HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 建筑钢结构论文

建筑钢结构论文

时间:2022-03-21 17:17:49

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇建筑钢结构论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

建筑钢结构论文

第1篇

1.工程概况

本工程由两组L型组合体块组成,建筑层数为地下2层、地上32层,建筑高度地上99.85m。本工程主体结构类型为:H型、箱型及箱型与U型组合钢柱等(见图1),使用钢材主要为Q390GJD—Z25,钢板厚度为70~95mm。

2.工程焊接难点

本工程构件结构形式比较简单,涉及的焊接接头形式主要有对接、角接和角接与对接组合接头。由于钢板厚度较大,故选材上采用低合金高强钢,其屈服强度为390MPa。针对构件类型,焊接时存在如下几方面的难点:①防止正火钢热影响区脆化。②厚板焊接变形控制。③防止母材层状撕裂。

3.厚板高强钢焊接技术

(1)高强钢焊接性分析该钢种属于高强度正火钢,具有良好的综合力学性能和加工工艺性能。其化学成分、力学性能如表1、表2所示。(2)焊接工艺技术第一,焊材的合理选择。根据国家规范GB50661—2011中对焊接材料的推荐使用标准,同时结合焊接工艺性能、焊接材料等强匹配原则,以及不同焊接工艺环境下焊材使用后对母材影响程度来进行选用(见表3)。第二,坡口的制定。由于厚板焊接工程量大、难度高,若采用窄而深的小坡口进行焊接,则不仅焊缝成形系数偏小,影响一次结晶,容易产生区域偏析,而且在拘束应力大的前提下进而导致焊接热裂纹的产生;若采用大坡口进行焊接,则不仅焊接量大大增加,而且焊缝的焊接残余应力也会随之增加,这对钢结构体系初始应力的控制极其不利,同时也影响工程工期。考虑到厚板焊接接头填充量、焊接质量及焊接残余应力等方面的影响,同时,为便于CO2焊枪在焊接过程中能适当地摆动,采用坡口角度适中,且便于正常情况下焊接的窄间隙焊接(NGW)坡口(见图2)。第三,焊接组合新工艺。为了实现高质量、高效率的厚板窄间隙焊接,需解决窄而深的坡口内侧壁焊接熔合质量、焊接飞溅聚集、工艺参数稳定性及焊接操作的可靠性等问题,避免坡口内焊缝金属的一次结晶产生区域偏析,进而产生热裂纹。鉴于上述原因,提出如下焊接工艺方法:打底焊:采用改造型喷嘴的实芯CO2气体保护焊(见图3)。该方法首先可以保证窄间隙坡口环境下的顺利焊接,此外,利用GMAW的高效及熔深相对较大的优点,可提高焊接质量和效率。填充焊:采用双弧双丝自动气体保护焊接:一方面可以利用其熔嘴的优势取代了埋弧焊机头熔嘴无法进行窄而深的焊接,另一方面其焊接效率较手工焊有大幅度提高,同时保证焊缝质量。盖面焊:采用双丝埋弧焊接。主要是提高焊接效率,保证焊缝的表面质量。第四,焊接工艺措施。多层多道错位焊接技术:多层多道焊及合理的焊接参数可减小焊接热输入,从而有效控制焊接变形和焊接应力。在多层多道焊接技术的基础上,加入焊接接头每一道焊道错位连接,即:接头不在一个平面内,通常错位50mm以上。这种技术其显著优点就是上一层焊道对下一层进行了有效的热处理,特别适合于高强钢厚板的焊接。在应用时,可以消除焊接冶金过程中柱状晶并使晶粒细化。同时,对焊接接头的应力应变控制也相当有利,能够提高焊接接头的综合性能。道间温度控制:根据国家标准GB50661—2011要求,在焊接过程中,最低道间温度控制在不低于预热温度。道间温度应在焊缝金属或相邻的母材金属处测得,测量时间选择在电弧经过之前的焊接区域内瞬时测得。由于焊缝较长,未能焊到的地方应采取保温措施。防止温度降低过快,如果焊接区域温度过低,应重新加热。后热与消氢处理:为了加速焊接接头中氢的扩散逸出,防止焊接冷裂纹的产生,焊后及时后热及消氢处理是防止焊接冷裂纹的有效措施之一。特别是对于氢致裂纹敏感性较强的厚板焊接接头,采用这一工艺不仅可以降低预热温度,减轻焊工劳动强度,而且还可以采用较低的焊接热输入,使焊接接头获得良好的综合力学性能。焊缝锤击消应力措施:焊缝锤击焊接过程中,在热状态下使用带有小圆弧面的锤子锤击焊缝金属,使焊缝得到延展,从而减小焊件的残余收缩应力。锤击应均匀、适度,避免因锤击过分而产生裂纹。当焊缝温度<300℃时,锤击力不宜过大;在100℃以下时,禁止锤击。

4.结语

以上各项工艺技术措施和方法经过本工程的实践应用,在厚板箱形构件焊接中明显提高了焊缝的质量,取得了良好的效果。本工程中厚板焊接工艺的成功应用,为国内同类工程厚板焊接技术积累了宝贵的经验。

作者:张发荣 何志涛 姜殿忠 程登 单位:湖北精工钢结构有限公司

第2篇

关键词:建筑钢结构;关键技术;安装质量

中图分类号:TU391 文献标识码:A 文章编号:

1引言

结构钢建筑具有自重轻、施工速度快、强度高、抗震性好、环保等多项优点,是目前国内重点推广的项目之一。在利用钢结构建筑进行高层建筑建设过程中,合理确定钢结构建筑的安装施工顺序、尽量采取合理的安装措施来控制安装质量是保证整个建筑施工质量的关键。下面笔者就先结合建筑钢结构自身特点开始本次论文的分析。

2建筑钢结构的特点

2.1钢结构材质均匀

从机械功能的角度来看,刚才自身材质符合力学假定条件。同时因为钢材内部结构近乎同向,因此在受外界环境作用时,其所受波动范围相对较小,只要其所承受的应力在其可承受能力范围内都具备很好的弹性。另外其实际受力状态和利用工程力学计算出的结果是相近的,更容易进行选材。因为说钢材的材质相较于其他材料更好。

2.2钢材的塑性和韧性相对较好

钢材的塑性和韧性都不错,一般的压力环境不会引起钢材的断裂或损伤,因此选择钢材作为建筑材料即使遇到超载情况,钢材也能够及时分配建筑内部各部分作用力,从而达到建筑各部分应变力的平衡,而不会引起建筑自身的损害。另外因为钢材自身适应载荷能力强,因此即使遇到强震,钢材也能够保持很好的整体性,不会致使建筑物坍塌。实践经验证明,钢材作为建筑材料具备其他材质建筑材料所没有的抗震能力。

2.3钢材自重轻且强度高

众所周知,钢材具有很高的强度,且和一般的建筑材料钢筋混凝土结构相比,钢结构建筑的竖向构件截面积更小,这样就大大增加了建筑的可使用面积。且钢材料自身自重相对较轻,在同样高度的建筑物中,同样高度的钢结构的重量仅有钢筋混凝土的一半。此时建筑内部的设计内力相对较小,所以即使遇到地震等外力,建筑物也具备较高的抗震稳定性。且钢结构材料的施工造价成本大大低于钢筋混凝土材料。

3建筑钢结构安装过程中的关键技术

3.1普通单层钢的结构安装技术

安装普通单层钢时应注意以下几个方面:(1)要遵循规定的构件吊装顺序。吊装平面构件时需考虑到该类构件主要是为了形成建筑空间结构体系的稳定性;在实际施工过程中应先吊装竖向构件其次才考虑平面构件。而在吊装竖向构件时,首先应吊装柱,其次才是吊车梁,再者是制动桁架最后才是托架;(2)标准样本间的安装。安装时柱和柱之间已形成排架,因此实际施工中最好选择柱间间隙较大的钢柱。施工中必须将安装系统误差降至最低,且不能超出规定的误差范围,通常只要制作孔位合适,不仅安装效率高且安装误差也会相对较小。

3.2多高层建筑结构的安装

多高层建筑结构的安装需注意以下几个方面:(1)总平面体系规划设计。该种规划设计必须全面考虑到建筑施工中起重机的布置、排水系统的布置、纵横轴线尺寸的选择;机械开行路线等多个因素。因为这些因素都决定着高层建筑的最终结构体系;(2)钢框架吊装的基本顺序。建筑工程中的钢构件多为竖向结构钢柱体,一般施工条件下一节2—4层即可。另外在实际施工中还需考虑到吊塔爬升过程中工程对吊塔框架稳定性及吊装进度的要求。若是进行流水段施工作业划分,还需先组成标准的框架体系结构然后再进行流水作业段的划分。

4建筑钢结构安装过程中需要注意的质量控制要点

4.1钢结构件制造过程中重点工序的控制

建筑钢结构制作过程中需要进行一下几项重点工序控制:(1)钢结构的组装工艺。钢结构的组装工艺需考虑每个组装零件的尺寸精度,另外钢结构的组装工艺对工装精度的要求相对较高,因此在组装时需看准图纸,编制最合理、切实实际的组装工艺同时在组装过程中经常对工装精度进行检查;(2)钢结构的焊接技术。进行钢结构焊接时,要确实施工焊接在焊接前能够制定一套完善的焊接工艺指导书来对施工中的焊材、焊剂和配套气体进行严格选材。同时焊接易变形构件时可以通过严格控制温度的方法来进行焊接矫正。施工中若用到焊条、焊剂和粉芯焊丝,需在使用前严格按照说明书或相关工艺文件进行烘干。若施工中某钢种首次接受焊接,需进行焊接工艺评定同时制定对应的焊接工艺。为了减少焊接过程中焊接对焊材造成的压力,需对钢材需要焊接的部位进行预热处理,同时在焊接过程中确保焊材能够随时进行加热处理,从而保证实际操作中能够一次性焊接一条焊缝。焊接完成后,还需依据相关标准对焊材进行后热处理。

4.2建筑钢结构紧固件连接的质量控制

建筑钢结构紧固件连接的质量控制可以从以下几个方面进行考虑:(1)首先连接件本身的质量要符合国家标准,为了确保连接件的质量,需在实际安装之前对连接件进行高强性的螺栓摩擦面的抗滑移系数实验,在此基础上对螺栓的出场证明、螺栓批号等进行仔细检查,符合要求才可使用;(2)利用刚强性螺栓连接钢结构体时需确保摩擦面的加工质量,尽量减少摩擦面的污染和锈蚀,只有这样才能够保证摩擦面的抗滑移系数;(3)安装高强性螺栓时必须是自由穿入,不能通过敲打和扩张的方式进行螺栓固定。

5结语

钢结构施工在我国仍然处于起步阶段,但是随着经济的发展以及城市化进程的加快,钢构件建筑材料的性能优势必将显现出来,而其在高层建筑中的应用范围也会越来越广泛。在利用钢结构进行建筑施工时,我们应当加强施工控制管理,做好施工的进度管理和质量管理。同时及时总结钢结构建筑施工中钢结构材料应用的关键技术同时对如何保证建筑钢结构的质量进行深层分析,只有这样才能够确保钢结构工作的施工质量,保证建筑施工最终质量。

参考文献:

[1]陈海涛.建筑钢结构安装技术及质量控制要点 中国新技术产品.2013.(11).

第3篇

【关键词】钢结构,建筑,发展

目前国内外的建筑结构主要是混凝土结构和钢结构,混凝土结构目前在我国应用较多,而钢结构的应用没有混凝土那样的普遍,但其发展具有很大的潜力。由于混凝土结构有很多缺点,和科技的进步和环保意识的提高,钢结构得到了很大的发展。

一、选题背景

近数十年来,前苏联、美国、日本三个国家一直是世界上钢产量居前三位的国家,其钢产量轮流位居世界第一位。因此,这几个国家的建筑钢结构建设事业蓬勃发展。而在同一时期,我国在这方面的发展则比较缓慢,水平也相对落后。近几年来,随着我国改革开放政策的实行和推进,我国的经济建设工作取得了突飞猛进的进展。在此期间,我国的钢产量一跃成为世界第一位。1996年,我国钢产量首次突破亿吨大关;1998年我国钢产量已达11434万t,而且每年增产300万t.钢产量的增长为发展我国建筑钢结构建设事业创造了极好的时机。同时,钢结构在我国发展迅速,应用扩大、用量增大,涌现出一大批优秀钢结构设计人员,设计软件和科研成果不断开发,修订了钢结构设计、施工、质量验收规范,编写技术规程、设计图集90多本,出版了大量钢结构专业教材,论文著作和应用手册。钢结构设计规范修订已经启动,钢材单设一章,钢材产品标准修订基本完成。一大批有实力的钢结构安装企业承担了国内重点大型钢结构工程安装,新技术、新工艺、新设备层出不穷,其施工安装水平达到了国际先进水平。钢结构配套产品齐全。2007年10月经科技部批准成立的“国家钢结构工程技术研究中心”在中冶集团建筑研究总院成立。2008年6月上海同济大学成立建筑钢结构教育部工程研究中心。根据协会这几年陆续统计出来的数据显示,近几年钢结构消耗钢材的总量,2000年为850万吨,今年应该在2300万吨左右,到2010年达到2600万吨,占钢材产量从现在的4.28%,发展到2010年达到5.5%。这充分说明我们钢结构行业有很大的发展空间,发展的情况基本上还比较正常。

二、钢结构的定义

钢结构是把钢板、圆钢、钢管、钢索及各种型钢等钢材加工、连接、安装组成的工程结钢结构需要承受各种可能的自然和人为环境的作用,是具有足够可靠性和良好社会经济的工程结构物和构筑物。由于钢材可以回收冶炼而重复利用,所以钢结构是一种节能环保型、可循环使用的建构,符合经济持续健康发展的要求。除了在高层建筑、大型厂房、大跨度空间结构、轻钢结住宅建筑中大量采用钢结构外,各部门中也大量采用钢结构,如公路铁路桥梁、火电主厂义锅炉钢架、输变电铁塔、广播电视通信塔、海洋石油平台、核电站、风力发电、水利建设、地础钢板桩等。城市建设需要大量的钢结构,如地铁、城市轻便铁路、立交桥、环保建筑、公施、临时建筑等。

三、钢结构发展简介

从美国、日本、欧洲一些发达国家的经验看,建筑业即将成为钢材的主要市场。而目前我国与之相比还有差距。因此我国的高层建筑钢材到目前为止还都从国外进口,特别是大于50mm的厚钢板,国产产品的Z向性能尚达不到要求。国外不仅钢板厚度较大,而且可以满足各种性能要求。如日本已经能够生产的100mm的厚钢板,具有以下类型: ①有高强度低预热型(以前预热75℃,现在预热50℃)的厚钢板590N/mm2级(HT590级);②抗地震的厚钢板,主要有低屈服比高强度钢材(HT590~HT780级)和低屈服点钢板,这种钢材日本重点生产,用于次要结构上,当地震时这种材料先屈服,保证主要 结构减少地震损失;③防火厚钢板。有400N/mm2及490N/mm2,当其在600℃ 时屈服强度还能达到常温下的2/3;④装饰用的奥氏体不锈钢板及铁素体不锈钢板(沿海用,优于前者 )。目前,国内高层钢结构钢材几乎都从国外进口,工程总承包由国外承担,制造和安装则由国内廉价劳动力承包,这种局面应从速扭转,因为这与我国产钢大国的地位很不相称。大跨度钢结构钢材不像高层钢结构那样突出,但设计方案经常国外中标,这种局面与中央强调建立我们自己的创新体系的号召相距甚远,应该引起我国建筑界的关注,是水平低还是其它原因,值得我们深思。

四、钢结构建筑发展前景

我国的钢结构产业已进入跨越式发展的新阶段。钢结构建筑规模越来越大、跨度越来越大、造型越来越新颖独特,有很大的发展潜力。以前我国的钢结构发展缓慢主要是因为钢结构造价高(毕竟我们是发展中国家)以及钢材产量有限。今非昔比,钢结构施工速度快,施工污染小,重量轻,这些优势让它成为未来的发展趋势。钢结构建筑发展的同时,还推动了新型钢结构制造业的发展,钢结构生产规模从几百万吨发展到2000万吨以上。同属于金属制造业,对钢材进行深加工的产品还有焊接钢管、金属丝、绳、铰线及冷弯型钢,其产量已经超过6000万吨以上。由此可见,钢结构建筑行业是一个正在蒸蒸日上、向着更高阶段发展的朝阳行业。

五、结论

随着机电钢结构是今后发展的一个方向,随着科技的进步,审美观念改变必然使得钢结构建筑不断的去扩展自身的表达语汇而寻求发展。我们提倡的是抛弃风格,从结构的理性主义出发,从现代和传统的建筑结构中吸取精华,创造出技术和艺术有机融合的钢结构精品建筑。我们要分清楚,钢结构框架是建筑中承重体系和服务部分,它不是建筑使用中的主要部分,钢结构建筑的设计首先要遵循建筑设计的一般原则,然后才是发挥钢结构的优势。

参考文献:

[1]陈绍蕃,顾强等.钢结构基础.北京:中国建筑工业出版社,2007.

[2]夏志斌.钢结构设计原理.北京:中国建筑工业出版社. [M] 1994.

[3]陈绍蕃.钢结构设计原理.北京:科学出版社,2005.

[4]张耀春.钢结构设计原理.北京:高等教育出版社,2004.07.

第4篇

【关键词】高层钢框架结构;施工工艺;焊接变形

1引言

高层结构的行业标准《高层民用建筑钢结构技术规程》虽然已经颁布,但在我国,真正意义上的纯钢结构高层建筑采用的仍较少,普遍采用的是钢框架-混凝土核心筒结构,虽然其具有造价低、用钢省等优点,但其应用范围和技术上还有待进一步研究和完善。而且我国的建筑钢材存在很大不足,在品种、规格和质量水平上和发达国家还有较大差距。在高层钢框架结构施工领域,技术水平高、管理能力强的建筑企业很少,钢框架结构施工成套技术尚处于完善阶段。为此,有必要加强对高层框架结构的施工工艺及其焊接变形方面的探讨,这也是本论文的研究出发点。

2高层钢框架结构施工工艺及其变形分析

2.1 钢框架结构施工特点分析

钢框架结构施工技术,主要包括钢柱、钢梁、楼梯的吊装、测量校正、连接、压型钢板的铺设等工序,但在钢结构施工的同时往往要穿插土建、机电等部分的施工。钢框架结构的施工必须要与土建等其它单位进行密切配合,做到统筹兼顾,才能高效、高质地完成施工任务。其主要特点有:

2.1.1 测量、定位、放线精度要求高。测量、定位、放线是贯穿制作和安装阶段的控制重点。在高层钢框架结构安装中,由于体型大,误差积累将非常显著,柱子或其它构件微小的偏移会造成上部很大的变位,极大地改变结构的受力,影响设计效果,甚至产生工程事故。

2.1.2 钢框架结构安装中,由于钢材热胀冷缩现象突出,天气、温度等条件影响大,温度变化会对安装精度产生较大影响。特别是在钢构件连接中,焊接和螺栓连接受天气、温度影响更大。在焊接技术规程中规定,自然条件不能满足焊接环境要求时,要采取人工措施给焊接创造条件,比如焊条的预热、钢板的预热加温等。

2.1.3 钢结构安装对起重、运输等机械的性能要求高。由于钢构件重量大、体型大,高层钢框架结构安装中高空作业多,对吊装过程中的技术要求高,吊装中不同工况条件下的施工荷载必须同其自身设计承载力相吻合,钢构件在运输、堆放、起吊、就位及安装过程中,要按事先模拟设计的条件进行。

2.1.4 由于钢材的特点,决定了钢框架结构要求防腐、防火严格。

2.1.5 高层钢框架结构安装工程量大,构件多,现场往往必须设置临时堆放场地及相应的中转堆场才能满足安装需要。

2.2 钢框架焊接变形分析

2.2.1 钢结构变形类型

钢结构变形类型,可分为总体变形和局部变形两类。总体变形是指整个结构的外形和尺寸发生变化,局部变形是指结构构件在局部区域出现变形。二者可能单独出现,但更多地是组合出现。它们都会影响结构的诸多方面,如外观、刚度和稳定性等,降低承载力,危及结构安全。

2.2.2 钢结构变形原因

钢材的初始变形;加工制作中的变形;运输及安装过程中产生的变形;使用过程中产生的变形等。

2.2.3 变形控制方法

传统的经验方法是制定合理的吊装、焊接方案等,如采用先内而外的吊装顺序、对称焊接等,在测量控制上预留变形等,这种笼统地控制方法在一定条件下可以取得较好的效果,但遇到复杂、多变的条件,效果有限。

焊接变形是高层钢结构框架变形的主要构成因素,但相关的论文分析也多以静态、局部的分析为主,如针对于某个焊接面或焊接构件的分析,针对建筑钢框架结构焊接变形的整体分析方法尚未出现。

3 高层钢框架结构焊接施工工艺及其变形矫正探讨

3.1 焊接变形原因分析

钢结构具有结构性能良好、建设工期短、绿色、环保等优点,所以在工业与民用建筑中广泛应用。焊接对钢结构来说是一把双刃剑,它成就了钢结构建设的高速度,但是钢结构在焊接时产生的变形问题,也会极大地影响钢结构的施工质量。钢结构在焊接过程中出现变形是不可避免的,但可以通过合理的施工措施来予以控制。

焊接变形产生的主要原因是由于焊接过程中对焊件进行了局部的不均匀加热,以及随后的不均匀冷却作用和结构本身或外加的刚性拘束作用,通过力、温度和组织等因素的变化,从而在焊接接头区产生不均匀的收缩变形,焊缝的纵向和横向缩短是引起各种复杂变形的根本原因。

3.1.1 结构刚度

刚度就是结构抵抗拉伸和弯曲变形的能力,它主要取决于结构的截面形状及其尺寸大小。如桁架的纵向变形,主要取决于横截面面积和弦杆截面的尺寸;再如工字型、丁字型或其它形状截面的弯曲变形,主要取决于截面的抗弯刚度。

3.1.2 焊缝位置和数量

在钢结构刚性不大时,焊缝在结构中对称布置,施焊程序合理,则只产生线性缩短;当焊缝布置不对称时,则还会产生弯曲变形;焊缝截面重心与接头截面重心在同一位置上时,只要施焊程序合理,则只产生线性缩短;当焊缝截面重心偏离接头截面重心时,则还会产生角变形。

3.1.3 焊接工艺

焊接电流大,焊条直径粗,焊接速度慢,都会造成焊接变形大;自动焊接的变形较小,但焊接厚钢板时,自动焊比手工焊的焊接变形稍大;多层焊时,第一层焊缝收缩量最大,第二、三层焊缝的收缩量则分别为第一层的20%和5%~10%,层数越多焊接变形也越大;断续焊缝比连续焊缝的收缩量小;对接焊缝的横向收缩比纵向收缩大2倍~4倍;焊接次序不当或未先焊好分部构件,然后总拼装焊接,都易产生较大的焊接变形。所以在施工时要制定合理的焊接工艺措施。

3.2 焊接变形矫正措施探讨

3.2.1 焊接工艺措施

焊接施工时,应选择合适的焊接电流、速度、方向、顺序,以减少变形。焊接金属构件时,应先焊短,后焊长;先焊立,后焊平;先焊对接缝,再焊搭接缝,应从中间到两边,从里到外焊接。集中的焊缝应采用跳焊法,长焊缝采用分段退步焊和对称焊接法。

3.3.2 机械矫正法

机械矫正法是利用机械力的作用,以矫正焊接变形,常采用撑直机、压力机、千斤顶及各种小型机具顶压矫正构件变形。矫正时,将构件变形部位放在两支撑之间,对准构件凸出部位缓慢施力,即可矫正变形。

3.3.3 火焰矫正法

采用火焰矫正的原理与焊接变形的原理相同,只是反其道而用之,通过给金属输入热量,使金属达到塑性状态,从而产生变形,构件被局部加热后,依靠加热区的膨胀与收缩差,使构件按照预定的方向发生变形,从而达到矫正的目的。

3.3.4 刚性固定法

焊接时在平台上或在重叠的构件上设置夹具固定构件,增加刚性后,再进行焊接,这样焊接中的加热和冷却的收缩变形,被固定夹具等外力所限制,但这种方法只适应塑性较好的低碳结构钢和低合金结构钢,不适应中碳钢和可焊性更差的钢材,因为焊接应力常使焊件产生裂纹。

4 结语

高层钢框架结构施工工艺与焊接变形分析的影响因素多而且具有较强的模糊性和不确定性,本论文重点对高层钢框架结构的焊接施工工艺进行了分析研究,详细探讨了焊接变形的原因及其矫正措施,对于进一步提高钢材钢框架结构的施工工艺水平具有较好的理论指导时间。

参考文献:

[1]日本.渡边帮夫等著.钢结构设计与施工[M].北京:中国建筑工业出版社,2000.

第5篇

关键词:房屋建筑;钢筋混凝土;框架结构;设计措施

Abstract: according to the author in recent years practice, the housing the advantages of the reinforced concrete frame mainly reflects in: flexible space space, it is light weight, saving material, etc. The article to the housing construction steel reinforced concrete frame structure characteristics, the scope of application, this paper expounds the design principle, the combination of case and discuss the specific construction measures.

Keywords: housing construction; Reinforced concrete; Frame structure; Measures designed

中图分类号:TU375文献标识码: A 文章编号:

0. 概 述

框架结构又统称为构架式结构。目前,房屋的框架按跨数分有单跨、多跨;按层数可以分有单层、多层;按立面构成可以分有对称、不对称;按所用材料分有钢框架、混凝土框架、胶合木结构框架或钢与钢筋混凝土混合框架等。其中最常用的是钢筋混凝土框架,它包括现浇整体式、装配式、装配整体式等。其中这里面的装配式、装配整体式混凝土框架和钢框架适合大规模工业化施工,效率较高,工程质量较好,其余的适合房屋建筑使用。

1. 房屋建筑钢筋混凝土框架结构特点

根据笔者近年来实践来看,房屋建筑钢筋混凝土框架结构的优点主要体现在:空间分隔灵活,它自重轻,节省材料;具有可以较灵活地配合建筑平面布置的优点,利于安排需要较大空间的建筑结构;框架结构的梁、柱构件易于标准化、定型化,便于采用装配整体式结构,以缩短施工工期;采用现浇混凝土框架时,结构的整体性、刚度较好,设计处理好也能达到较好的抗震效果,而且可以把梁或柱浇注成各种需要的截面形状。

2. 房屋建筑钢筋混凝土框架结构应用范围

根据现在建筑的使用性质来看,房屋建筑钢筋混凝土框架结构广泛用于住宅、学校、办公楼等地方,也有根据需要对混凝土梁或板施加预应力,以适用于较大的跨度;框架钢结构常用于大跨度的公共建筑、多层工业厂房和一些特殊用途的建筑物中,如剧场、商场、体育馆等。但总体来说,现在施工框架结构种类比较多,在选择起来应灵活多变。

3.房屋建筑钢筋混凝土框架结构设计原则一般地,房屋建筑钢筋混凝土框架结构设计应遵循一定的原则,这样方能确保房屋的建筑质量。

3.1遵循有抗震性能的原则。在结构设计中,对框架结构来说有足够的承载能力和变形能力是两个同时需要满足的条件。不仅要求结构具有足够的承载能力,还要求其有适当的刚度。房屋建筑结构的使用功能和安全与其侧移的大小密切相关,过大的侧向变形会使隔墙、维护墙及其饰面材料出现裂缝或损坏。结构分别按考虑5%的偶然偏心和双向地震力作用的不利情况计算出各结构体系层间位移角,剪力墙结构小于框剪结构,但均小于规范要求,且富裕量较大,说明两种结构体系满足刚度要求。

3.2遵循经济性原则。 在房屋建筑结构体系中,在保障节约资金的情况下确保工程质量是关键。根据笔者工作实践,通过对短肢剪力墙结构、框架一剪力墙结构、大开间剪力墙结构三种钢筋混凝土住宅结构直接费的计算,发现三种钢筋混凝土住宅结构单位面积直接费相差不是很多,其中短肢剪力墙结构的单位面积直接费最大,框架一剪力墙结构的单位面积直接费最小,其中短肢剪力墙结构的单位面积直接费比框架一剪力墙结构的单位面积直接费高出12.5%,比大开间剪力墙结构的单位面积直接费高出7.3%,大开间剪力墙结构的单位面积直接费比框架一剪力墙结构的单位面积直接费高出4.9%。

4. 房屋建筑钢筋混凝土框架结构设计注意事项

房屋建筑钢筋混凝土框架结构设计是个复杂多变的过程,笔者在此建议在设计中要注意以下几方面:

4.1抗震设计问题。房屋在抗震设计框架结构设计时,一般不要采用单跨框架。如果不可避免的话,建议可设计为框架-剪力墙结构,多层建筑也可仅在单跨方向设置剪力墙。但是,后者框架结构部分的抗震等级应按框架结构选用,而剪力墙部分的抗震等级应按框架-剪力墙结构选用。

4.2框架结构选择。在目前的小高层结构体系里比较适合采用框架结构,笔者建议首先尽可能将过于狭长的结构用伸缩缝脱开。如果建筑专业不允许,可通过加大端部开间的抗侧刚度达到限制结构扭转效应的目的。具体可将边框架的角柱断面增大,加大框架梁的高度,如条件允许,中间增加框架住,既增加框架的跨数。这些方法可以显著增加结构的抗扭刚度。

5.房屋建筑钢筋混凝土框架结构设计措施

根据笔者实践,结合案例来简单阐述下这方面的措施。某小区工程为6-8层钢筋混凝土框架结构体系,按8度抗震设防,场地土类别为Ⅲ类,各建筑单体设计基准期为70年,建筑安全等级为2级,建筑抗震类别为丙类。根据有关要求,柱混凝土强度等级:一~三层为C25,三层以上为C20;楼面为C20,屋面板、为C25密实性混凝土。

5.1计算分析。根据工程建筑要求,在房屋建筑结构设计时要考虑建筑结构的强度、刚度、稳定性三个基本指标。我们一般采用弹性设计方法,即在正常使用情况下,建筑结构构件处于弹性受力状态中,结构具有较大的刚度,这一点施工人员要做好这方面的计算分析。

5.2防雷主要措施。我们可以采取该工程住宅屋面采用φ12镀锌圆做避雷带,组成不大于20m×20m的网格。所有突出屋面的金属构件均应与避雷带可靠焊接。

这其中引下线利用柱内的两根直径大于φ16的对角主筋通长焊接作为避雷引下线,上端与避雷带连接,下端与地梁两根主筋焊接。

5.3梁、柱节点的设计。我们在房屋设计梁柱节点时,通常出现多根梁交叉在一起的现象,主次梁的负弯矩钢筋多层也会叠加在一起,这样会对梁截面截面造成较大的影响。这也是房屋在建时它的成本很难控制的一方面。在此,笔者建议可采取降低次梁底面的标高和降低主梁底面标高的有关措施来加以控制。

5.4变形的分析。一旦结构产生了过度变形,就会产生对之相对应的裂缝。一般来说,结构的过度变形是结构稳定性不足或者刚度不足的标志,它并没有直接反映出结构强度。导致结构变形的因素有跨度、截面的尺寸、支座的形式、材料的质量和荷载等,结构变形是鉴定房屋安全的重要内容。所以在进行房屋安全鉴定时,需要对房屋的综合情况进行考虑。

参考文献

[1]韩秀女. 钢筋混凝土结构裂缝产生的原因[J]. 民营科技, 2010,(12)

[2] 张楠;朱兴财;;钢筋混凝土框架结构施工中的问题分析[J];民营科技;2010年02期

第6篇

关键词:钢结构;抗震;钢结构弹塑性

中图分类号:TU391文献标识码: A 文章编号:

钢结构以其强度高、自重轻、抗震性能好、施工速度快、工业化程度高、便于加固、有利于环保等一系列优点,在建筑结构中得到广泛应用,特别是近年来我国引进的数条热轧H型钢生产线为钢结构的发展提供了基础,在这种大背景和形势下,高层、超高层钢结构的开发推广就势在必行。由于钢结构材质均匀,符合力学假定,与其他结构相比,钢结构的理论计算结果与试验结果相差很小,也是钢结构的特色之一。但是,由于钢结构与在建筑结构中应用广泛的钢筋混凝土结构相比,具有截面轮廓尺寸小、构件细长和板件柔弱的特点。因此,钢结构分析理论尤其是稳定性理论的发展不仅仅具有理论上的意义,而且具有重要的实用

价值。

一、钢结构框架的优点

钢材是一种很适宜建造抗震结构的材料,原目在于钢材具有轻质高强的特性,可减轻结构的自重。从而减轻结构所受的地震作用。钢材材质均匀,强度易于保证,因此结构的可靠性大。它的延性好,使结构具有很大的变形能力,即使在很大的变形下仍不倒塌,从而目保证结构的安全性。钢结构有如下特点:

1、密封性能好

由于焊接结构可以做到完全密封,一些要求气密性和水密性好的高压容器、大型油库、气柜、管道等板壳结构都采用钢结构。

2、具有一定的耐高温性

温度在250度内,钢的性质变化很小,温度达到300度以上,强度逐渐下降,达到450度~650度时,强度降为零。因此,钢结构适用于温度不高于250度的场台。在自身有特殊防火要求的建筑中,钢结构必须月耐火材料予以维护。

3、钢结构的弹、塑性好,抗震能力强

在承载力相同的条件下,钢结构与钢筋混凝土结构。木结构相比,构件较小,重量教轻、便于运输和安装。与钢材料的匀质性和强韧性,可有较大的变形,能很好地承受动力的荷载,具有很好的抗震能力。其中,屈强比是衡量钢的加工硬化能力的一个重要参数。屈强比越低,钢结构抵抗强震的能力就越强。欧洲建筑钢要求屈强比小于0.91,而日本要求建筑钢屈强比小于0.80。同时,钢结构具有良好的弹、塑性和抗冲击能力,在一般情况下,钢结构对动荷载的适应能力较强,其良好的延性和耗能能力可以保证它不因为外部荷载的变化而突然断裂,这对钢结构的抗震是非常有利的。

4、施工周期短,装配化程度高

二、钢结构在建筑结构领域中的主要应用

1、重型工业厂房。

例如大型冶金企业、火力发电厂和重型机械制造厂等的一些车间,由于厂房跨度和柱距大、高度高、车间内设有工作繁忙和起重量大的起重运输设备和有强大振动的生产设备,因而常必需采用由钢屋架、钢柱和钢吊车梁等组成的全钢结构。

2、高层房屋钢结构

房屋高度愈大,所受侧向水平荷载如风荷载及地震作用的影响也愈大,所需柱截面也大大加大。采用钢结构可减小柱截面而增大建筑物的使用面积和提高房屋的抗震性能。

3、大跨度结构。

由于受弯构件在均布荷载下的弯矩M与跨度L的平方成正比,当跨度增大到一定程度时,为了减轻结构的自重,也就需要采用自重较轻的钢结构。一般情况下,跨度等于或大于60m的结构就称为是大跨度结构。在我国主要应用于体育场馆、会展中心、演出场馆、飞机库、航空站和火力发电厂的大煤库等。

4、高耸结构。

电视塔和烟囱等高耸结构同样由于风荷载和地震作用随高度的加大而加大,需要采用钢结构。同事,建造在软土地基上的高耸结构,为了减少地基处理费用,在一定高度时也宜采用钢结构。

此外,需要使用钢结构的还有很多,如电力工业中的高压输电塔、高压容器、煤气柜、塔式起重机、采油井架等。

综上所述,钢结构在建筑业和其他各行各业都有广泛的应用。

二、钢结构稳定研究

1、结构稳定的基本概念

工程结构或构件在荷载和其它作用的影响下处于某种平衡状态,例如薄腹工字形梁在横向荷载作用下处于平面弯曲的平衡状态;楼盖结构中柱子处于压弯平衡状态等等。结构或构件由于平衡形式的不稳定,从初始平衡位置转变到另一个平衡位置,称为屈曲,或称为失稳。稳定分析是研究结构或构件的平衡状态是否稳定的问题。处于平衡位置的结构或构件,在任意微小外界扰动下,将偏离其平衡位置,当外界扰动除去后,仍能自动回复到初始平衡位

置时,则初始平衡状态是稳定的。如果不能回复到初始平衡位置,则初始平衡状态是不稳定的。

2、结构失稳判定

(1)判断平衡稳定性的最根本准则

我们最常采用一刚性小球在光滑平面上的三种不同位置来引出平衡稳定性判断准则。在三种情况下,小球虽然都处于平衡状态,但是它们所对应的平衡特征却是不相同的,由此引出的判断平衡状态是否稳定的最根本准则为:

假设对处于平衡状态的体系施加一微小干扰,当干扰撤去后,如体系能恢复到原来的平衡位置,则该平衡状态是稳定的;反之,若体系偏离原来的平衡位置越来越远,则该平衡位置是不稳定的;如体系停留在新的位置不动,则该平衡状态是随遇的。

以上述最根本准则为基础,从随遇平衡的静力特征可得到判断平衡稳定性的静力准则:从稳定平衡和随遇平衡的动力特征可得到判断平衡稳定性的动力准则;从不同平衡状态的能量特征可得到判断平衡稳定性的能量准则。

(2)静力准则

又称平衡法,是求解结构稳定极限荷载的最基本的方法。对于有平衡分岔点的弹性稳定问题,在分岔点存在着两个极为邻近的平衡状态,一个是原结构的平衡状态,一个是已经有微小变形的结构的平衡状态。平衡法是根据已产生了微小变形后结构的受力条件建立平衡方程而后求解的。如果得到的符合平衡方程的解有不止一个,那么其中最小值的一个才是该结构的分岔屈曲荷载。平衡法只能求解屈曲荷载,不能判断结构平衡状态的稳定性。

3动力准则

动力法属于结构动力稳定问题。处于平衡状态的结构体系,如果施加微小干扰使其发生振动,这时结构的变形和振动加速度都和已经作用在结构上的荷载有关。当荷载小于稳定的极限值时,加速度和变形的方向相反,因此干扰撤去后,运动趋于静止,结构的平衡状态是稳定的;当荷载大于极限值时,加速度和变形的方向相同,即使将干扰撤去,运动仍是发散的,因此结构的平衡状态是不稳定的;临界状态的荷载即为结构的屈盐荷载,可由结构振动频率为零的条件解得。

三、设计时常用的钢结构的加固方法

1.减轻荷载:改用轻质材料或其它减少荷载的方法。如工业厂房的屋架可在下弦增设临时支柱,或组成撑杆式结构的方法来卸荷;托架的卸荷可以采用上述方法,也可以利用吊车梁作为支点使托架卸荷;柱子一般采用设置临时支柱卸去屋架和吊车梁的荷载;平台结构因其高度不高,一般采用临时支柱进行卸荷。

2.改变结构的静力计算图形:采取措施使结构发生符合设计意图的内力重分布,以调整原有结构中的应力,改善被加固构件的受力情况。如增加支撑或辅助构件以增加结构或构件的刚度,使结构可以按空间结构进行验算,挖掘结构潜力,也可以改善结构的抗振性能;变更荷载的分布情况,或变更构件的支座情况,或施加预应力等来改变构件的弯矩图形;增设撑杆、加设拉杆或将静定结构变为超静定结构来改变精架的内力;将被加固构件与其它结构共同工作形成混合结构,以改善受力情况。

3.原结构的构件截面和连接进行补强。此方法在钢结构加固中是常用的方法,因其涉及面窄,施工较为简便,尤其是在一定的前提条件下,可在负荷状态下加固,这对厂房内的生产影响较小。采用此方法时,应注意以下几点:

(1)注意加固时净空的限制,要使杆件不与其它杆件或零件相碰;

(2)能适应原有构件的几何尺寸或己发生的变形清况,以利于施工;

(3)应尽量减少加固施工的工作量;

(4)尽可能使补强构件的重心位置不变,减少偏心所产生的弯矩;

(5)当采用焊接补强时,应采用合理的焊接顺序,减小焊接变形和焊接应力;

(6)补强后构件应便于维护和油漆。

结束语:钢结构在抗震方面的优点使得它在建筑方面得到了广泛的应用,但是钢结构的稳定性问题钢结构的加固问题一直以来都是被广为关注的热点。所以,在进行结构设计时,需要掌

握地域、场地特性,考虑结构特征、用途和坍塌时的危害性,在最新资料的基础上,重新认识既定的一些数值、公式、方法的适用性。同时,抗震设计应在执行规范要求的基础上,尽量全面地考虑结构各种地震受力工况,根据力学原理简化、评估其力学行为。

参考文献:

车俊斌,大力发展钢结构建筑加强抗震,积极推动我国村镇建筑现代化——对四川汶川大地震灾后建筑重建的建议【J】-中国工程咨询2008(7)

吴东,浅谈轻型钢结构抗震房屋【J】-中国科技博览2010(19)

第7篇

关键词:钢结构;质量控制;焊缝处理

中图分类号:TU391 文献标识码:A

钢结构在建筑工程中也得到了越来越广泛的应用,与传统的砖混结构、混凝土结构相比,它有其自身的特点和优点,钢结构工程由于其自重轻,跨度大、施工快速等优点,同时也具备施工难度大、对技术水平要求高等特点。目前在国内各类大跨度建筑工程中,得到越来越多的使用。结合实际钢结构工程特点和常见质量问题,我们主要谈谈钢结构工程质量控制的一些做法。

1 钢结构工程简介

1.1 钢结构工程

钢结构工程是以钢材制作为主的结构,是主要的建筑结构类型之一。钢结构工程一般包括钢结构焊接工程、钢结构紧固件连接工程、钢零件及钢部件加工工程、钢结构组装工程、钢构件预拼装工程、钢结构安装工程、压型金属板工程和钢结构涂装工程等。

1.2 钢结构工程优点

钢结构工程由于自身的特点和优越性突出:抗震性、抗风性、耐久性、保温性、隔音性、健康性、舒适性、快捷、环保、节能;钢结构建筑重量轻、强度高、整体刚性好、变形能力强;全部采用高效节能墙体,保温、隔热、隔音效果好,可达到50%的节能标准。

2 钢结构工程常见质量问题

钢结构工程产生质量问题的分析;钢结构工程质量难以保证的原因有很多,也很复杂,既有工艺不当导致的问题,也有违反工艺操作造成的问题,还有由于施工人员的技术水平和责任心造成的问题,还有决策者失误造成的质量问题。

2.1 钢结构工程所用的原材料与设计或规范不符

有部分工业产品质量不稳定,出厂的产品质量检验把关不严格,规章制度不完善, 检验方法滞后, 一些假货、伪劣产品、小地方劣质钢产进入建筑市场所致,钢构用钢材不符设计要求,只保证抗拉强度、屈服强度、延伸率和冷弯性能,而钢构耐冲击韧性、可焊性都很差。

2.2 焊缝处理存在的质量问题

不按有关操作规程施工,焊接电流不控制,焊接顺序颠倒,涂装间隔时间不控制,严重的将影响结构的强度和安全;钢构参建单位常常对现场安装焊缝的检测不够重视,甚至漠视现场安装焊缝的质量,对构件的正常承载与使用带来不安定因素。

2.3 地质勘探报告有误或者设计计算处理不当

由于未适当地进行地质勘查,报告内容不详细、数据有误,均会导致采用错误的基础设计方案,造成地基不均匀沉降,使上部结构倾斜。设计质量是质量控制真正的起点,如果结构处理不合理,内力计算不正确,选用节点不当,会产生严重后果。

3 钢结构工程过程质量控制

钢结构工程质量控制的原则:以用户为中心,以保证钢结构工程质量和最终质量能使用户满意。要始终把质量第一放在钢结构工程建设的首位,预防为主,钢结构工程质量控制贯穿与整个钢结构工程的建设阶段,是动态的、主动的、可预防的控制。建立健全质量管理责任制通过控制每个工程参与人的工作质量,进而控制钢结构工程的总质量。钢结构质量管理采用三全质量管理,即全面质量管理、全过程质量管理和全员参与质量管理。

3.1 施工前质量控制

严格控制材料质量,其内涵包括两层意思,一是强调质量目标的计划预控,二是按质量计划进行质量活动前的准备工作状态控制。对于材料质量的控制,是保证整个钢构件工程质量的基础。在整个施工阶段中推行动态控制为主、事前预防为辅的管理办法。事前控制就是为实现质量计划目标而进行科学合理地安排预控计划,在施工前,要严格审核施工图纸,确保图纸数据准确、表述清楚、设计合理。在材料进场前,要进行严格验收。在实际生产中,应采取多种预控措施。主要控制措施有组织措施、技术措施、经济措施和合同措施等。

3.2 施工阶段质量控制

加强基础工程质量控制,焊接是整个钢结构施工过程中工作量最大、也最重要的环节,焊接的质量直接影响着钢构件的质量。焊接施工中利用安装模版对预埋螺栓进行定位,并且控制螺栓预埋的质量。首先,根据施工图纸及有关规范编制焊接工艺;其次,对焊条的合格证进行检查,按说明书要求使用,焊缝表面不得有裂纹、焊瘤,不合格的焊缝不得擅自处理。

钢构件的除锈和涂料防护是保证结构耐久性的重要手段,构件表面的防锈方法和除锈等级应与设计采用的防锈涂料相适应,具体的适应性规范已明确表明。涂装施工的涂装质量也起着重要作用,即刷漆防腐质量。

3.3 质量控制要点

3.3.1 安装精度和变形的控制以及应力集中的预防

建立空间测量控制体系,及时分析测量成果,预防和纠正施工偏差;严格工厂预拼装,做好端接口的临时固定措施,减少运输、装卸等环节对构件的影响;从整体到局部,应保持按序施工和焊接,安装由两头往中间安装,焊接跟随进行,接口焊接对称同时进行;选择合适的焊接环境,确保焊接质量,预防焊接应力;选择适合操作的焊接空间是保证焊接质量的关键问题;严格超声检查,执行自检、监检程序,保证检查验收关。

3.3.2 焊接质量保证措施

配置专职质量检查员,监控材料、焊接、检查、验收的质量全过程;操作焊工持证上岗,具有多年重型钢结构焊接经验;根据焊接工艺评定,编制焊接工艺规程、工艺卡,施焊前作好焊接技术交底;制定专项测量方案和预拼装程序,保证安装质量;焊接过程认真执行“三检制”并作好焊前、焊中、焊后的质量检查记录。

结语

随着钢结构体系在建筑行业的广泛采用,我们决不能仅仅体现在提高效率和降低成本上,更多的应体现在施工质量的提高上。钢结构施工是建筑工程中的重要组成部分,因此,在施工过程中,要优化施工技术,合理采用施工方法,优化配置资源,加强对钢结构工程质量的控制,促进整个建筑工程质量的提高,严格按照施工图纸和相关的国家规范和标准进行施工建设,才能有效地保证钢结构施工的质量。

参考文献

[1]赵亚飞,纪鲁杰,吕文建.建筑工程中钢结构施工质量过程研究与安全对策[J].价值工程,2011(25).

[2]张记生,李萍.复杂钢结构工程的质量控制[J].建筑技术开发,2010(06).

第8篇

论文摘要:本文通过工程实例,针对工程难点,详细地阐述了高层建筑钢框架结构的吊装与安装、焊接技术。

1 工程概况

某超高层办公建筑由主楼和裙房组成。地上49层,地下3层,地面高度为183.75m,边长41.16m。外框为箱形钢柱,框架梁为H型钢,结构还采用了悬挑的巨大的对角斜支撑结构体系,斜支撑采用宽翼缘H型钢。结构体系所受的水平力主要由钢筋混凝土核心筒及斜撑承担。核心筒各层楼板均为钢筋混凝上现浇而成,核心筒与外框筒间梁为钢梁,剪力钉将焊于钢梁翼缘上,以形成组合楼板,楼层是由51mm深的压型钢板上浇筑74mm厚的混凝土而形成125mm厚的复合楼板。三层裙房承重体系为钢筋混凝土框架结构,楼盖为钢筋混凝土梁板结构,屋顶为钢结构支承的玻璃顶。

2 工程难度特点

结构的大截面钢斜撑是主要受力构件,承受上部分9层结构的竖向力及整个建筑的水平力。斜撑跨越9个结构层,每根斜撑长约58.lm,其高空吊装、定位、测量校正是本工程钢结构安装的最大难题。钢杜壁厚130mm,130mm厚钢板全熔透现场对接焊接在当时国内建筑钢结构施工中比较罕见,现场施焊困难,焊接质量控制难度较大。这是本工程钢结构施工的又一个难题。C4钢柱位于建筑边角部位,且此构件重量最大,给塔吊的选型、布置,结构层分段施工及钢柱、钢斜撑的分节吊装造成困难。

3 钢框架结构吊装施工

3.1 塔吊的计算与平面布置

本工程在塔楼的芯筒中央布设一台M440D内爬式塔吊,塔吊最大起重量32t,最大臂长55m。主体结构外侧布置一台500HC-S吊车,施工现场的临建、构件拼装场地、堆场、辅助建筑、工具房和机房的布设均需根据这两台塔吊的起重量布设。

两台塔吊间距L=410+5000+1217=4×5880+5000+1217=29.737m。式中:10为柱轴线间距。

塔吊升出核心筒的最大高度H =H0-nH1=45.1-6×3.75=22.6m。H0为内爬安装净高,n为标准层数,H1为标准层高度。

3.2 钢结构的吊装

地下室钢结构吊装。地下室钢结构主要包括核心筒劲性钢柱(4根)、外围钢柱(23根)及柱间钢斜撑。由于受现场施工条件的限制,开设坡道至地下室的难度较大,而且如果汽车吊开至地下室进行钢结构吊装,与土建施工相互影响较大,施工进度难以提高。因此,考虑在地下室底板施工初期就安装一台500HC-S外爬塔吊,既可以完成地下、地上所有钢结构构件的吊装,又可以进行M440D内爬塔吊的安装,有利于加快总体施工进度。

地上部分钢结构吊装。钢柱和钢斜撑均采取分节吊装时主要考虑的因素是:以满足M440D塔吊的起重能力和构件的运输能力为前提;尽可能地减少节点数;尽可能地保证钢柱节点数。钢柱的节点设置在楼层以上1.2m位置,以便于安装施工。

钢柱和钢梁的吊装吊装的原则:先装主梁后装次梁,为加快施工进度,对于较轻的钢梁宜采取一机多吊的方法,对于多楼层单元,先吊装顶层梁,后吊装下层梁,这样有利于框架的稳定性。

型钢斜撑的吊装是该工程中型钢斜撑的吊装是难点,由于型钢斜撑的长度达38m,整根吊装的难度较大,所以采取分节吊装,为了保证型钢斜撑的整体刚度和安装的稳定性,将型钢斜撑与楼层梁在地面拼装后整体吊装,钢梁起到临时支撑作用。

每根悬挑钢斜撑分为三节吊装,每节分别与钢梁在地面组装后整体吊装。链4、5用来调整钢斜撑的倾斜度,由于钢梁的刚度小,加上钢梁与钢斜撑只是临时连接,不宜承受重载,所以采用 链1、2、3来加强该组装件。在起吊前, 链1、2、 3一定要拉紧,以防止钢梁在吊装过程中变形。柱间型钢斜撑与悬挑钢斜撑相比尺寸重量较小,可以直接吊装。

4 钢板柱的连接施工技术

4.1 测量校正

根据地面控制点,在建筑物外围作平面轴线、标高控制网。将地面控制点投测到地下3层混凝土垫层,埋设地脚螺栓,每组地脚螺栓由标准样板固定相对尺寸。在地下3层混凝土底板面投测轴线、标高。

第一节钢柱就位时底板中心应对准定位线,用垫铁调整钢柱标高。用两台经纬仪在两个正交方向校正钢柱垂直度。考虑上部楼层平面几何形状,在地下3层地面确定4个激光点,并在以上各层楼板相应位置预留150mm ×150mm孔洞作平面轴线控制的激光投递。高程用钢尺垂直向上量距传递。

第二节钢柱、梁安装校正垂直度后,在投递的激光控制点上架设全站仪分片或整体观测柱顶轴线偏差,偏差值决定钢柱焊接顺序与方向。整个吊装结构层柱梁全部焊接完成后作轴线偏差复测,检验焊接时垂直度的影响。焊接后的柱顶轴线偏差又作为上节钢柱垂直度校正的依据,依次循环直到最后节。

对于斜立柱部分的安装校正,首先是将整个大楼设一平面独立坐标系,用全站仪观测柱顶边角坐标,与设计理论坐标比较,两者的差数即为轴线偏差值。通过校正来调整偏差值的大小。

4.2 特厚钢板柱连接

本工程采用焊接和高强度螺栓连接,外围结构由18根钢柱、跨9个结构层斜撑及钢框架梁构成,钢柱均为厚板与超厚板,箱形截面,其中C2、C4柱钢板厚达105-130mm,连接节点设计,有抗震设计和非抗震设计之分,本工程按抗震设计,须进行节点连接的承载力验算,采用等强度设计法进行计算,翼缘和腹板采用摩擦型高强度螺栓连接。

4.3 特厚钢板箱形柱施焊

该工程特厚板箱形柱的焊接,采用自根部深熔、缝中填充、面层焊缝全断面CO2气体保护半自动焊接方式:由两名工作习惯、运焊技法、焊接速度基本相同的熟练技工做对称施焊,首尾相合,全部作业要求除收弧段采用收弧电流作右向回焊外基本采用左向焊法。

根部施焊时,一名技工自柱偏移方向的反方向先行作根部深熔,根部的深熔采用一层几道的方法,层厚约等于6.5mm,道宽约等于6mm;施焊首道时,至少将始焊点移往面向直线段右方向柱角一直边的100mm处,禁止在角部始焊;收弧处,也必须绕过左方向柱角向前延长至少100mm,禁止在角部熄弧。全部焊段尽可能保持连续施焊,避免多次熄弧起弧。穿越安装连接板处时必须尽。可能将接头送过连接板中心至少30mm。作业要点如下:

同一层道焊缝出现一次或数次停顿需续焊时,始焊接头须在原熄弧处后至少15mm处燃弧,禁止在原熄弧处直接燃弧。

熄弧时,应待保护气体完全停止供给,焊缝完全冷凝后方能移走焊枪。禁止电弧刚停止燃烧即移走焊枪,使红热熔池暴露在大气中失去CO2气体保护。

第一层第一道,焊丝均匀保持20-25°的向下倾角,运焊采用划斜圆圈手法,斜圆指向衬板时稍加停顿,注意充分熔合直边母材和衬板的夹角部分。

第一层第二道是根部焊接相当重要的焊接部位。施焊时,焊丝与坡口直边侧仅能保持平行。电弧直接作用在首层首道的上部1/3处衬板未熔化部分和坡边角部,运焊仍采用划斜圆圈手法。

几层与除面层的各层首道。随坡口深度的减少,焊丝与直边的夹角逐渐从约等于20-25°改变成约等于40°,运焊手法仍采用划斜圆圈的方法

二层与除面层的各层堆垒道、焊丝与焊肉层面相对方向保持约90°± 5°,与运焊方向保持约等于65°夹角。运焊时,电弧熔焊至少要将上道焊缝的凸点处熔融,使冷凝后的焊道下沿均匀迭压在上道焊缝的凸点部,电弧在熔池后斜上部作向后推动动作。

二层与以后各填充层的最末一道,随坡口深度的减少焊丝与前层焊缝的夹角逐渐从约等于90°-100°加大向下倾角,但焊丝与运焊方向须始终保持约90°。电弧始终保持划斜长圆的方法使熔池形成长圆形。电弧始终兼顾上方坡边的熔化和下方前道焊缝的拱部熔融,并保持均匀向前巨不脱环链。

参考文献

第9篇

关键词:钢结构;稳定性设计;细部构造

稳定性是钢结构工程设计中需要重点考虑的内容之一,现实生活中因钢结构失稳造成的工程事故案例也较多,如美国哈特福特城的体育馆平面92m×110m的网架结构,突然于1978年坠落地面,原因是由于压杆屈曲失稳; 1988年我国也曾发生13・2m×18・0m钢网架因腹杆稳定不足在施工过程中塌落的事故;2010年1月3日下午,昆明新机场38m钢结构桥跨突然垮塌,造成7人死亡、8人重伤、26人轻伤,原因是桥下钢结构支撑体系突然失稳, 8m高的桥面随即垮塌下来。从上述案例可以看出,钢结构失稳破坏的原因通常是其结构设计不合理,存在结构设计缺陷所致,要从根本上杜绝此类事故的发生,钢结构稳定性设计是关键。

一、钢结构稳定性设计的概念

1.强度与稳定的区别强度是指结构或者单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,因此它是一个应力问题。极限强度的取值因材料的特性不同而异,对钢材是取它的屈服点。稳定主要是找出外部荷载与结构内部抵抗力间不稳定的平衡状态,即变形开始急剧增长而需设法避免进入的状态,因此它是一个变形问题。例如轴压柱,当失稳时柱的侧向挠度使柱中增加很大的附加弯矩,从而柱子的破坏荷载可以远远低于它的轴压强度,此时,失稳是柱子破坏的主要原因。

2.钢结构失稳的分类1)有平衡分岔的稳定问题(分支点失稳)。完善直杆轴心受压时的屈曲和平板中面受压时的屈曲均属于这一类。2)无平衡分岔的稳定问题(极值点失稳)。由建筑钢材做成的偏心受压构件,在塑性发展到一定程度时丧失稳定的能力,属于这一类。3)跳跃失稳是一种不同于以上两种类型的稳定问题,它是在丧失稳定平衡之后跳跃到另一个稳定平衡状态。

二、钢结构稳定性设计的原则

1.钢结构布置必须考虑整个体系以及组成部分的稳定性要求目前钢结构大多数是按照平面体系来设计的,如桁架和框架。保证这些平面结构不出现平面外失稳,需要从结构整体布置来解决,如增加必要的支撑构件等。要求平面结构构件的平面稳定计算需与结构布置相一致。

2.结构计算简图需与实用计算方法所依据的简图一致当设计单层或多层框架结构时,通常不做框架稳定分析而只做框架柱的稳定计算。采用这种方法计算框架柱稳定时用到的柱计算长度系数,应通过框架整体稳定分析得出,使柱稳定计算等效于框架稳定计算。《钢结构设计规范》(GB50017-2003)对单层或多层框架给出的柱计算长度系数采用了5条基本假定,其中包括:“框架中的所有柱子是同时丧失稳定的,即各柱同时达到其临界荷载”,按照这条假定,框架各柱的稳定参数、杆件稳定计算的常用方法,是依据一定的简化假设或者典型情况得出的,设计者需确认所设计的结构符合这些假设时才能正确应用。

3.钢结构的细部构造设计与构件的稳定计算应一致保证钢结构的细部构造设计与构件的稳定计算相符合,是钢结构设计中需要高度注意的问题。对要求传递弯矩和不传递弯矩的节点连接,应分别赋与它足够的刚度和柔度,对桁架节点应尽量减少杆件偏心。但是,当涉及稳定性能时,构造上时常有不同于强度的要求或特殊考虑。例如,简支梁就抗弯强度来说,对不动铰支座的要求仅仅是阻止位移,同时允许在平面内转动。然而在解决梁整体稳定时上述要求就不够了,支座还需能够阻止梁绕纵轴扭转,同时允许梁在平面内转动和梁端截面自由翘曲,以符合稳定分析所采取的边界条件。

三、钢结构稳定性的分析方法

钢结构稳定问题的分析都是针对在外荷载作用下结构存在变形的条件下进行的,此变形应该与所研究的结构或构件失稳时出现的变形相对应。结构变形与荷载之间呈非线性关系,稳定计算属于非线性几何问题,采用的是二阶分析方法。稳定计算所确定的不论是屈曲荷载还是极限荷载,都可视为所计算的结构或构件的稳定承载力。

1.静力法静力法即静力平衡法,是根据已发生了微小变形后结构的受力条件建立平衡微分方程,然后解出临界荷载。在建立平衡微分方程时遵循如下基本假定:1)构件是等截面直杆。2)压力始终沿构件原来轴线作用。3)材料符合胡克定律,即应力与应变成线性关系。4)构件符合平截面假定,即构件变形前的平截面在变形后仍为平截面。5)构件的弯曲变形是微小的,曲率可以近似地用挠度函数的二阶导数表示。根据以上假定条件可建立平衡微分方程,代入相应的边界条件,即可解得两端铰支的轴压构件的临界荷载。

2.能量法能量法是求解稳定承载力的一种近似方法,通过能量守恒原理和势能驻值原理求解临界荷载。1)能量守恒原理求解临界荷载。保守体系处在平衡状态时,贮存在结构体系中的应变能等于外力所做的功,即能量守恒原理。其临界状态的能量关系为:ΔU =ΔW式中 ΔU―――指应变能的增量; ΔW―――指外力功的增量。由能量守恒原理可建立平衡微分方程。2)势能驻值原理求解临界荷载。势能驻值原理指:受外力作用的结构,当位移有微小变化而总势能不变,即总势能有驻值时,结构处于平衡状态。表达式为:dΠ=dU-dW =0式中 dU―――指虚位移引起的结构内应变能的变化,它总是正值; dW―――指外力在虚位移上作的功。

3.动力法处于平衡状态的结构体系,如果施加微小干扰使其发生振动,这时结构的变形和振动加速度都和已经作用在结构上的荷载有关。当荷载小于稳定的极限荷载值时,加速度和变形的方向相反,因此干扰撤去后,运动趋于静止,结构的平衡状态是稳定的;当荷载大于稳定的极限荷载值时,加速度和变形的方向相同,即使撤去干扰,运动仍是发散的,因此结构的平衡状态是不稳定的。临界状态的荷载即为结构的屈曲荷载,可由结构的振动频率为零的条件解得。

第10篇

作者简介:

孙德发(1969-),男,嘉兴学院教务处副处长,嘉兴学院结构工程研究所所长,副教授,博士,主要从事土木工程教学、研究和管理研究,(E-mail)sdf@mail.zjxu.省略。

摘要:

针对行业的发展和当前钢结构建筑市场对钢结构人才的需求,分析了一般本科院校钢结构教学中存在的问题,对课程、课程设计、毕业设计和第二课堂的内容进行了全面分析与研究,构建并实施与理论教学密切配合的实践教学,将实践能力、创新精神和工程素质的培养寓于教育教学全过程,形成了第一课堂和第二课堂的互动效应。

关键词:钢结构;第一课堂;第二课堂;教学改革

中图分类号:TU391-4 文献标志码:A 文章编号:

1005-2909(2012)01-0066-03

近年来由于国家技术政策的扶持,建筑技术不断进步,建筑用钢量日益增长,钢结构在土木建筑领域的应用日益广泛,使钢结构课程在土木工程专业中的重要性不断增强,对钢结构课程的教学及人才培养也提出了更高的要求。

一、钢结构行业现状和人才需求

2005年中国的钢材产量达到37 117万t(现已达6亿t以上),已跃居世界首位。钢结构具有工业化程度高、施工周期短、造型优美、可回收循环利用、综合性能优越等诸多优点,因此,其在建筑行业中的作用日趋重要。随着钢结构经济指标的不断优化,中国钢结构应用政策在建国60年来发生了很大变化,20世纪50年代“节约用钢”,80年代“合理用钢”,90年代“提倡用钢”,2000年中国建筑金属结构协会建筑钢结构会议发出了《关于推行钢结构住宅的倡议书》。政府的支持使钢结构得到了快速发展,推广应用面进一步扩大,上海、浙江、江苏地区钢结构加工量约占全国钢结构加工量的1/3以上[1]。

随着钢结构的快速发展,出现了与行业发展不适应的人才短缺问题,企业亟需大批钢结构设计和施工的专门人才。目前国内钢结构作为一个专业研究方向仅在研究生层次有所涉及,本科层次人才培养近两年来刚刚在浙江树人大学[2]和内蒙古科技大学等少数几所高校中起步,绝大多数本科院校还没有从以钢结构设计应用为主的钢筋混凝土结构领域转到钢结构领域。

二、钢结构人才培养现状

据统计,在大多数一般本科院校钢结构只是土建类专业的一门课程,学生在4年学习中,接触到的有关钢结构课程少则50~60学时,最多不超过100学时。这些课程主要讲授钢结构的基本计算原理,实践性环节仅仅是一周的课程设计,

中间没有安排任何实践性教学环节,因此,学生在学习过程中没有机会接触到实际的钢结构建筑物,也不知道如何进行钢结构制作。学生如果没有很好的空间想像能力则很难把图纸所表达的意义和实际的建筑产品对应起来,因而也不能把自己的设计思想在设计图纸上表达清楚。

虽然各个学校都安排了学生的生产实习,但根据各校生产实习的基本情况来看,在生产实习中学生还是以混凝土结构的工程为主,几乎就没有接触到钢结构工程。

从学生的毕业设计选题来看,绝大部分学生都选择了混凝土结构的毕业设计题目,仅有少数学生选择了钢结构的设计,这就让有志于从事钢结构建筑的学生失去了上岗之前最后的锻炼机会。学生得不到良好的系统性和整体性训练,工程整体观模糊,不符合钢结构产业一体化综合发展的市场需要。因此,土木工程专业学生毕业后即使在钢结构领域从业,也远不能胜任岗位工作。

一方面是钢结构专业技术人员严重缺乏,企业求贤若渴,另一方面是相对不景气的就业市场,高校应该看到和抓住这个良好的契机,对钢结构课程教学进行改革,培养出具有良好钢结构专业素质、为企业所欢迎的合格人才。

三、教学改革探索与实践

首先,充分运用现代教育技术手段,建设以纸质教材为核心,以电子教案、多媒体辅助课件、网络课程等BB电子教育平台为支持的立体化教学资源库。课堂上集中突出基本概念、基本理论和主要技术要点的讲解和讨论,在有限的课内学时中加大知识传授容量,用启发学生思考的模式代替被动接受教学内容的模式。课堂外,学生可以在任何时间、任何地点,通过网络进行自主学习、交流讨论,实现教学模式拓展。

其次,积极探索课程和设计内容的改革与融合,以便形成课程、课程设计、毕业设计的紧密衔接,以培养和提高学生的综合素质和整体工程意识。具体措施体现为以下三点。

第一,将钢结构课程与钢结构课程设计相结合。

钢结构课程的目标是在学习理论力学、材料力学、结构力学等课程的基础上,学习和掌握有关钢材的力学特性、钢构件、连接和钢结构体系的分析计算与设计的基本概念、基本原理和基本方法。课程设计是将课程基本理念转化为课程实践活动的“桥梁”。在课程教学期间,将课程设计计算部分作为课程大作业提前布置[3],有利于课程设计任务的分解,有利于学生的“学”和教师的“教”,学生可以带着问题去思考、学习,明确设计任务和设计思想,注重课程学习与课程设计的有机结合。

第二,将钢结构课程设计与钢结构毕业设计相结合。

钢结构课程设计是钢结构课程的实践教学环节,通过课程设计,可加深学生对基本构件构造及连接的理解,使学生能够熟练掌握钢结构基本构件的设计计算原理和方法,熟悉钢结构的设计过程,了解钢结构的构造要求,培养和提高学生的综合设计能力。在原有传统屋架设计与现代轻型门式刚架厂房设计相结合的基础上,可进一步拓展课程设计内容,实施双向选择,学生可以自主选题,也可以分工合作共同完成一个较大的设计题目。学院亦积极为学生搭建最全面的灵活的学习平台,培养其创新精神和团队意识。

但由于时间的限制,课程设计的广度和深度还比较欠缺,系统训练还不够,因此,在毕业设计教学环节尽可能安排一些有关钢结构研究和设计选题供学生选择,进一步拓展,打破设计题目单一的状况,使部分学生通过毕业设计阶段的学习获得更全面、更扎实的钢结构知识和应用技能。毕业设计阶段共安排16周时间,其中安排1周时间,结合指导教师的专业特点,引导学生关注钢结构的发展现状,促使其检索科学论文或进行调研。学生在毕业设计期间带着问题思考,最终以文献综述或开题报告的形式提交。毕业实习安排1周时间,由指导教师带队,在钢结构工地、钢构件加工厂实习,亦可聘请设计和施工单位的专家来校开展专题讲座。其余14周,指导教师按计划布置工作,每周都要辅导学生,密切关注

设计中的每一个环节和整个进度,既不包办代替,也不放任自流。教师还要注意调动学生的积极性,充分发挥其主动性、创造性。

第三,课程、结构设计竞赛与大学生创新项目的“三结合”,培养创新精神和实践能力。

针对钢结构课程的特点,遵循工程类课程的学习规律,首先建立学生对钢结构的感性认识,通过结构设计竞赛与大学生创新项目,将课程教学的结构设计内容、综合方案、计算、制作、试验等有机结合,激发学生学习兴趣,提高教学效果,以培养和提高学生的综合素质和整体工程意识,形成第一课堂(课程、课程设计、毕业设计)和第二课堂(结构设计竞赛与大学生创新项目)的互动效应,如图1所示。

四、结语

在培养方案中教学总学时未增加的前提下,钢结构课程改革的教学效果已初见成效。

以BB电子教育平台支持的立体化教学资源库包括通知、申报与检查、课程简介、课程规划、师资队伍、课程教学录像、教学大纲、授课教案、课程课件、参考资料、作业及习题集、教研活动、课程设计与毕业设计、结构竞赛与SRT、小组交流、讨论板、外部链接、同行评价和测试区。注册用户503个、参与用户457个,讨论板发帖1 368个、测试区在线测试题9套。通过多媒体教学(BB系统),引入工程实例、部分动画和模型,增强学生感性认识和理性思考,效果比较理想,再结合富有成效的传统教学方法,教学效果显著。学院钢结构网络课程荣获第七届浙江省高校教师教学软件评比三等奖,钢结构课程被评为浙江省高等学校精品课程。

在课程教学期间,将课程设计计算部分作为课程大作业提前布置,使学生明确设计任务和设计思想,注重课程学习与课程设计的有机结合,基本解决了课程设计教学量大与学生精力投人不足之间的矛盾,有利于师生的交流与沟通,课程设计质量明显提高。在此基础上,结合就业和毕业设计,进一步拓展,使部分学生通过毕业设计阶段的学习获得更全面、更扎实的钢结构知识和应用技能,培养工程能力。从用人单位反馈的信息来看,做过钢结构毕业设计的学生,普遍得到好评,已成为技术骨干。

课程、结构设计竞赛与大学生创新项目的“三结合”已建立,嘉兴学院“江南钢构杯”结构设计竞赛已成功举办了六届,大赛展示了学生的创新能力,提升了学生的实践动手能力,体现了团队合作精神。从2005年开始,作为教学实践检验,每年组织学生参加“浙江省大学生结构设计竞赛”均获奖项。此外,近年来土木工程专业学生已完成钢结构校内SRT项目10项、浙江省大学生科技创新项目2项,在研浙江省大学生科技创新项目3项。

参考文献:

[1] 陈禄如.我国钢结构行业发展的现状、趋势和存在的问题[J].建筑,2008(4):57-59.

[2] 邢丽,姚谏,陈新民,金小群.校企合作培养钢结构应用型人才的探索[J].中国大学教学,2010(9):23-24.

[3] 孙德发,李刚,刘俊英.关于提高钢结构课程设计教学质量的教改实践[J].嘉兴学院学报,2008(5):139-141.

Research and practices of teaching reform of steel structure course

SUN De-fa, LIU Jun-ying, NIU Zhi-rong, LI Gang

(Institute of Structural Engineering, Jiaxing University, Jiaxing 314001, Zhejiang province, P. R. China)

Abstract:

第11篇

论文关键词:型偏心支撑钢框架,轴心压力,有限元,抗震性能

引言

偏心支撑钢框架是在中心支撑钢框架的基础上改进的一种新型抗侧力体系,该体系结合了中心支撑钢框架强度、刚度高和抗弯框架延性、耗能性能好的优点,是适用于高烈度地震区的一种有效的抗侧力结构体系。目前,国内外对偏心支撑钢框架的研究主要集中在耗能梁段上,很少有人考虑由于层数不同而引起的柱的轴心压力不同从而引起抗震性能的影响。因此,研究柱的轴心压力不同导致其抗震性能的差异是很有现实意义的,并且能为理论设计提供有益的参考数据。

2.试件描述

2.1基本试件

为了更真实地模拟地震作用下框架的实际受力行为,

试件取底层一跨两层的一榀框架作为有限元分析的基本

试件,进行有限元分析的试件的外形及几何尺寸如图1

所示。梁、柱和支撑及耗能梁段的截面尺寸分别为:

350×200×10×16、450×300×12×20和300×200×10

×10,耗能梁段的长度为400mm,耗能梁段加劲肋的厚度

为10mm,支撑与梁柱交点处的细部构造参考《多、高层

民用建筑钢结构节点构造详图》进行设计。梁柱连接、

支撑两端与框架的连接,均采取刚性连接的形式,焊缝采

用E43型焊条,其余钢材均为Q235钢。

2.2参数试件

参数试件的设计是将基本试件的柱轴心压力进行改变,

以考察其对K型偏心支撑钢框架受力性能的影响。这组参

数试件与基本试件比较,主要是改变柱的轴向压力,参数

试件的尺寸与基本试件完全相同。

参数试件与基本试件轴心压力不同的部分见表1:

表1基本试件与参数试件一览表

试 件

试件1

试件2

基本试件

试件3

试件4

轴压力(N/mm )

47

94

141

188

轴压比

0.2

0.4

第12篇

【关键词】 蜂窝梁;规范;设计

一、引言

蜂窝梁是由工字钢(H型钢)经切割、焊接而成的空腹梁。蜂窝梁的截面高度h与原梁截面高度H之比称为扩张比,一般在1.3~1.6之间,常用的扩张比为1.5。由于扩张后增大了截面惯性矩和截面模量,提高了梁的抗弯强度和刚度,使梁可以应用于更大的跨度,承受更大的荷载。蜂窝梁腹板的孔洞既美观又便于布设设备管线,这对高层建筑甚为有利,可以避免管道从梁下穿过所带来层高的增加。与实腹梁相比,蜂窝梁自重轻、承载能力高;与组合桁架相比,其建筑构造简单,防腐性能好。据国外资料介绍,以蜂窝梁代替实腹梁能节省钢材25%~50%,节省油漆和运输安装费用15%~34.6%。因为蜂窝梁有着许多其他受弯构件所不具备的优点,自20世纪初首次被用于工程以来,随着轧制宽翼缘钢材的出现,蜂窝梁已日渐广泛地被应用于桥梁、厂房、办公楼、轮船及吊车桥架等工程中。

二、各国规范的有关规定

英国钢结构规范BS5950 Part 1中列人了蜂窝梁的计算公式,钢结构设计手册中也列入了通用的蜂窝梁、柱、格栅等的规格和性能。前苏联也在1982年钢结构设计规范中列入了有关蜂窝梁计算等内容,是以Allftlish等人提出的费氏空腹桁架法为理论基础推导出来的。日本钢结构协会编的《新版H型钢系列》中提供了一套蜂窝梁简化计算公式,它是目前广泛采用的公式。英国规范BS5950规定:截面的抗弯承载力应根据净截面性能计算,并应适当考虑孔洞处剪力对空腹的影响。如果梁上有集中荷载,也应考虑集中荷载的局部影响。虽然没有给出具体的计算公式,但其理论基础还是费氏空腹桁架法。美国《Computer and Structures》杂志在近似计算和差分法的基础上提出了用有限元理论编制的适用于IBM1620型小容量计算机的专用程序。一些国家规范(加拿大规范CAN/CSA-S16.1-94)中虽没有蜂窝梁的明确提法,但其对在梁腹板上开大孔的情况也做了相关的规定。

目前在我国,虽然近年来在若干著作和研究论文中介绍了蜂窝梁的设计和计算,但尚未在相关规范或标准中列入蜂窝梁的设计条文。由于没有可以遵循的工程设计规范或标准,在很大程度上制约了蜂窝梁在我国的推广使用。可见,许多国家规范关于蜂窝梁的正应力计算方法均以费氏空腹桁架法为基础,尽管经过试验验证由此算得的应力分布与实际情况有别,但所得的最大正应力与梁的实际情况相符。又因其应力分析明确,计算方便,此法已被许多国家用以计算蜂窝梁的强度。

由于日本推荐的简化公式可以满足精度要求,并且比其他方法简单许多,因而我国学者推荐使用日本的正应力简化公式:

梁桥趾处T型截面:

?滓=■+■≤f

关于蜂窝梁抗剪强度的验算,各国的方法都一样,一般包括以下两方面:

(1)蜂窝梁孔腹板净截面处的验算。

在空腹处的T形截面剪力按下式进行验算:?子=■≤fv

(2)蜂窝梁孔之间的腹板对接焊缝的验算。

邻近支座第1,2孔洞间墩腰处焊缝:?子=■≤fvw

刚度计算、稳定性验算(整体稳定性、局部稳定性)不在此文中讨论。

三、设计实例

钢梁跨度20 m,次梁间距2 m,楼面铺设组合楼板,压型钢板型号YX75-200-600厚度1.0mm,混凝土厚度为80mm。楼面恒荷载3.5 kN/ ,活荷载为2.0 kN ,合计:q=1.35×3.5+1.4×2.0=7.525 kN/,=3.5+2.0=5.5 kN/。

线荷载:q=2.000×7.525=15.05 kN/m,=2.000×5.5=11 kN/m。

(1)当量实腹梁截面估算

次梁允许挠度:v=20000×■=80mm,其挠度增大系数取为?浊=1.2,则所需要的当量实腹梁截面惯性矩为:

I0=?浊■=1.2×■=1.64×109mm4=167000cm4。

按挠度计算的最小梁高为:

h1=?浊0.6fl(■)×10-6=1.2×0.6×215×20000×10-6=774mm。

选取当量实腹梁截面为H800×350×16×18,Ix=252123cm4。

(2)蜂窝梁切割前型钢截面的确定

蜂窝梁扩大比k1=1.5,其切割前的高度h=h1/l=800/1.5=533mm,相应的H型钢规格为H533×350×16×18,蜂窝梁的高跨比k2=h1/l=■,与挠度增大系数?浊=1.2一致,初选截面成立。

(3)蜂窝梁孔型尺寸

蜂窝梁采用六角形,扩大比k1=1.5,相应尺寸如下:

d1(1-■)h=(1-■)×533=133.25mm,

d2(k1-1)h=(1.5-1)×533=266.5mm,

蜂窝梁单元尺寸为l1×266.5+4×133.4=800mm。

(4)校核截面板件宽(高)厚比条件

上下翼缘外伸宽度:b/t=133.25/18=7.4

桥部T型截面腹板:d1/tw=(133.25-18)/16=7.2

墩部工字型截面腹板:h0/tw=(800-218)/16=47.75

(5)蜂窝梁截面特性

1.梁桥趾处T型截面:

AT=35×18+11.55×1.6=81.48cm2,

XT=■10.9cm,

IT=805.5cm2,

WTmin=■=73.9cm2,

WTmin=■=328.8cm3,Ib=126.334cm4

AW=2×(11.55×1.6)=36.96cm2,hz=2×(26.65+1.09)=55.48cm。

2.墩处实腹截面(当量实腹梁截面):

A1=248.24cm2,I1=252123cm4,W1=6303.1cm3,Iy1=12888.5cm4

Wy1=■=736cm3

iy=7.2cm。

(6)蜂窝梁内力

1.桥趾截面处 T 型截面腹板应力计算截面位置确定x=■-■=877.5cm,此处内力为:

Mx=■qlx-■qx2=■×15.05×20×8.755-■×15.05×8.7552=741.2kN・m,

Vx=■ql-qx=■×15.05×20-15.05×8.755=18.4kN。

2.跨中弯矩计算

Mmax=■ql2=752.5kN・m,

支座处剪力:Vmax=■ql=206.5kN

梁墩处实腹截面:?滓=■131N/mm2

梁桥趾处 T 型截面:

?滓=■+■=163.96+16.6=180.7N/mm2

3.支座截面抗剪强度。

上部截面对中和轴的面积矩:S=3630692mm3,

?子=■=■=18.6N/mm2

铺设组合楼板时,应考虑钢梁的稳定问题。

参考文献

[1]罗烈,罗晓霖.蜂窝梁设计规范的比较研究[J].建筑钢结构进展.2005(2):43~47

[2]王洪范,王立新.蜂窝梁的应用和计算方法[J].工业建筑.1994(6):33~35