基础中要避免护筒及桩锤的不良工作状态,要调试好机位平衡,正常施工中冲孔桩核心的偏差要根据冲孔桩桩长定。
4、冲孔桩的成孔
在岩溶地区,要根据溶洞分布及成分类型,施工过程按照冲孔施工的先易后难、先短后长、先内后外的原则确定施工顺序,要避免同时下桩;在单护筒时要注意泥浆的护壁,及早把冲孔中的土石破碎或挤入孔壁中,最好用高压泥浆泵清除悬浮渣。
5、清洁冲孔
完孔后,用掏渣筒掏渣,之后投入水泥、泥浆、黄土混合物按比例反复掏渣,为使冲孔桩混凝土与孔壁岩体接触良好,在灌入混凝土之前要用高压泵冲水冲洗排除残渣。
6、钢筋笼的吊装
钢筋骨架需要现场制作,在接头数清后,起钻、用吊车吊放钢筋骨架,钢筋骨架在井口处分段焊接,焊接时注意,在同一截面不大于50%,钢筋骨架型号,安放位置必须测量准确。
7、注入混凝土
清空后,吊装钢筋笼,钢筋笼要分段装入孔中,钢筋笼的接口用搭接焊焊接;根据冲孔桩的深度计算扎入导管的节数,清除桩顶附着的泥浆。
8、砼浇灌桩施工
(1)砼浇筑前,首先检查桩孔内沉渣清理干净,要符合监理要求,检查浇筑砼的支架是符合格,在申请砼浇筑的批注。
(2)浇筑砼是要分段分层进行,砼要自由倾落高度不超过2m,浇筑高度若超过3m时必须采取措施,利用串桶或槽管等。浇筑混凝土应连续进行,在间歇时,间歇时间必需要短,必须在混凝土凝结时浇筑完毕。
(3)素砼桩地基检测应在桩身强度满足试验荷载条件时,再28天后检测。试验次数在总桩数的0.5-1%,每个单体工程时点数不少于3点。
五、冲孔桩常见问题
1、漏浆
冲孔桩过程中若出现冲孔钻的进入尺度突然加快并导致漏浆现象,可根据现象判断,施工过程遇到了溶洞、裂岩地区产生的沟壑、裂隙和空洞,极易架空,在溶洞地区,由于岩溶水侵蚀、机械的坍塌,造成近地水平方向延伸的洞穴。在这种多孔地区由于不明溶洞范围易发生漏浆,此时应减少冲孔桩的冲程,或者选择悬距慢慢穿过,在情况严重时,往孔中回填粘土块、碎石至桩位以上2~3米,再进行冲孔,使粘土或碎石挤进溶洞或土洞、裂缝处充当填充物做骨架。再根据冲孔桩基础中,在特殊岩层和环境地域中,在施工前要预先准备充足的泥浆,做好泥浆的回填工作,并在灌注的过程中向孔中投入粘土或碎石,来加强泥浆的浓度。
2、塌孔:在岩溶地区和流沙中要控制冲孔桩尺寸,要选用比重较大、优质的泥浆,避免碎石挤入冲孔壁中,也要控制好冲孔的高度;经常检查冲孔桩机的转向设备的灵活性能,应尽量选用浓度、粘度和比重较大的泥浆,适时掏渣、冲洗孔桩;在用低冲程时,要有时间间断的更换冲程,冲孔机保持在最佳的工作状态,有足够时间避免斜桩。,
3、偏孔
岩溶地带,遇到空洞,溶洞,不知内填充物时,要采用低冲程冲孔机,减缓冲击的频率;在发生斜桩时,应在冲孔中填充碎石纠正桩位,重新钻孔,再检测冲孔桩桩位,施工过程中,要经常检查冲孔桩机底座是否水平安装,是否存在不均匀的衡沉降现象,如存在应及时调整机位,在遇到孤石或块状石造成的偏位斜孔时,应及时填充优质量的粘土快、碎石块或碎砖块,将偏斜的孔径部分填平,根据冲孔桩基础中的要求改变冲孔机下钻速度,采用密击法调控,反复扫孔纠正。
五、卡钻
在施工中,在地貌处溶洞不知内填充物的情况下,流沙地区,没掌握好冲孔桩机下钻的速度,冲程较大或较小容易卡钻;在施工时桩锤遇见块石、沉渣也会出现卡钻现象,依据冲孔桩基础中,在此情况下:(1)应通过仪器检测核对出现的碎石来判断,该施工地的地质情况,一般先采用低冲程施钻,渐变为高冲程,在此过程中随时注意冲孔桩机的工作状态。
(2)再遇块石时,桩锤容易被施工过程中震下的块石卡住,在冲孔桩基础中必须用泥浆清孔,反复提拉钢丝绳,让桩锤保持松动,提起桩锤。如果桩锤无法提出,用冲孔桩基础中的水下爆破法解决,震动卡桩锤的地面使之松动取出桩锤。若桩锤被沉渣砂层埋住,冲孔桩基础中要利用导管把桩锤以上的沉渣砂层清理去,提出桩锤。
六、个人总结
在建筑过程中很好的掌握冲孔桩基础,有利于施工队伍在恶劣的地貌环境中施工减少施工过程出现的不利因素,更好更快的完成建筑工程。在建筑过程中,所面临重大问题莫过在岩溶地区施工,例如;我所在的广西壮族自治区属于喀斯特地貌是在其建筑过程中对施工质量最大的威胁,在冲孔桩基础中易出现漏浆、偏孔、卡钻等现象。在此篇论文中有关于在岩溶地区施工过程中出现的一些难题疑点;也阐述了对冲孔桩施工过程出现的漏浆、偏孔、斜桩等一系列问题的解决处理措施。
七、参考文献
【关键词】钻孔灌注桩;施工技术;桥梁工程
1引言
基础施工属于桥梁工程建设的主要构成部分,基于桥梁工程的特殊性,促使基础施工项目复杂程度较高,且工程量也相对较大,为确保整体施工质量,需要在施工技术选择、施工过程控制等几个方面加强管理。本文主要针对桥梁工程的钻孔灌注桩基础施工技术的应用进行了探究,钻孔灌注桩施工技术属于桥梁基础施工环节中常用技术之一,其优势体现在工艺流程简单、安全性高、承载力高等几个方面。
2钻孔灌注桩基础施工要求
钻孔灌注桩施工结构如图1所示,钻孔灌注桩基础施工的要求包括以下几个方面:(1)骨架存放与运输方面。钢筋骨架的存放需要确保施工环境的平整及干燥,在存放期间各加劲筋与地面接触位置均需要做好铺垫,且骨架各节需要依照一定顺序进行摆放,便于后期装卸。在运输期间,需要加强对骨架的保护,避免在运输过程中基于碰撞而出现变形情况。(2)护筒方面。护筒的埋设属于基础施工环节之一,需要确保护筒平面位置与垂直角度的准确性,同时还需要确保护筒周围与护筒底脚的紧密度及防水效果等[1]。(3)骨架起吊与就位方面。在骨架起吊与就位过程中,首先需要确保骨架不会受到损伤,其次为控制就位点的精准度。
3钻孔灌注桩基础技术在桥梁工程中的应用流程
3.1工程简述
以Y桥梁工程为例,整个桥梁长度约为15266m,为双向四车道,宽度约为25m。在基础施工过程中,选择钻孔灌注桩基础施工技术,实践证实对于此种技术的应用有助于对成本的控制,且技术的适应性较强,施工工艺较为简单。
3.2埋设护筒
一般条件下,护筒内径应大于桩径约30cm,且在护筒周围需要设置加劲筋,上端加设1道溢浆口。Y工程的护筒埋设施工环节中,结合工程需要,其深度需要控制在1.5m之内,顶部高出施工地面约0.3m,高出地下水位约1.5m。另外,施工期间需要维持护筒的垂直状态,其中心与设计中心桩基础中心偏差要控制在50mm之内,倾斜度误差控制在1%之内。埋设施工完成后,需要对护筒的角度进行调整,确保位置无误后进行回填及固定,避免后续钻孔施工期间护筒出现下降的情况[2]。
3.3钻孔施工
结合Y工程来讲,在钻孔施工环节中,Y工程选择泥浆护壁,泥浆构成材料为黏土、水、添加剂,依据一定比例进行配制[3]。钻孔实际施工之前,需要明确开孔位置,尽量以匀速缓慢钻进,开动泥浆泵同步循环钻进,钻进期间需要对钻进尺寸进行严格控制。钻进到护筒底部时,需要应用低档慢速钻进策略,在钻头或导向部位完全进入地层后,转变为快速钻进策略。
3.4钢筋笼安装
钢筋笼制作期间,需要将钻架高度及设计尺寸作为参考,选择分节、整体制作手段,在整个制作施工环节中,需要在清孔之前完成。钢筋笼分节制作可保障其不会出现变形情况,但各节之间接头需要错开。在钢筋笼外侧应设置垫块,结合实际施工情况,横向分布4个,竖向分布间隔距离为2m。若钢筋笼存在节点不良或是弯曲等情况,将会导致钢筋笼与桩孔的接触过紧,为此,需要在制作期间严格控制钢筋笼的精准度[4]。
3.5混凝土灌注
混凝土初次灌注期间,工程选择连续关注方式,具体操作为:混凝土到场后,结合预先设定的方案明确初次灌注质量,将充足的混凝土放置到漏斗中,快速打开阀门,促使混凝土能够快速下落,确保其可在压力充足的条件下将套筒中的水压出,且借助中和水的压力,确保混凝土顺利封底。初次灌注完成后,综合施工设备及施工环境条件等调节灌注,在混凝土初步凝固前完成整个灌注施工。
4结语
关键词:钻孔灌注桩;质量问题;解决措施
Abstract: bored pile foundation is a kind of can adapt to various geological conditions of the foundation, bored pile with low noise, small vibration, no soil compaction, little impact on the surrounding environment and adjacent buildings, can pass through the complex formation and the formation of the bearing capacity of single pile is larger, can adapt to various geological conditions and different size of buildings and so on, but not handled properly will be a lot of quality problems. Prevention and treatment measures of the main quality problems of bored pile foundation are discussed in detail, for reference.
Keywords: bored pile; quality problems; Solutions
中图分类号:U443.15+4文献标识码:A 文章编号:2095-2104(2013)
一、钻孔灌注桩基础所具有的优越性
在建筑工程施工建设中,因钻孔灌注桩基础能够满足于不同地质条件的需求,有着良好的地质适应性,因此在近年来被广泛的应用于建筑工程的桩基础施工中。其优越性主要表现在以下几方面:1.受地下水带来的影响较小,在地势低洼、软土地区同样能够发挥出较好的稳定性;2.较预制桩而言,钻孔灌注桩基础具有孔径大、桩身长、钻进和旋削在钻头使用中可同时进行等的特点,因此在实际的施工操作过程中,对于任何地质结构条件都能够正常的发挥出其效能性;3.由于在钻孔完成后可以实现立即浇筑的效果,因此钻孔灌注桩基础较其他桩基础施工具有施工工期短的优势;4.良好的抗冻能力主要表现在由于深埋于冻层之下的钻孔灌注桩基础在施工中,受到桩体地下部位粗糙率较大以及所受接触土壤阻力较大的影响,对桩基础的变形具有较好的抵制形;5.通过导管和自重原理,钻孔灌注桩基础能够将水与混凝土进行较好的分离,便于水下浇筑能够取得较好的效果。
二、钻孔过程中的质量通病问题及相应的应对措施
2.1 钢筋笼的上浮问题及措施
a.对钢筋笼初始位置的确定及与孔口的固定。保证导管在孔位的中心之上是进行导管下放时的重点,当混凝土接近笼时,不仅要注意 1.5~2.0m 是控制导管埋深的标准, 更应注意灌注混凝土时不能将导管出口和钢筋骨架底端平齐,同时还应对导管埋深与混凝土的灌注标高进行随时掌控;b.按照标准要求进行混凝土的配比,在灌注混凝土时为确保灌注状态的持续性和快速性,可适当的对其加入一定量的缓凝剂;c.做好施工前的各项准备工作,以保证施工开始后能够正常有序的进行,特别要注意对于相关电气的检查工作,以防止在施工开始后出现电气停运而影响工程的施工;d.为防止钢筋笼的上浮,可在灌注桩上部设定相关的固定装置;e. 通过在浇筑过程中对混凝土浇筑速度的控制,将导管进行单向旋转和上下反复摇晃可有效防止钢筋笼在灌注过程中的上浮问题;f. 在对导管进行埋深时为改善混凝土的和易性,可将埋深度调整至3-8m,以降低因导管埋深过大而导致的钢筋笼上升问题;g. 如果钢筋笼上升问题不能有效的进行控制,应立即停工,上报工程项目部和技术部,做报废处理。
2.2 断桩的问题及措施
①对混凝土的配合比、坍落度和粗骨料粒径在灌装前进行严格控制和检测。如果出现标号、品种的更换,应进行标样的实验以保证灌装混凝土的质量;
②保证从导管内灌注混凝土的足量性、连续性、快速性和节奏性,为防止断桩问题的发生,应根据首次混凝土的灌入量对绑扎水泥隔水塞的铁丝进行选择和定量;
③良好的抗拉强度是保证导管能承载混凝土灌装重量的前提,同时在对导管的选择上应以内直径在30cm以上内径壁均匀无阻碍的导管为宜,当然进行必要的小球通过实验对导管进行施工前检测还是十分必要的;为便于在混凝土中拔起,导管最下一节应控制在 4m左右的长度且低端不带有法兰盘;
④为保证清孔后泥浆的密度符合设计要求,应及时调整孔内泥浆在清孔过程中的密度;
⑤清孔是成孔后最重要的一项工作,根据孔内的沉渣情况来确定清孔时间,当孔邸沉渣不大于标准要求后,才可进行混凝土灌装操作。
2.3 孔壁坍陷的问题及措施
①在对地层结构进行分析研究后进行施工方法及机具进行成孔操作;
②注重对护筒强度和尺寸的选择;
③做好成孔后清孔工作,在孔底沉渣不大于规范要求、孔壁牢固的基础上,进行混凝土的灌装;
④控制施工过程中钻头的进钻速度和空转时间,注重确保水头的稳定性;
⑤不超过3小时为成孔待灌的最佳控制时间标准;
⑥防止钢筋笼在吊装搬运的过程中发生变形,安放时一方面要避免碰撞,另一方面要进行孔位的对准;
⑦一旦发生孔壁坍陷的问题应立即停工,对问题产生的原因及部位进行认真分析,不能采取补救的措施的应将其回填后在钻;
⑧孔壁坍陷发生在清孔或者钢筋笼的吊装过程中时,应立即停工并吊出钢筋笼,添浆护壁对塌陷物清理后,如果不继续发生塌陷后可重新进行钢筋笼的吊装及清孔工作。
2.4 护筒冒水的问题及措施
①根据地质条件特点,选用适宜的粘土对坑底及四周壁进行分层夯实处理后,进行护筒的埋设;
②护筒高度控制在1.0~1.5m为最佳的开孔高度;
③为防止碰撞刮伤护筒,应选派技术娴熟的施工人员对钻头的起落进行实时监控;
④一旦出现护筒冒水的问题,应立即停止施工,用适宜的粘土进行坑四壁的分层加固;
⑤当护筒严重移位下沉时,立即停工后应对护筒进行重新安装。
2.5 缩颈的问题及措施
①应严格控制所选用泥浆的质量;
②在起钻和钻进时将一定数量的合金刀片焊接于导正器外侧,可有效起到扫孔的作用;
③成孔时加大泵量,提高成孔的速度,这样孔壁在成孔一段时间内会形成泥皮,孔壁则不会渗水和引起膨胀;
④采用上下反复扫孔的办法扩大孔径消除缩颈。
2.6 钻孔桩身偏斜的问题及措施
①加强技术管理, 减少人为的技术性失误, 放样和机械定位须根据技术参数反复校核;
②钻入斜状岩层、土质不均匀地层、孤石或碰到明显阻碍地层时,须调慢钻速,不能一味快进;
③钻孔前须平整场地,并夯实硬化,枕木应均匀着地尽量找平;
④在松散易坍地层钻孔时,应尽可能加固地层,钻速不宜过快,注意观察钻杆角度和桩位偏差;
⑤应对一般的偏斜情况,可用钻头上下反复扫钻数次削去硬土,如效果不佳,回填粘土至高出偏孔处0.5m以上重新钻入;
⑥如偏差较大,应通知监理及设计人员鉴核。
2.7 桩底沉渣量过多的问题及措施
①吊放钢筋笼,桩中心与钢筋笼中心要保持一致,吊装速度不宜过快,应控制好不碰撞孔壁;
②泥浆的质量要选好并控制好泥浆的粘度和比重,不能用清水替代。混凝土灌注时,导管底部至孔底距离最好控制在30~40mm,混凝土储备量充足,导管一次最好埋入混凝土面下超过1.0m,以利用混凝土的巨大冲击力清除孔底沉渣;
③成孔后钻头在孔底10~20cm上保持慢速空转,循环清孔要超过30分钟。
2.8 卡管的问题及措施
①控制粗骨料的最大粒径必须小于钢筋笼主筋和导管直径最小净距的 1/4 并小于 40mm;
②隔水栓直径要与导管内径相配,同时兼顾良好的隔水性能以保证顺利排出;
③灌注混凝土时必须加强对混凝土坍落度和混凝土搅拌时间的控制。坍落度宜控制在 16~22cm,保证良好的和易性;
④必要时可掺入适量缓凝剂,以改善混凝土的流动性、和易性和缓凝;
⑤导管使用前应试拼装试压,试水压力为 0.6~1.0MPa,以保证导管连接部位的密封性。在灌注过程中,为了避免在导管内形成高压气塞,混凝土要缓缓倒入漏斗的导管。
三、结束语
综上所述,钻孔灌注桩基础是一种能适应各种地质条件的基础形式,钻孔灌注桩基础属隐蔽工程,且影响其质量的因素较多,如不抓住重点进行有效防控,就有可能发生质量问题,甚至质量事故,对社会和施工企业本身都造成重大影响。因此,在实际的施工中必须引起足够的重视。
参考文献:
[1]李定宇;廉黎明;钻孔灌注桩质量通病的形成及防治措施[A];河南省建筑业行业优秀论文集(2008)[C];2008 年
论文摘要:桩基础是一种古老、传统的基础型式,又是一种应用广泛、发展迅速、生命力很强的基础型式。近二十年来,由于工程建设和工业技术的发展,桩的类型和成桩工艺,桩的承载力与桩体结构完整性的检测,桩基的设计水平,都有较大的提高。然而,由于土的变异性及桩基与土相互作用的复杂性,迄今成桩质量的控制与检测,桩基的计算理论与方法,仍然是不够完善而有待研究发展的。本文对单桩和群桩的沉降计算方法进行了综述,并阐述了它们的适用条件。
桩基础在房屋建筑中是一种很常用的基础,在桩基设计中,最主要的是确定竖桩的承载力与沉降,尽管在过去漫长的时间内,从事岩土工程的研究者和工程师们,为了精确计算和预测桩基的沉降,曾进行过大量的研究,提出过一系列的计算桩基沉降的方法,但时至今日,对桩基沉降的预估仍然不熊充分地反映真实的情况。
1单桩的沉降分析计算
1.1荷载传递分析法
荷载传递分析法是单桩荷载一变形分析最常用的一种方法,这种方法是从规定的荷载变形传递方式来计算桩对荷载的反应。其基本的概念是:将桩离散为一系列等长的桩段(弹性单元),每一桩段与土之间的联系用非线性弹簧来模拟,桩端处土体也用非线性弹簧与桩端联系。
在运用荷载传递曲线中,该法假定任意点的桩位移仅与那一点的摩阻力有关,而与桩其它位置的摩阻力无关,故没有考虑土体的连续性,所以对分析桩群的荷载沉降关系是不合适的。
为了获得现场的荷载传递曲线,需要安装许多的仪器进行桩的荷载试验,且试验成果推广到另外场地并不一定是完全成功的。
1.2剪切变形传递法
Cooke(1974)提出了摩擦桩荷载传递的物理模型,该模型为了简化计算,作了一系列假定并认为:当荷载水平p/pu较小时,桩在轴向荷载尸作用下沉降较小,桩土之间不产生相对位移,亦即桩沉降时周围土体亦随之产生剪切变形,剪应力从桩侧表面沿径向向四周扩散到周围土体中;摩擦桩一般在工作荷载作用时,桩端承担的荷载比例较小,沉降主要是由桩侧传递的荷载所引起。
1.3弹性理论法
弹性理论法是对桩土系统用弹性理论方法来研究单桩在竖向荷载作用下桩土之间的作用力与位移之间的关系,进而得到桩对土,土对桩,桩对桩以及土对土的共同作用模式。以弹性理论法为根据发展出一些计算单桩沉降的方法,这些解法虽略有不同,但一般都基于桩的位移与临近土位移的协调条件,为此,借助于轴向荷载下桩身的压缩求得桩的位移,又应用荷载作用于半无限体内某一点所产生的Mindlin位移解求得桩周土体的位移。由于弹性理论假定桩土界面普遍满足弹性即界面不发生滑移这一条件,沿界面诸相邻点的桩位移应与土位移相等,由此即可求得桩身摩阻力和桩端阻力的分布,并进而求得桩的位移分布。
1.4单向压缩分层总和法
单向压缩分层总和法就是根据各土层的参数分别计算各层的沉降后总和求得总的沉降量。这种浅基础的最终沉降量的常用计算方法在桩基设计中,主要用于大直径的的单桩(墩),考虑到其桩侧阻力的荷载分担比相对较小,桩端底面积大且其荷载分担比也较大,因此可仿照扩展基础采用单向压缩分层总和法计算沉降。当用以计算深基沉降的其它条件相同时,用明氏应力分布求得的最终沉降与实侧推算结果较为接近;而用布氏公式算得的值要比实测值大1/2至1/3,并且给出的实用应办计算公式及附加应力系数表格。用分层总和法分析单桩沉降时,要考虑压缩层的计算深度,可参照文献[17][20]的有关规定确定,或按照一些实甩的经验公式确定。
2群桩的沉降分析计算
2.1弹性理论法
弹性理论法群桩沉降分析的塞本假定与单桩相同,其主要依据是Mindlin解的位移与应力解,以此为基础形成位移法和应力法,此外还发展了一种简化弹性理论位移法,以位移解为基本解,但采用应力法中关子桩侧摩阻力为线性的假定,在位移基本解的积分中舍去高阶无穷小量。以Poulos,Buterfield,Davis,Geddes等的群桩沉降弹性分析理论为基础的计算体系中,叠加法是比较成熟和应用较广的一种简化方法,详细阐述了其原理和计算过程,该法在忽略桩对土位移的加强效应简单的假定基础上,把单桩的分析扩展到桩群,
2.2实体深基础(等代墩基)法
实体深基础法是现在工程界应用最广泛的一种计算群桩沉降的方法该计算模式是将承台下的群桩及桩间土看作一个等效墩基的一个实体深基础,在此等代墩基范围内,桩间土不产生压缩如同实体墩基一样工作,然后按照扩展基础的沉降计算方法来计算群桩的沉降。
由于计算时考虑的前提条件不同,研究者提出和使用着计算的不同模式,其主要差别在于选用的假想实体基础底面的位置不同,以及对地基土中附加应力的考虑和计算不同根据桩距地基土的性质不同,桩间土实际上是会产生不同程度的压缩变形,另一方面假想的实体基础外围存在着侧面剪应力的扩散作用为了消除这些差别对群桩沉降计算的影响人们采取了一些措施,集中表现在所采用的模式上。这些措施是:
1.变动假想实体基础底面的位置,以考虑桩间土存在压缩变形的可能,这是Peck和Terzaghi等人建议的模式Peck等建议将假想实体基础底面置于桩端平面以上 高度处, 取为桩长的1/3处(桩位于均匀并土中时)或进入持力层深度的1/3(桩穿过软弱土层并进入坚硬土层时〕这种建议涉及的影响因素过于单一,因为假想基底位置上升的因素很多,采用此法不能全面反映这些情况。
2.从群桩桩顶外围按一定斜率(例如 角或1:4斜率)向下扩散增大假想实体基础底面积,以考虑桩群外围总剪应力对沉降分析的影响,这是Tomlinson等人的模式。
3.为了改善地基土附加应力估计的精度,近年来国内外根据半无限弹性体内集中力的Mindlin公式发展了一些估计桩基荷载作用下地基土附加应力的方法,还有一种将Mindlin解与Boussinesq解对比来估计等代墩基的等效基底附加应力。
2.3等效作用分层总和法
等效作用法最早由黄强,刘金砺,(1940)提出,随后被健既桩基技术规范推荐采甩此法系将均质土中群桩沉降的Mindlin解与均布荷载下矩形基础的Boussinesq解之比值用以修正等代墩基的基底附加应力,然后按一般分层总和法计算群桩的沉降。
3结语
本文对目前国内外桩基础的沉降计算理论进行了分析,包括单桩和群桩的沉降分析,并对它们的优缺点和适用范围进行了论述,但应该注意,在实际中,要采用何种理论要看实际的情况而定。
参考文献:
[1].宰金IN,宰金璋.《高层建筑基础分析与设计》.北京:中国建筑工业出版社,1993.
[2].马克生,龚晓南.模量随深度变化的单桩沉降.工业建筑,2000Vol.30 No.1.
[3].毛泽华摘译自《Geotechnique),1999(4)国外公路,2000Vol.20No.4.
[4].《桩基工程手册》编写委员会.桩基工程手册.北京.中国建筑工业出版社,1995.
[论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。
随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。
一、负摩阻力的成因
桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。
地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。
一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。
二、地基设计为什么要考虑负摩阻力
桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。
三、如何在现场测试和估算负摩阻力
在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(Sliding Micrometer---ISETH)来测定。
普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。
四、影响负摩阻力大小的主要因素
桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。
五、负摩阻力的防治措施
打桩前,先预压地基土,从根本上消除负摩阻力的产生;在产生负摩阻的桩段安装套筒或者把桩身与周围土体隔离,这种方法会使施工难度加大;在桩身涂滑动薄膜[如涂沥青],目前这种方法应用比较普遍,效果也不错;通过降低桩上部荷载,储备一定承载力;在地基和上部结构允许有相对较大沉降的情况下,采用摩擦桩;采用一定的装置消除负摩阻力。
下面介绍一种消除负摩阻力的装置:它由设置在桩体外周的卸荷套及卸荷套与桩体之间的隔离层构成。卸荷套使桩体与周围土层完全隔开并由桩体带动在打桩时与之同步下沉,而当桩周土层沉陷时,卸荷套依靠隔离层内材料的作用,可随土层相对桩体自由下沉而不将下拽力传给桩体,从而有效地消除了负摩阻力的作用。可广泛用于各种软基地层拟用桩基础的工程中。
六、负摩阻力的群桩效应[研究大多数是单桩,实践中基本是群桩
这个跟我们的研究方法有关系,目前我们的现场实践方面的研究方法都是针对单一桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很值得期待呀。
七、端承桩产生负摩阻的可能性大于摩擦桩
(1)对于摩擦型桩基,当出现负摩阻力对基桩施加下拉荷载时,由于持力层压缩性较大,随之引起沉降。桩基沉降一出现,土对桩的相对位移便减小,负摩阻力便降低,直至转化为零。
(2)对于端承型桩基,由于其桩端持力层较硬,受负摩阻力引起下拉荷载后不致产生沉降或沉降量较小,此时负摩阻力将长期作用于桩身中性点以上侧表面。因为端承型桩,桩身基本不动,只要地基沉降,基本都是相对位移。
八、负摩阻力的计算方法
负摩阻力大小的确定关键在于上面提到的确定中性面,这个定了,计算按模型假设和常规的侧阻力计算一样。给大家把经常用的方法介绍一下,个人认为比较全面系统的,国内规范一般只提有效应力法(2)。
(1)总应力法;
(2)有效应力法,详见《建筑桩基技术规范》JGJ94-94;
(3)原位测试结果法[静探法、标贯法]工程地质手册中有说明;
(4)高应变动力桩检测;
《建筑桩基技术规范》JGJ94-94中规定,对可能出现负摩阻力的桩基,宜按下列原则设计:
(1)对于填土建筑场地,先填土并保证填土的密实度,待填土地面沉降基本稳定后成桩;
(2)对于地面大面积堆载的建筑物,采取预压等处理措施,减少堆载引起的地面沉降;
(3)对位于中性点以上的桩身进行处理,以减少负摩阻力;
中性点在桩身某一深度处的桩土位移量相等,该处称为中性点。中性点是正、负摩阻力的分界点。
(4)对于自重湿陷性黄土地基,采用强夯、挤密土桩等,先行处理,消除上部或全部土层的自重湿陷性;
(5)采用其他有效合理的措施。
综上所述,地基问题是很复杂的,而理论研究往往又与工程实践相距甚远。所以要依据理论,但不要完全依赖于理论,对具体工程作具体分析。例如上面提到的负摩阻力的产生,从理论上来说是对的,但要在工程实践中具体介定却很困难,估算可以作为参考,但不要作为定论。又如采用隔离的方法,故然可以避开负摩阻力,但有用的正摩阻力也被“避开”了。如果采用套筒,桩周又失去了侧限,反而不利。
生产实践中会遇到很多预料不到的问题,并不是想象的那么容易。负摩阻力桩的桩土相互作用十分复杂。尽管国内外对这个问题的研究持续了约七十年,但许多问题还有待进一步的研究。
关键词:变刚度 变刚度抗滑桩 变形 内力 边坡 基坑
中图分类号:TU473 文献标识码:A 文章编号:1672-3791(2012)11(c)-0067-01
1 桩基础变刚度协调变形和内力
当前在高层建筑桩基的设计中,多数采用均匀等长等直径布桩,即等刚度设计。均匀布桩的初始竖向支承刚度是均匀分布的,设置于其上的刚度有限的基础(承台)受均布荷载作用时,由于土与土、桩与桩、土与桩的相互作用导致地基或桩群的竖向支承刚度分布发生内弱外强变化,沉降实测表明,尽管桩数不少,但碟形沉降仍不可避免,特别是框剪、框筒、筒中筒结构更明显。碟形沉降是差异沉降,承台基底反力出现内小外大的马鞍形分布,差异沉降是导致基础内力和上部结构次应力增大、板厚与配筋增多的根源[1~3]。
为避免上述负面效应,突破传统设计理念,通过调整地基或基桩的竖向支承刚度分布,促使差异沉降减到最小,基础或承台内力和上部结构次应力显著降低。这就是变刚度调平概念设计的内涵,它旨在减小差异变形、降低承台内力和上部结构次内力,以节约资源,提高建筑物使用寿命,确保正常使用功能[1~3]。
充分合理发挥桩土的承载作用,克服和减小差异沉降成为高层建筑基础设计的优化目标。上部结构由于受到使用功能的制约,一般很难对其进行调整。对于筏板和其它形式基础,可通过变化板厚、设置肋梁、缩小墙距(箱基)等来调整基础刚度分布,但费用往往较高。因此,变刚度调平设计主要是针对地基处理和桩基。调整地基、桩土刚度分布不仅可行而且调平效应显著,是变刚度调平设计的核心。提出以调整桩土支承刚度分布为主线,根据荷载、地质特征和上部结构布局,考虑相互作用效应,采取增强与弱化结合、减沉与增沉结合、局部平衡、整体协调,实现差异沉降、承台(基础)内力和资源消耗的最小化[1~3]。
保证筏板的零差异沉降是建筑物结构体系保持最优状态的根本措施,而实现这一措施最有效的方法就是合理布置与调整地基与桩基的支承刚度;桩基支承刚度在平面分布上的布局基本原则就是支承刚度增大的区域对准上部荷载集度大的区域,同时有利于减少乃至完全消除整体和局部的不均匀沉降[4]。另外,空间变刚度等沉降群桩设计方法的实质也就是尽量减少差异沉降[5]。
2 浅基础变刚度垫层协调变形和内力
天然地基基础的内力取决于地基反力的大小与分布。在基底下设置变刚度垫层,人为合理地调整地基土刚度,使其在基底平面内变化,将可能减少不均匀沉降,从而减少基础内力,改善地基和基础的工作状态,降低基础的弯矩,减小板厚,节省造价,要做到这一点,最简单的方法,就是在基底下设置变刚度垫层[6~7]。
3 “变刚度抗滑桩”的提出和分析
以上述前人的研究为基础,及基于作者对桩基础、基坑支护桩、边坡抗滑桩、地层结构所进行的研究[8~18],作者这里提出了“变刚度抗滑桩”的概念。作者提出的“变刚度抗滑桩”主要包含以下几层意思:(1)实际中的滑坡体在空间上往往是不均匀的,包括地层结构、地层厚度、滑坡推力等在三维空间上是不均匀的。这就需要在三维空间上采用变刚度抗滑桩,以协调抗滑桩的变形和内力,达到安全、经济、科学、合理防治滑坡的目的。(2)变刚度抗滑桩以工程地层学、地层结构效应理论、地层结构力学、卸荷岩土体力学为基础[10~18]。(3)变刚度抗滑桩充分利用岩土地层的自稳能力,充分利用抗滑桩间的土拱效应,将土拱地层及抗滑桩后一定范围的地层也看成抗滑结构的一部分,考虑这些地层与抗滑桩形成的组合刚度[10~18]。
作者在变刚度抗滑桩方面已进行了一定的研究[10~17],进一步的研究成果将另文发表。
参考文献
[1] 刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,22(2):151-157.
[2] 王涛,高文生,刘金砺.桩基变刚度调平设计的实施方法研究[J].岩土工程学报,2010,32(4):531-537.
[3] JGJ94-2008,中华人民共和国行业标准,建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.
[4] 宰金珉,周峰,梅国雄,等.自适应调节下广义复合基础设计方法与工程实践[J].岩土工程学报,2008,30(1):93-99.
[5] 陈祥福.桩基设计的历史性突破-空间变刚度等沉降群柱设计[C]//会议论文,2001.
[6] 宰金珉.地基刚度的人为调整及其工程应用[C]//第八届土力学及岩土工程学术会议论文集.北京:万国学术出版社,1999:235-238.
[7] 周峰,宰金珉,梅国雄,等.天然地基变刚度垫层的概念与方法[J].四川建筑科学研究,2009,35(4):116-119.
[8] 蒋建平,刘文白.岩土结构面体系、效应与应用[M].人民交通出版社,2010.4.
[9] 蒋建平.大直径灌注桩竖向承载特性[M].上海交通大学出版社,2007.1.
[10] 蒋建平,刘文白.岩土工程地层结构效应与层组参数[M].人民交通出版社,2011,1.
[11] 蒋建平,马恒.岸坡被动桩承载性状三维有限元分析[J].水运工程,2012(7):58-66.
[12] 蒋建平.“地层结构力学”的提出和基本理论框架[J].科技资讯,2012(5):54-54.
[13] 蒋建平.卸荷土体力学与卸荷岩土体力学的提出及其基本理论框架[J].科技资讯,2012(10):40-40.
[14] 蒋建平.深基坑坑底加固体的刚度效应研究[J].工程力学,2011,28(6):130-140.
[15] 蒋建平,路倬,高广运.板桩码头浚深改造方案研究[J].应用基础与工程科学学报,2011,19(2):279-287.
[16] 蒋建平,毛海英.基于地层结构效应的竖向受荷桩与地层共同作用研究.科技资讯,2011(11):31.
关键词:路桥施工;钻孔灌注桩;技术;分析
Abstract: as China's transportation infrastructure construction of development is rapid, so bored pile technology is also widely used in highway Bridges and other areas. In short, the highway bridge construction is a very important construction. Only the construction process to every project faces every detail problems are thoughtful, and strive to no risk at all, just won't for people and property losses from the country.
Keywords: road &bridge construction; Bored piles; Technology; analysis
中图分类号:TU74文献标识码:A 文章编号:
1.引言
在桥梁的基础施工中,钻孔灌注桩基础施工工艺的发展比较早。随着桥梁设计和施工技术的飞速发展,在公路桥梁中钻孔灌注桩基础的应用也愈来愈普遍。由于钻孔灌注桩技术具有无挤土效应、对附近环境影响较小、低噪声、施工操作简单且设备投入小、能适应各种地质条件等优点,所以它在桥梁的桩基础中被广泛的应用。因为钻孔灌注桩施工大多时候是在水下进行,所以无法观察其施工过程,成桩后也无法进行开挖验收。施工中任何一个环节产生问题都会使整个工程的进度和质量受到直接的影响,严重时会产生不良的社会影响,给投资者带来巨大的经济损失。故而,争取把隐患消除在成桩之前,做好施工质量控制,规范施工流程,这是能否生产出优良灌注桩的关键所在。
2.钻孔灌注桩施工的现状
随着社会经济的快速发展,也对路桥钻孔灌注桩技术提出了更高的要求。不过当前钻孔灌注桩的施工质量现状中还存在着很多问题和缺陷。主要是泥浆护壁的成孔技术方面,存在其独有的缺点,主要包括:在固化期间的灌注混凝土通常会出现凝固收缩现象,这就会造成桩土间产生无法控制的细小缝隙;局部坍塌、松动、卸载等扰动破坏使桩周上的刚度和强度大大减低了,而“软弱层”和“泥皮层”更加加重了这种后果;使用泥浆会在桩和桩周土之间形成“泥皮层”,且承载力较低,孔底残留的泥浆沉淀物和沉渣也会在桩底形成一个“软弱层”;成孔时很难避免对桩周土造成局部坍塌、松动、卸载等扰动破坏,且钻孔时间越长,桩径越大,桩越长,其破坏的程度就会越严重。
由于以上的各种原因大大的降低了桩周土的承载力,增大了桩基沉降,所以为了使其沉降满足要求,人们往往会使用增加桩长的办法,而不是想办法增强浇注桩身强度、消除桩土间缝隙、加固处理“软弱层”和“泥皮层”、恢复土原有的承载能力、减缓对桩周土的扰动破坏等,这都是以往设计和概念上存在的误区,所以长桩与超长桩的出现就在所难免。
3.钻孔灌注桩技术
1)桩基成孔时浅桩要使用小型的松动爆破配合人工挖孔,测量放样将各桩的基孔位确定后,根据桩径把孔口护围工作做好,且设置摇绞车排渣。使用15cm厚的C15砼在开挖过程中进行护壁,每层护壁的高度不可多于1.0m,在地质变化段埋设好连接钢筋,以加强护壁的整体性。开挖岩层要使用爆破作业,根据岩层倾向和硬度安排炮眼布置,先进行试爆,将间距和用药量确定好,避免孔壁破坏或成孔过大。
2)孔底清渣挖孔桩爆破完毕时,应在孔底预留20-30cm,用风镐、人工凿除至设计标高,把淤泥、松散石渣等拢动软土层清理掉,若地质比较复杂,必须使用钢钎把孔底以下的地质情况探明,且报经监理工程师复查确认后才能进行混凝土灌注,以确保桩底的嵌岩效果。
3)制作和安装钢筋笼,在施工现场根据孔深分节制作成型,使用吊车起吊入孔,使用两台电焊机进行单面焊接。用钢板封底并焊牢桩基检测管的下端,且要在加强箍筋内侧牢固绑扎,随着钢筋笼的加长,采用套管焊接进行密封。焊好最后一节后,要灌满净水并使用木塞堵死。
4.灌注桩的施工控制
1)钻孔前的质量控制。先准确放样然后埋设护简,《公路桥涵施工技术规范》已对埋设护筒的要求和方法作出了较为详细的规定。如果在水下进行钻孔,则使用锤击打入的方法埋设护筒,较为稳妥快捷,在护筒上口把桩中心标记作好是前提条件,以便钻机对中。钻孔对中的过程中,钻机底座的水平问题比较容易被忽视,不过在现今也不易出现差错,因为成套设备中有液压调整装置,但钻机底座的水平性在自制的钻孔设备中就不易控制。所以在钻孔及对位的过程中,均应对钻机的水平和垂直度着重进行观测和调整;如果在陆地上进行钻孔,则通常使用挖坑法,较为简单易行。
2)钻孔过程中的质量控制。首先应该按照孔位所在地的地质情况,采用适合的钻锥和钻机型号。在钻孔时,要使用减压钻进的方式。同时要确保孔底所承受的钻压不超过压块、钻锥和钻杆重量之和的60%,以减少及避免扩孔、弯孔和斜孔的产生,尽力确保钻孔的连续性,因故停钻时,为防埋钻,应将钻锥和潜水钻机提升至孔外。
3)孔底沉渣和终孔鉴定的控制。渣样在终孔鉴定中是判断的首要根据。针对嵌入中风化岩层的基桩,结合捞取的渣样进行岩面判别,对嵌岩的深度进行确定,终孔时对孔深进行测量,且要对渣样是否符合要求进行二次判别。要准确、及时的捞取钻渣和对钻孔进行原始记录,绝对不允许假造钻渣及同记记录。针对持力层落在强风化岩层上的基桩,按照渣样进行判别后进入到岩层,需注意残积土和强风化岩的区别。通常的强风化岩渣样会含有小块状的次生矿物,用手就能扳断,但残积土渣样基本上不含坚硬块体,石英除外。在混凝土灌注前,下导管和钢筋笼后,实施二次清孔,还要调制优质泥浆,使其可以降低颗粒的下沉速度,使用先进的反循环清孔工艺。待沉渣的测定与要求相符合后,立即进行混凝土灌注,避免土渣回落,尽力增大混凝土的初灌量,通过初灌量的冲力将残余孔底的少量沉渣冲开。
4)水下混凝土的灌注控制。水下混凝士的灌注是确保桩身质量的最关键工序,也是成桩的最后一道工序。本文所涉及的工程进行灌注时使用的是导管法灌注水下混凝土技术。采用剪球工艺灌注第一盘混凝土,混凝土的初灌量要根据不同桩径进行计算,确保灌入第一盘混凝土时可以把导管埋入2m以上的深度。混凝土灌注时,随着灌注高度的逐渐上升,必须及时的提升导管,提升时要确保导管底端埋入管外混凝土之下的深度也不大于8m且不少于4~6m,不可把导管底端提出混凝土面,以免导致局部离析或断桩。
5.结束语
总之,想要建成高品质的工程,就必须对施工中出现的常见问题的原因和处理方法进行熟悉,对桥梁钻孔桩施工中的技术及工艺进行加强与提高,层层把关。必须在钻孔灌注桩施工中做到:水下混凝土的灌注要紧张有序、统一指挥,严格按照规范操作每一个工序,制定切实可行的防范措施应对可能出现的问题,尽可能杜绝任何事故的发生。另外,桩基工程的检测技术也起着非常重要的作用,而且近些年已得到了广泛的重视,国家有关桩基工程检测的规范和标准已相继和施行,这对进一步规范桩基检测工作,保障工程质量起到了良好的作用。
参考文献:
[1]韩剑光.浅谈钻孔桩基础的施工监理[A].海南省公路学会2003年学术交流会论文触[C]2003.
[2]袁定安.钻孔灌注桩低压力后压浆的应用研究[D].成都:西南交通大学,2002.
关键词:锚杆静压桩 树根桩 缘起 施工工艺
1、前言
随着我国城市建设的不断发展,建设用地受到越来越大的制约。在软弱地基上修建建筑物或对原有建筑物进行加高、加固都需要对地基进行处理。锚杆静压桩技术是一种加固地基的新技术,自80年代在我国首次应用,经过二十多年的发展已经取得了很大的改进。1984年,周志道结合安徽芜湖少年宫事故工程提出锚杆静压桩法,标志此项技术的产生。[1]锚杆静压桩法适用于淤泥、淤泥质土、粘性土、粉土和人工填土等地基土。
树根桩是一种用压浆方法成桩的微型桩,起源于50年代的意大利,通常被应用于基础的托换和加固,桩径一般在Φ100―300mm之间。[2]通常采用抗浮的方式有配重混凝土、土层锚杆、灌注桩和树根桩等。其中配重混凝土体积大、面积大,如果施工和养护不当会造成开裂现象;土层锚杆容易造成由于锚杆钢筋偏斜而发生漏筋或砂浆保护层不够现象;灌注桩施工周期长、桩径和桩间距过大而且造价较高。
2、锚杆静压桩
锚杆静压桩是后装种植锚杆和静力压桩结合而形成的一种施工方法,即先在建筑物基础开凿或预留压桩孔和锚杆孔,用粘接剂(一般为硫磺胶泥)锚固种植锚杆,然后安装压桩架,利用建筑物自重作反力,用千斤顶将预制桩逐段压入土中。当压桩力或压入深度达到设计要求后,将桩与基础连接在一起。锚杆静压桩作为一种沉桩方法,是利用原基础底板或桩基承台及上部结构传递来的重量作为压桩反力,通过预埋的锚杆、反力架、千斤顶等压桩设备,将桩段从压桩孔处压入地基土中,然后将桩与基础底板或桩基承台连接形成整体,使新桩基与原建筑物基础共同承担荷载,提高加桩区域的承载力,达到阻止或减少沉降的目的。[2]
锚杆静压桩与其它基础加固或托换技术相比又具有施工时无振动、无噪音、设备简单、操作方便、移动灵活、施工所需空间小的特点。我们利用锚杆静压桩新技术特殊工艺,充分利用其特点,改进桩型、桩材、压桩设备,将其应用到高层建筑中桩基加固和托换中,取得了成功。[3]为高层建筑病害工程桩加固提出一种更方便、更合理、更有效、更经济的加固方法。
3、锚杆静压桩在实际工程中的应用
某工程位于武汉香港路边,框剪结构,地下一层,地上23层,是一智能性高档写字楼。本工程原采用大型钻孔灌注桩,由于在基坑开挖中受到周边边坡失稳的影响造成了部分桩存在偏位的情况,根据规范要求,必须对该工程病害工程桩进行加固补强方可使用。 由于本工程原钻孔灌注桩截面大,长度长,承载力高,持力层埋置深,在采用锚杆静压桩进行补强时要求桩也应具有较高的承载力。故本工程采用Φ377×9的钢管桩进行加固。 该补桩桩位在底板施工前均已确定方案,在施工时锚杆和桩位均先预先留置。由于该桩承载力高,所需反力较大,对此我们对反力架和锚杆均加强了,千斤顶也采用大吨位千斤顶,压桩完毕后钢管内应填充C35微膨胀混凝土,加固完成后,经检测达到设计标准,效果良好。
4、树根桩
树根桩的适用范围非常广泛。它适用于既有建筑物的修复和加层、古建筑的整修、地下铁道穿越、桥梁工程等各类地基的处理与基础加固,以及增强土坡或岩坡的稳定性等工程。[4]因而树根桩的问世,使托换技术有了很大的进步。树根桩是采用钻机在地基中成孔,放入钢筋或钢筋笼,采用压力通过注浆管向孔中注入水泥浆或水泥砂浆,形成小直径的钻孔灌注桩。由于采用小型钻机施工,可在土中以不同的倾斜角度成孔,从而形成竖直的和倾斜的桩,用于加层改造工程的地基加固、在既有建筑物下施工地下隧道时对既有建筑物基础的托换,或用于作为边坡上建筑物以及码头下提高地基承载力和边坡稳定性。树根桩的直径宜为150、300mm,桩长不宜超过30m。桩的布置可采用直桩型或网状结构斜桩型。[5]
5、树根桩在实际工程中的应用
5.1珠海市政管理处拱北污水处理厂初沉池地基基础加固工程
该沉淀池于1985年进行沉管灌注桩(Φ480)桩基施工,单桩承载力45T,验桩4条,其中一条不合格,不能满足设计要求。根据场地地质情况,结合施工现场情况,经验证采用树根桩技术进行基础加固。根据设计院提供加固荷载,每个桩基础增加承载力1/4,树根桩承载力按摩擦桩来考虑。通过计算,在原基础上补加140条树根桩,单桩承载力12T,桩径Φ150,桩身砼标号C23级,主筋选用4Φ12,箍筋为Φ6@250,桩身入残积土1.5米,桩长平均13米. 该工程于1992年7月至9月上旬进行施工。施工完成后,由中国建研院珠海科研设计部进行单桩垂直静荷载试验,检测结果,极限承载力均大于240KN,容许承载力取为120KN,安全系数大于另回弹系数为50%左右,表明桩身质量较好。工程竣工后,获得了建设单位及设计单位的好评。
5.2广州一六层框架结构宿舍楼树根桩基础托换工程 该宿舍楼原设计为五层框架结构,基础采用打桩及独立柱基础。在施工过程中进行加层,结果发现建筑物出现不均匀沉降,沉降量达十几厘米。根据此情况,采用树根桩进行基础托换,每个桩基设四条树根桩,桩径Φ150,桩长8米。该工程于1992年11~12月施工,施工后,建筑物沉降稳定。
6、结论
锚杆静压桩加固地基技术是我国在土木工程领域自主研究开发成功的新技术,现在已成为技术可靠、经济合理的新型加固方法。锚杆静压桩技术也还有很多需要改进的方面,还有很多新技术要去创新,例如研制新的压桩设备,运用单板机对压桩力、桩长等参数实时显示,配置自控电脑,进行智能化施工。
树根桩适用于古建筑托换加固、建筑物增层、稳定岩石和土质边坡、厂房基础和设备基础加荷、危房加固、地下铁道穿越和深基坑开挖对既有建筑物的保护等托换工程。
相比之下,树根桩具有工期较短、造价低廉的特点。我国上海首先将树根桩技术扩大应用到污水处理厂工程的池体抗浮领域,天津市纪庄子污水处理厂扩建工程随即也采用了树根桩进行池体抗浮,取得了较好的技术和经济效果。
参考文献
[1]周志道. 锚杆静压桩法[J]. 工业建筑, 1984, (1).
[2]刘毓氚, 陈福全. 锚杆静压桩在危险建筑物加固中的应用研究[J]. 岩石力学与工程学报, 2002, 21(1):130-132. DOI:10.3321/j.issn:1000-6915.2002.01.027.
[3]张友权.金伟江. 锚杆静压桩挤土效应的计算[J]-西部探矿工程2007,19(2)
[4]叶书麟, 杨伟方, 周申一,等. 树根桩探索试验[J]. 建筑结构, 1983, (5).
快速
论文摘要:灰岩地区地质条件较为复杂,溶洞、溶穴、溶槽、溶沟及构造带等普遍发育,因此在灰岩地区进行基础方案选型及施工确实存在较大困难,选择不当会造成严重的安全隐患及质量安全事故。本文结合工程实例,在充分了解场地的地质和水文条件的基础上,对某大型工业项目基础方案进行了分析比较,最终选用了强夯法处理,并对其处理效果进行了论述
快速
1、工程实例
快速
1.1 工程概况
拟建工程为某大型铝厂厂房建设,厂区位于河南安阳林州市,厂区占地面积1200余亩。厂区内拟建建筑物主要包括工业车间及其配套设施,最大单体荷重150000kN,原设计拟采用钻孔灌注桩基础。
1.2 工程地质条件
本场地地貌单元上属于低山丘陵区,该区表层主要被耕土覆盖,局部地段灰岩出露;其它地段埋深约1-6m以浅为第四系中更新统坡积地层,以粉质黏土、黏土为主;以下为奥陶系中统灰岩。从地质条件来看,本场地岩溶发育一般,多溶蚀沟槽、石芽,分布较多被粉质黏土充填的小溶洞、溶穴。地层岩性及特征见表1:
表1 地层岩性特征一览表
地层 岩性 埋深(m) 特征描述 承载力(kPa)
1 粉质黏土 1-6 褐红色,可塑-硬塑。见短条带状高岭土,见大块漂石。 200-250
2 强风化灰岩 2-10 以大块孤石或灰岩石芽为主,组成极不规律,局部以碎石夹粉质黏土为主。岩芯呈碎块、短柱状,长度约8-15cm,裂隙较发育。 400
3 中-弱风化灰岩 - 厚层状构造,结构部分或未破坏,局部含有被粉质黏土充填的溶穴。 1000-2000
1.3 水文地质条件
场地内地下水位埋深较深(大于30米),可不考虑对基础设计施工的影响。
2、地基基础方案选择
本场地岩溶发育一般,未发现大的空洞式溶洞,但场地内基岩面埋藏深度和强风化灰岩、小溶穴、溶洞分布极不均匀,这对于有效控制拟建建筑物不均匀沉降极为不利,需要选择合理的地基基础型式和地基处理方案避免不均匀沉降的发生。根据以往类似工程经验,在灰岩地区基础方案可采用钻孔灌注桩基础,但本场地基岩面起伏太大,局部出露,局部埋深达10米,且基岩面呈石牙状分布,极不规律,桩端持力层不好控制,若采用钻孔灌注桩,需每桩设置勘探孔进行勘察验证,经济、工期等因素上不尽合理,而且浅层地基土局部夹有大块孤石,个别直径大于5米,施工成孔有一定困难。
强夯法适用于处理碎石土、砂土、低饱和度粉土、黄土、杂填土等地基,特别是处理非均匀回填地基,具有地基加固明显,施工工期短,节省工程投资等诸多优点。强夯处理后的地基密实性、均匀性、承载力均可得到显著提高。在技术可行的前提下,综合考虑工期、经济等因素,对大面积填方区、覆盖层厚度较大非填方区均可采用强夯法地基处理。
本工程场地面积较大,且场地地形起伏较大,最大高差约50m,存在较大面积的填方及挖方区,且本场地完整基岩面起伏较大,灰岩破碎带分布不均,对于建筑物不均匀沉降不好控制。结合场地地质条件、建筑物荷载特征及各建筑物设计标高,以技术可行、经济合理为原则,最终建议采用强夯法地基处理。强夯法不仅施工效果好、而且可以就近取材,保持场地本身的土石方挖填平衡,大幅度节约投资,还大大缩短了工期,为工业项目的投产运营争取了宝贵的时间。
3、社会及经济效益
1)本工程所建议的强夯法地基处理,在施工过程中未出现任何异常情况,经检测,处理后的地基土均匀性、承载力等均能满足设计要求,竣工后经过3年多的使用,业主反映良好,通过对建筑物沉降观察,沉降及变形量均满足规范要求,取得良好的效果。
2)本工程若采用钻孔灌注桩,保守估计工期在8个月左右,而采用强夯法地基处理,施工周期较短,实际完成地基处理只用4个月,大大缩短了工期,施工完成后,从现场反馈回的信息表明,工期,质量等都得到了保证,取得了良好的社会效益。
3)本工程建议采用的强夯法地基处理,工程投入较小,保守估算,与钻孔灌注桩比较,节约成本在40%以上,取得了良好的经济效益。
4、结语
灰岩边坡场地不能盲目的根据以往类似工程经验而提供没有针对性的地基基础方案,而应该根据不同工程、不同场地地层条件,精勘细测、科学分析比较,最终得出既经济又合理的方案。本工程针对灰岩山区边坡场地的具体场地条件、工程地质条件,依据有关规范和已有资料、经验的基础上,建议采用强夯处理填土地基的地基处理方案,既可达到所需承载力要求,又能保持场地本身的土石方挖填平衡,可显著的节约投资和缩短工期,该方案在类似的工程中具有较好的借鉴意义及推广前景。?
参考文献:
[1]中国建筑科学研究院,建筑地基处理技术规范,中国建筑工业出版社,2002
关键词:PHC管桩;单桩竖向承载力;
中图分类号: U656 文献标识码: A 文章编号:
预应力高强混凝土(Pre-stressed High-strength Concrete)管桩具有单桩承载力高,应用范围广,沉桩质量可靠,工程造价低等优点,但施工时所需的施工机械投资大,单节桩不宜过长,因而使用长桩时需要接桩。管桩设计的关键是确定单桩竖向承载力。对于PHC管桩竖向承载力的计算,通常考虑两个方面[1]:一是按PHC管桩桩身结构强度确定单桩竖向承载力;二是按土的强度与变形确定单桩竖向承载力。
1 国内外关于PHC管桩单桩竖向承载力的确定方法
按PHC管桩桩身结构强度计算单桩竖向承载力
不同规范按PHC管桩桩身结构强度计算单桩竖向承载力的公式如表1所示。
表1 不同规范PHC管桩单桩竖向承载力的计算公式
表中:Rp—管桩桩身竖向承载力设计值;fce—管桩离心混凝土抗压强度;σpc—管桩桩身有效预压应力;A—管桩有效横截面面积;R—管桩桩身额定承载力;fc—管桩桩身混凝土极限强度。
对比表1中各规范按管桩桩身结构强度计算单桩竖向承载力的计算公式,可以看出各公式考虑的承载力影响因素均与管桩混凝土抗压强度、管桩桩身有效预压应力、管桩有效截面面积有关,公式的不同之处在于公式前面的系数不同,不同地区采用不同的系数,可见按管桩桩身结构强度计算单桩竖向承载力是结合当地情况确定的,不同地区有不同的标准。
按土的强度与变形确定单桩竖向承载力
1)广东省地方标准《预应力混凝土管桩基础技术规程》中规定当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,可按下式计算:
Quk=u∑ζsiqsikli+ζpqpkAp(1)
式中:Quk—单桩竖向极限承载力标准值;ζsi、ζp—桩第i层土(岩)的侧阻力修正系数、端阻力修正系数;qsik—桩第i层土(岩)的极限侧阻力标准值;qpk—桩的极限端阻力标准值;u—桩身外周长;li—桩穿越第i层土(岩)的厚度:当桩端持力层为强风化岩且其进入深度大于4d时,取4d计算;Ap—桩尖水平投影面积;当桩尖为开口型桩尖时,按封口型桩尖计算水平投影面积。
2)江苏省推荐性技术规程《先张法预应力混凝土管桩基础技术规程》中规定当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,宜按下式估算:
Quk=u∑qsikli+qpkAp (2)
3)广东建设开发总公司王离[5]提出了一个估算桩尖进入强风化岩层的预应力管桩的单桩竖向承载力标准值的经验公式:
Rk=100NApα+ u∑qsili (3)
式中:Rk—单桩竖向承载力标准值;N—桩端处强风化岩层的标准值,N≥50;α—管桩桩径影响系数,当桩径≤500mm时,α=1.0;当桩径>500mm时,α=0.9。
此公式适用范围:①管桩桩尖必须进入N≥50的强风化岩层;当N>60时,取N=60。②当计算出来的Rk大于桩身额定承载力时,取Rk等于额定承载力。
4)天津市勘察院李连营[6]对天津地区大量预应力管桩静荷载试验进行分析,部分考虑桩内壁侧摩阻力,并对桩端面积和极限桩端阻力标准值进行修正,提出以下修正公式:
Quk=(u1+au2) liqsik + bApqpk (4)
式中:u1、u2分别为外壁、内壁的周长;a为“土塞”效应修正系数,根据持力层土的性质可按表2查取;b为极限端阻力标准值修正系数,根据持力层土的性质按表2查取。
表2a、b的取值
根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,广东省地方标准与江苏省推荐性技术规程相比,考虑了桩侧阻力修正系数及桩端阻力修正系数,但二者均未考虑土塞效应的影响,计算开口桩时均按闭口桩计算。广东建设开发总公司总工程师王离提出的经验公式考虑了管桩桩径的影响,而天津市勘察院的李连营提出的修正公式考虑管桩内外径、土塞效应对管桩单桩承载力的影响及极限端阻力标准值修正系数。
2 PHC管桩单桩竖向承载力的影响因素
PHC管桩单桩竖向承载力的影响因素有许多,就PHC管桩本身而言,需要考虑其桩身混凝土抗压强度、管桩桩身有效预压应力,管桩的成桩工艺,管桩的内外径等。当考虑到桩土相互作用时,对于闭口PHC管桩,单桩竖向承载力主要由桩侧摩阻力与桩端阻力组成,对于开口PHC管桩,还应考虑管桩内壁桩土之间产生的侧摩阻力。桩侧摩阻力与桩端阻力与桩长、桩的横截面积、土的性质有关。开口PHC管桩在沉桩过程中会产生土塞效应,土塞对桩端承载力有明显影响,从而影响单桩承载特性,所以对于开口PHC管桩在确定其单桩竖向承载力时还应考虑土塞效应对其影响。
3 结语
PHC管桩单桩承载力的确定需要考虑多方面的因素,但是不同地质情况下影响管桩单桩承载力的主要因素会不同,如果将所有因素全部考虑来确定管桩的单桩承载力是没有必要的,有些因素的影响在某一地质条件下可能会对单桩承载力的影响很小,与其他因素相比可以忽略不计,所以如何根据不同的地质条件及PHC管桩自身条件来确定影响其单桩承载力的主要因素,进而根据这些主要因素确定单桩承载力有待进一步研究及完善。
参考文献
[1]高喜峰.天津市预应力管桩竖向承载力研究[D].天津大学硕士论文,2005.
[2]DBJ15-22-98.预应力混凝土管桩基础技术规程[S].
[3]苏JG/T011-2003.预应力混凝土管桩基础技术规程[S].
关键词:预应力管桩;静压法;施工
预应力管桩的施工分静压式和打入式。当采用锤击法时,应根据桩径,壁厚,打入深度,工程地质条件及桩密集程度等合理选择桩锤;当采用静压法时,可以根据具体工程地质情况及桩基设计要求合理选择配重,压桩设备应有加载反力读数系统,对预应力混凝土薄壁管桩不宜采用抱压。静压高强预应力管桩具有施工工期短、质量稳定、承载力高、穿透力强、低噪声、无震动、无污染、运输吊装方便等特点,近年来已广泛运用。打入式的工艺与原来广泛使用的普通预制桩基本一致,工艺比较成熟;目前静压预应力管桩工程实践经验尚不够丰富,但随着静压预应力管桩技术的推广应用和发展,以及人们对静压预应力管桩的理论和工程实践经验的不断积累,其应用水平将会不断得到提高。
1 预应力管桩施工技术
预应力管桩施工技术有静压法、锤击法或预钻孔插桩等方法施工。锤击法沉桩机械通常采用柴油锤、液压锤,不宜采用自由落锤,其特点是穿透能力强、承载力高、施工成本较低,应用广泛,缺点是存在着噪音及振动污染。静压法施工的特点是成桩后承载力直观可预测,噪音和振动不明显,适合在市区人口密集地区施工,缺点是穿透能力差,对机械装备的性能要求较高,设备笨重,难于下到较深的基坑中施工,且有些靠基坑壁的边桩不能施工。在建筑密集的老城区或附近存在着对挤土效应敏感的设施的施工,则宜考虑钻孔插桩施工法或相应采取其他防护措施。随着人们环保意识的不断增强及城市对建筑施工噪音控制越来越严格,桩基础施工方法成为设计及施工首要考虑的问题,为解决过去沉桩产生的强噪音和废气污染,以及钻孔挖孔桩产生的水污染问题,静压法便应运而生。
静压法技术特点:本法利用电力,具有液压操作,自动化程度高,运转灵活,桩位定点精确,可提高桩基施工质量,施工无噪声、无振动、无污染。 沉桩采用全液压夹持桩身向下施加压力,可避免打碎桩头,混凝土强度等级可降低 1-2 级,配筋比锤击法可省钢筋 40%左右。施工速度快,压桩速度每分钟可达 2m,比锤击法可缩短工期 1/3。适用范围:本工艺标准适用于软土、填土、一般粘性土层中,特别适合于居民稠密和危房附近环境保护要求严格的工业与民用建筑的低承台桩基础施工。
2施工注意事项
设计从质量的稳定性和经济性等方面考虑,一般都会选用挤土桩,可是挤土效应和振动影响制约了其在城区的使用,因而城区多采用静压法施工。预应力管桩施工中最典型的问题是挤土效应,下面重点介绍。
2.1 静压桩挤土效应防治。预应力管桩属于挤土类型,往往由于沉桩时使桩四周的土体结构受到扰动,改变了土体的应力状态,产生挤土效应;桩机施工过程中焊接时间过长;桩的接头较多而且焊接质量不好或桩端停歇在硬夹层;施工方法与施工顺序不当,每天成桩数量太多、压桩速率太快、布桩过多过密,加剧了挤土效应。静压施工前应根据场地周边环境条件及工程地质情况,制定切实可行的施工方案,采用经济、有效的技术措施,减少挤土效应所造成的危害,保证静压施工的顺利进行。
2.2 配桩问题。桩长控制,预应力混凝土管桩的表面虽然光滑,但是属于摩擦桩,设计一般以桩长作用静压桩的控制止压条件,就是说根据地质土层分布情况,桩长达到设计要求的数值已经有足够的摩擦力承受上部荷载。而现场实际操作则未必与设计相符,当小于设计要求长度时,监理方应通知设计院,要求对已经无法继续下压而桩长不满足要求的桩的承载力进行核算看是否满足设计要求,出书面通知,如不够时是否采用加桩处理等,管桩是属于挤密桩,桩尖下的土层受压后形成向上的应力,就算当时是能满足承载力要求,而随着时间的推移,此处的应力会逐渐消失,如果桩周摩擦力不能满足设计要求时,会在建筑物建设或使用过程中随着荷载的增加而出现意想不到的下沉,对建筑物的结构产生巨大的影响。
作为一个有经验的施工单位,在管桩施工前必须做配桩计划,依据是地质勘察报告和设计要求的桩长,根据持力层的等高线图可以预计到管桩施工时能达到的有效桩长,根据这个配桩方案进行管桩的采购、桩长是否与设计要求相符判断等方面的工作,由于没有做这项工作引起现场管桩长度过大,损失只能由施工单位承担,如果是按配桩方案执行却由于地质突变原因造成长桩剩余,则需与甲方协商,对此部分的桩做适当的补偿。
2.3 特别注意事项。压桩过程中,对周围的建筑物包括已完成的桩基,一定要采取切实可行的位移、沉降监测措施,这是整个施工过程中的重中之重。对桩的上浮、桩平面位移的监测,监测的数据需详细记录,及时统计、分析比较,当发现桩有较大上浮时,说明挤土效应的不利作用已经产生。此时应作出相应的调整措施,如放慢施工速度。在土方开挖过程中,要注意开挖方式,严禁各种机械的运行引起未开挖之土向已开挖方向蠕变,对管桩形成单侧压力,加强施工过程中基坑土移的监测,要求落实专人负责基坑的集水排水工作,严格控制开挖分层厚度。为避免机械碰撞桩身,可考虑在桩周围 30~50cm 范围内的土方用人工开挖。
2.4 其它注意事项
(1)压桩施工前应对现场的土层地质情况了解清楚, 做到心中有数;同时应做好设备的检查工作,保证使用可靠,以免中途间断压桩。桩的运输、堆放要符合要求,压桩前对桩进行全面检查验收,合格后方可使用。压力表要经标定后方可使用,才能真实的反映压桩力。
(2)压桩时,桩尖对准桩位,并用经纬仪校正桩身垂直度,如发现桩身不垂直,应及时调整,确保桩身垂直度满足规范要求。压桩过程中,应随时注意使桩保持轴心受压,若有偏移,要及时调整,如出现压力值陡降,桩身弯曲、倾斜以及桩身破坏或地下障碍,应立即停止并及时汇报。群桩中邻桩压桩时,要求对已入土中桩桩顶标高进行跟踪测量,以判断该桩是否有上抬或下沉现象,压桩按施工流程进行,不得随意更改。
(3)接桩时应保证上、下节桩的轴线一致,并尽可能地缩短接桩时间。压桩时控制压桩速度在 1m/min-2m/min 之间,并保证每根桩达到设计深度,且压桩力达到≥1.3 倍单桩容许承载力维持压力 10min 且每分钟沉降量不超过 2mm,可停止压桩。
(4)压桩机行驶道路的地基应有足够的承载力,必要时需作处理。量测压力等仪表应注意保养,及时检修和定期标定,以减少量测误差。
(5)桩施工结束后,若有高出地面的桩头,应小心保护,防止机械碰撞,压桩完毕后,及时进行报验,验收合格后才能进行下道工序施工。
参考文献