HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 电力保障论文

电力保障论文

时间:2022-08-13 03:53:44

电力保障论文

第1篇

关键词:继电保护,维护,故障处理

 

0 引言

随着我国电力工业和电力系统的快速发展,对发电厂、变电站的安全、经济运行要求越来越高。另外,因电子、计算机和通信系统的快速发展,也使得发电厂、变电站监控系统的自动化水平不断提高。微机继电保护和安全自动装置也成为了电网安全稳定运行和可靠供电的重要保障。

1 继电保护发展现状

上世纪60年代到80年代是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了500kV线路保护完全依靠从国外进口的时代。在20世纪70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产和应用仍处于主导地位,这是集成电路保护时代。免费论文,维护。我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。从90年代开始我国继电保护技术已进入了微机保护的时代。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

2继电保护的维护管理

2.1 微机保护装置要采取电磁干扰防护措施

变电站改造中,电磁型保护更换成微机型保护时,必须采取防电磁干扰的技术措施,即严格执行微机保护装置的安装条件,安装带有屏蔽层的电缆,而且两端的屏蔽层必须接地。防止由于线路较长,一端接地时,另一端会由于电磁干扰产生电压、电流,造成微机保护的拒动或误动。为减少保护装置故障和错误出现的几率,微机保护装置必须优化设计、合理制造工艺以及元、器件的高质量。同时还要采用屏蔽和隔离等技术来保证装置的可靠性,从而提高抗干扰的能力。

2.2 微机保护装置的接地要严格按规定执行

微机保护装置内部是电子电路,容易受到强电场、强磁场的十扰,外壳的接地屏蔽有利于改善微机保护装置的运行环境;微机保护提高可靠性,应以抑制干扰源、阻塞耦合通道、提高敏感回路抗干扰能力入手,并运用自动检测技术及容错设计来保证微机保护装置的可靠性;容错即容忍错误,即使出现局部错误也不会导致保护装置的误动或拒动。免费论文,维护。容错设计则是利用冗余的设备在线运行,以保证保护装置的不间断运行。采用容错技术设计是为了换取常规设计所不能得到的高可靠性,确保微机保护装置的可靠运行。

2.3 防误措施

微机保护的一些定值设定以及重要参数修改在硬件设计上设置操作锁,操作时必须正确输入操作员的密码和监护人的密码时,方可进行正常操作,并将操作人和监护人的姓名等信息予以记录和保存。

2.4 继电保护装置的日常维护

(1)当班运行人员定时对继电保护装里进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注惫与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次。

(5)每月对微机保护的打印机进行检查并打印。免费论文,维护。

3 继电保护故障处理要点

继电保护工作是一项技术性很强的工作。如果只想学会对设备的调试并不难,只要经过一段时间的培训,按照调试大纲依次进行就可实现。而一旦出现异常现象,想处理它并非易事。它要求工作人员有扎实的理论基础,更要有解决处理故障的有效方法。一个合适的方法,在工作中能帮你少走弯路,提高效率。可以说继电保护技术性很大程度上体现在故障处理的能力上。因此,如何用最快最有效的方法去处理故障,体现技术水平,成为广大继电保护工作者所共同要探讨的课题。下面是常用的几种故障处理方法。

3.1 直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10KV开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

3.2 掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。免费论文,维护。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其它地方查故障。

如一条110 kV旁路L FP-941A微机保护运行指示灯忽闪忽灭,并不打印任何故障报告,很难判断为何故障。正好附近有备用间隔,取各插件相应对换,查出故障在CPU插件上。用此项方法,要特别注意插件内的跳线、程序及定值芯片是否一样,确认无误方可掉换,并根据情况模拟传动。

3.3 逐项拆除法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。免费论文,维护。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。免费论文,维护。

4 结语

继电保护是电力系统安全正常运行的重要保障,目前已经得到了广泛的应用,随着科学技术的不断进步,继电保护技术日益呈现出向微机化,网络化,智能化,保护、控制、测量和数据通信一体化发展的趋势。

参考文献:

[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.

[2]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006,(4):80-83.

第2篇

关键词:电力系统;继电保护;故障处理

DOI:10.16640/ki.37-1222/t.2017.10.154

从目前的分析情况来看,虽然继电保护在电力系统当中有着重要的应用价值,但是在一些不可避免的因素面前,继电保护还是会发生故障,而这些故障的产生会严重影响电力系统的运行,所以积极的进行故障的分析和问题的处理有着重要的意义。基于此,系统的分析继电保护故障的产生以及具体的解决方法便有了非常重的现实价值。

1 继电保护故障产生的原因

就目前的研究情况来看,电力系统的继电保护故障产生有三方面的原因:第一是装置自身的老化。继电保护装置的材料有自身的寿命,随着时间的推移,其材料老化会越来越严重,所以装置在运行的过程中会因为自身材料性能下降出现故障。第二是继电保护装置受到系统不稳定电压或者电流的影响出现故障。在某些特殊的时刻,电力系统的电压或者电流会发生暂时性的紊乱,由此会形成继电保护故障。第三是外力破坏导继电保护故障。因为自然力或者是人为力的破坏会造成继电保护装置的运行异常,所以此异常会导致继电保护装置发生故障。

2 继电保护故障解决中出现的问题

2.1 故障检测不到位

故障检测不到位是目前继电保护故障解决中出现的一个主要问题。在电力系统当中,继电保护的位置设备比较多样,其目的主要是为了尽可能多的实现对线路系统和设备的安全保障。在这样的大环境下,系统中的继电保护装置设置比较繁多。在繁多的继电保护装置中,对故障装置进行有效的判断可以进一步的提升故障解决的效率,但是在目前的工作中,这种故障检测不到位的情况十分的普遍,所以造成了问题解决的效率性下降。基于此,在故障解决的过程中进行监测强化意义重大。

2.2 故障分析不足

故障分析不足也是目前继电保护故障解决中存在的一个显著问题。一般而言,电力系统的继电保护故障有明确的分类,但是在具体的实践应用中,因为环境的不同以及接触因素的差异,整个故障的原因显得更加的复杂。这时候,为了更快的找出针对性的解决策略,必须要对故障进行全面的分析,无论是系统层面的,还是细节层面的都不能放过。但是在目前的工作中,往往是在因素分析不明确的情况下进行措施的采取,因此会出现较多效率低下和资源浪费的情况。

2.3 故障解决的专业性不强

故障解决的专业性不强也是目前电力系统继电保护故障解决中的一个显著问题。专业性不强主要是两方面的原因:第一是人员的专业性不足。在问题处理的过程中,一方面要加强工作人员的基本理论培养,另一方面是要加强对工作人员的实践操作培养,这样,理论和实践才能综合提升,故障解决才会具有专业性,但是就目前的情况来看,两方面都存在缺陷。第二是在问题解决的过程中,对于技术的研究深入也不够,因此技术对于故障的针对性比较差,所以故障解决的专业性也很难获得有效的提升。

3 继电保护故障处理的有效措施

3.1 利用完善的监测系统为故障的解决提供有效的参考

在继电保护的故障处理措施中,一项有效的策略就是利用完善的监测系统对继电保护装置的运行进行监测,这样既可以获取继电保护装置的运行消息,还可以在故障发生的时候获得及时的信息。而要进行完善的监测系统布置,则需要进行两方面的共同作用:第一是对继电保护装置的位置进行全面的分析。因为通过位置分析可以判断继电保护装置的保护范围,而这个范围可以为监测提供一定的区域参考。第二是在区域参考的基础上进行电子监测设备的安装。电力监测设备可以很好的将继电保护装置的运行状态等进行监控,这样,只要通过设备监控端便可以分析继电保护的运行,而在数据分析的基础上,继电保护装置的运行异常也可以事先进行判断。

3.2 利用全面性的分析找出故障解决的针对性策略

利用全面性的分析找出故障解决的针对性策略是在继电保护故障处理中运用的另一项有效策略。从实际分析来看,造成继电保护故障的因素有很多,所以在问题分析不具体的情况下,故障解决策略很难实现针对性和实效性,为此,分析故障便有了重要的意义。就目前的故障分析来看,主要的措施有两个:第一是对故障结构进行全面的分析和判断,虽然说继电保护故障发生具有统一性,但是在具体结构表现方面存在着细致的差异,所以通过结构判断可以分析产生的原因。第二是对针对故障进行假设分析,这样可以在第一时间得到问题的可能性判断。故障解决注重的一个要素是时效,所以利用此方式能够提高问题解决的时效性。简言之,在可能性分析和结构判嗟幕础上,故障问题分析更加具体,所以措施采取也会更加的具体。

3.3 运用专业化的人员及手法进行故障问题的针对性解决

在电力系统变电故障解决的过程中,另一个有效的措施就是进行专业化人员以及技术的利用,在此技术上实现问题解决的针对性,故障处理的效率和质量会有明显的提升。而在专业人员和技术运用方面需要两方面的措施:第一是进行专业的工作人员队伍建设。专业的人员队伍包括两部分内容:首先是具备专业理论的工作人员,因为理论是实践的指导,所以具备了专业的理论可以让实践更加的具有目的性。其次是标准的操作。在理论指导下执行标准的操作,整个实践的效率和质量会提升,所以工作人员对于理论和执行操作方面要素缺一不可。第二是进行专业的技术分析。在故障类别划分研究的深入情况下,针对性的提升技术,故障问题解决的质量会更高。

4 结束语

虽然说电力系统的工作对继电保护较为重视,但是继电保护的故障确实不能避免,因此,详细的分析继电保护故障产生的原因,并讨论故障问题解决过程中出现的问题,从而总结出有效的解决措施对于故障消除意义重大。

参考文献:

[1]谢春霖.继电保护故障分析处理系统在电力系统中的应用[J].科技创新与应用,2016(21):215.

第3篇

【关键词】电网故障;贝叶斯网络;粗糙集

0 引言

随着电力系统日趋大型化,电网故障日趋复杂化,所以在电力中故障是系统不可避免的。一旦发生故障,如何快速诊断故障类型,防止事故扩大非常重要。如果故障不能及时有效地控制和处理,将可能造成系统稳定破坏、电网瓦解、重大设备损坏和大面积停电,直接影响到用户的切实利益,甚至影响社会大生产的顺利进行。为了保证电力生产的安全性,保证电能供应的可靠性和连续性,在输配电网发生故障时,需要可靠的电网故障诊断系统为工作人员迅速进行诊断和处理提供决策参考。

目前国内外用于电网故障诊断的技术包括:遗传算法,专家系统,Petri网络等。

遗传算法从优化的角度出发基本上可以解决故障诊断问题,尤其是在复杂故障或存在保护、断路器拒动、误动的情况下,能够给出全局最优或局部最优的多个可能的诊断结果。但遗传算法存在的主要“瓶颈”是如何建立合理的电网故障诊断数学模型。专家系统的典型缺点为学习能力差、容错性差及诊断速度偏慢。Petri网络用于建模的时间较长,随着设备的增加和网络的扩大,存在着较大的问题,同时针对现场普遍存在的保护、断路器误动拒动及由于通信线路故障引起的故障信息畸变,Petri网络需要提高其容错能力和处理电网拓扑的改变。

本文主要采用贝叶斯网络进行诊断。贝叶斯网络是一种不确定性的因果关系关联模型、具有强大的不确定性问题处理能力,同时它能有效的进行多源的信息表达与融合,是一种基于网络结构的有向图解描述。贝叶斯网络的以上的特性与故障诊断问题的要求内在一致,故贝叶斯网络也可以应用于不同领域的故障诊断。在电网故障诊断中,贝叶斯网络具有很多独有的特性和优点,基于贝叶斯网络的故障诊断方法,是对贝叶斯公式本身的改进,在处理不完备信息时,提出了采用证据的不确定性推理和比较异常事件数两种方法,减少了计算量,提高了算法的实用性。

1 贝叶斯网络方法概述

贝叶斯网络是一种对概率关系的有向图解描述,它提供了一种将知识直觉地图解可视化的方法。一个贝叶斯网络是一个有向无循环图(DAG),它的节点用随机变量标识,弧代表影响概率,用条件概率标识。一个简单的贝叶斯网络如图1所示。

图1 一种简单的贝叶斯网络

在网络中,定性信息通过网络的拓扑结构表达,定量信息通过节点的联合概率密度表示。其数学描述为:若论域U={x1,x2,…,xn},其中,x1,x2,…xn对应于网络中各节点,则联合概率P(x1,x2,…,xn)为:

P(U)=P(x1,x2,…,xn)

式中P(x)为xi父节点的集合。

对一具有m个基本事件{xi1},{xi2},…,{xim}的随机变量xi,假设已取得除xi外所有与其相关变量的观察结果V=(x1,…,xi-1,xi+1,…,xn),则其条件概率为:

贝叶斯网络模型能表示变量集合的联合概率分布,并能分析大量变量之间的相互关系,利用贝叶斯网络方法,可以完成预测,分类和诊断等任务。

2 基于贝叶斯网络的故障诊断方法

由于贝叶斯网络是一种不确定性因果关系关联模型,具有强大的不确定性问题处理能力,它的特性和故障诊断中要求解决因不确定性和不完备故障信息带来的故障诊断困难的要求内在一致,因此本文提出运用贝叶斯网络对电网故障进行诊断的方法。根据电力系统的物理拓扑结构和保护装置的动作原理,分别建立系统中元件的故障诊断贝叶斯网络模型,实现故障诊断的分布式处理。

2.1 电网故障类型及粗糙集约简

常见的电网故障主要是短路故障,短路故障包括单相接地短路、两相短路、两相接地短路故障、三相对称短路故障。电网在发生各种短路故障时,电流和阻抗也不断变化。当电力系统发生不对称故障时,三相阻抗不同,三相电压和电流的有效值不同,相与相间的相位差也不相等。对于这样的不对称三相系统就不能只分析其中一相,通常是用对称分量法,将一组不对称三相系统分解为正序、负序、零序三组对称的三相系统,来分析不对称故障问题。

粗糙集理论是研究不完整数据及不精确知识的表达、学习、归纳的一套方法,能在保留关键信息的前提下对知识进行处理,并求得知识的最小表达。本文选用粗糙集理论对故障信息量进行约简,选取平均互信息最小的组合作为最佳属性约简组合。

2.2 基于贝叶斯网络电网故障诊断模型

本文根据故障信息判定故障类型。提取故障时的信息量,运用粗糙集进行约简,约简后的故障类型对应着一个贝叶斯网络,网络的输入是决策表的条件属性,输出是决策表的决策属性,综上,本文是一种基于粗糙集与贝叶斯网络相融合的电网故障类型诊断网络模型,其网络结构如图所示。

图2 贝叶斯网络模型图

2.3 基于贝叶斯网络的电网故障类型诊断方法

本文用粗糙集进行知识挖掘,以便在故障发生后能迅速判别出故障区域及故障元件。

基于贝叶斯网络的电网故障类型诊断过程如下:

(1)将获取的故障信息作为条件属性,故障类型作为决策属性,形成故障类型决策表。

(2)运用粗糙集对故障类型决策表进行知识挖掘,删除冗余属性,实行属性优选,消除不一致性的噪声,进行对象约简,形成故障类型简化决策表。

基于贝叶斯网络的电网故障诊断方法流程如图3所示:

图3 电网故障诊断流程

3 结论

本文通过对常见电网短路故障进行分析,提出了一种基于粗糙集理论和贝叶斯网络相结合进行电网故障诊断的方法,能够优势互补。

(1)先利用粗糙集的属性约简,分析故障信息的冗余性,在保证分类能力不变的情况下,化简故障信息,然后利用贝叶斯网络及推理得出诊断结果,可以提高系统在缺失关键警报信息情况下的容错性;

(2)利用贝叶斯网络进行诊断推理,可以提高诊断速度,克服单独使用粗糙集诊断速度较慢的缺点。

通过仿真实验表明,该方法能在一定程度上提高系统的容错性,诊断速度快,可靠性高,具有很好的实用性。

【参考文献】

[1]聂倩雯.基于关联规则数据挖掘和扩展贝叶斯网络的电网故障诊断方法研究[D].成都:西南交通大学,2010.

[2]张耀天,何正友,赵静,等.基于粗糙集理论和朴素贝叶斯网络的电网故障诊断方法[J].电网技术,2007,31(1):37-43.

[3]基于粗糙集和朴素贝叶斯的电网故障诊断方法研究[D].成都:西南交通大学,2007.

[4]宋功益,王晓茹,周曙.基于贝叶斯网的电网多区域复杂故障诊断研究[D].成都:西南交通大学,2011.

第4篇

>> 电力系统中电气主设备的继电保护技术探讨 电力系统继电保护技术 电气主设备继电保护技术分析 浅谈电气主设备继电保护技术 电气主设备继电保护技术解析 电气主设备继电保护技术论述 浅谈电力系统中的继电保护技术 浅析电力系统中的继电保护技术 继电保护技术在电力系统中应用 电力系统中电气设备接地技术 电力系统继电保护技术的革新探究 关于电力系统继电保护设备的改造 电力系统中的继电保护设备及其自动化可研究 电力系统中自动化与继电保护设备的可靠性 对电力系统继电保护技术的探讨 关于电力系统继电保护技术的分析 浅析电力系统继电保护技术 浅议电力系统继电保护技术及其前景 试论电力系统继电保护技术的应用 电力系统继电保护技术的简要探讨 常见问题解答 当前所在位置:

二、主设备保护的发展趋势

(一)保护装置的一体化发展

1.充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。

2.主后一体化装置,给故障录波、后台分析带来了便利。任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。

3.主后一体化装置便于保护双重化的实现。主后共用一组TA,TA断线概率大大下降;装置数量少,误动概率降低。

(二)新型光电流互感器、光电压互感器的应用

传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。

(三)信息网络化

变电站监控和发电厂电气监控系统的发展,要求主设备保护具有强大的通信功能,以便通过监控系统实现保护动作报文管理、故障数据处理、定值远方整定、事故追忆等功能,实现了电气智能设备运行的深层次管理。

在采用高速度、大容量的微处理器及高速总线设计后,保护装置将具有更完善的数据处理功能和通信功能,可以更好地实现保护信息化、网络化设计。主设备保护除了动作后经通信网络上传故障报文、数据到监控系统以外,还可以为系统动态提供保护装置的运行状态和信息,并可根据系统运行方式的变化通过数据交换,提供修改保护判据和定值的依据,保证全系统的安全稳定运行。

(四)故障分析技术

新一代主设备保护必须具有强大的故障录波功能,除了记录完整的事件报文、故障数据外,装置还可以记录故障发生前后全过程所有的模拟量、开关量、启动量、中间量的变化,完整地记录每个保护的动作行为。主设备保护的故障信息上传至电气监控系统或保护信息管理系统后,通过高级应用软件,分析保护的动作行为是否正确,为故障查找、分析提供充分的依据。完整的故障数据经数字仿真系统可实现主设备的故障再现,对事故进行深入分析,为保护性能的改进完善提供重要的依据。

(五)信息网络技术

当代继电保护技术的发展,正在从传统的模拟式、数字式探索着进入信息技术领域。在变电站综合自动化方面,保护的配置比较灵活。如果变电站综合自动化采用传统模式,也就是远方终端装置(RTU)加上当地监控系统,这时候,保护装置的信息可以通过遥信输入回路进入RTU,也可以通过串行口与RTU按照约定的通信规约进行信息传递。

(六)自适应技术、智能技术和数字技术的发展

自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。对于主设备保护而言,它与某些保护的判据、定值和系统的变化也是息息相关的,比如发电机失步保护、变压器零序保护等。目前,部分保护功能已经具备了一定的自适应能力,比如浮动门限、变斜率比率差动保护中的制动特性、自适应3次谐波电压比率定子接地判据等。随着与微机保护技术密切相关的其他科技领域新技术和新理论的出现,通信技术、信息技术、自适应控制理论、全球定位系统(GPS)等的应用,必将促进自适应保护的飞速发展。

三、结语

随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。在我国当前继电器发展的主要趋势是逐步朝着计算机化、网络化发展,以实现智能化控制和保护系统为前提基础进行探索和追求。为此,必须从电力系统全局出发,进行电气设备继电保护的相关研究。

【参考文献】:

第5篇

论文摘要:近年来,主设备保护通过对故障过程的电磁暂态过程的研究、TA饱和特性的研究、内部故障理论分析,结合实际动模和数字仿真,提出了一些新的原理并已在现场广泛应用。TA饱和问题是主设备保护共同面对的问题,国内外也提出了一些识别TA饱和的办法,但是也存在不足之处。文章着重介绍了电力系统中主设备继电保护的现状,阐述了发展趋势。

电气设备的继电保护主要是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以称继电保护。

随着科学技术的发展,特别是电子技术、计算机技术和通信技术的发展,电力系统继电保护先后经历了不同的发展时期。近10年来,电力工业突飞猛进,整个电力系统呈现出往超高电压等级、单机容量增大、大联网系统方向发展的趋势,这就对主设备保护的可靠性、灵敏性、选择性和快速性提出了更高的要求。

一、电气主设备保护的现状

以往电力系统大型主设备(包括发电机、变压器、母线、高压并联电抗器等)继电保护与超高压线路继电保护相比,处于一种相对滞后的状态,主设备保护正确动作率一直较低,与线路保护相比有较大差距。

近年来主设备保护的分析计算方法取得了很大进展,比如采用多回路分析法可以比较精确地计算发电机的内部故障,主设备内部故障保护的配置具备了理论基础。利用真实反应主设备内部各种故障及异常工况的动模系统和仿真系统检验主设备保护,极大地提高了新原理新技术的验证水平。随着基于新硬件平台的数字式主设备保护的推陈出新,实现了主设备保护双主双后的配置方案,保护的设计方案、配置原则趋于完善,同时,新原理和新技术的应用也大大提高了主设备保护的安全运行水平。

(一)主设备保护的双重化配置和主后一体化趋势

近年来,双主双后保护配置方案逐渐应用到主设备保护的领域,尤其是国电调[2002]138号文件《防止电力生产重大事故的二十五项重点要求》继电保护实施细则对主设备保护的双重化作出规定后,双主双后保护方案成为主设备保护研制、设计的指导准则,并为现场运行提供了极大的方便。

双主双后的保护实现方式是针对一个被保护对象,配置2套独立的保护。每套保护均包含主后备保护,并且每套保护由2个CPU系统构成。2个CPU系统之间均能进行完善的自检和互检,出口方式采用2个CPU系统“与”门出口。这种配置方案概念清晰,彻底解决了保护拒动和误动的矛盾,即双重化配置解决了拒动问题,双CPU系统“与”门出口解决了硬件故障导致的误动问题。这种思想已成功地应用到主设备保护上,大大提高了主设备保护的运行水平。

(二)主设备保护的新原理

近年来,主设备保护通过对故障过程的电磁暂态过程的研究、TA饱和特性的研究、内部故障理论分析,结合实际动模和数字仿真,提出了一些新的原理并已在现场广泛应用。

1.差动保护。常规的两折线、三折线比率差动、标积制动式差动、采样值差动等已在很多文献中有所介绍。

2.关于励磁涌流。目前在工程上应用的判别励磁涌流的原理都是从涌流波形与短路电流波形的不同特征入手,来区分励磁涌流与短路的。各种涌流判别原理都具有在故障合闸时,保护动作时间长或动作时间离散度大的缺点。

3.关于TA饱和。TA饱和问题是主设备保护共同面对的问题。由于大型发电机变压器组容量大,故障电流非周期分量衰减时间常数长,可能引起差动保护各侧TA传变暂态不一致或饱和。对于变压器,各侧TA特性不一致,更易引起TA饱和,这样可能会造成在区外发生故障时差动保护误动对于母线近端发生区外故障时,TA也会严重饱和。因此差动保护需有可靠的 TA饱和判据。

针对TA饱和问题,国内外也提出了一些识别TA饱和的办法:采用附加额外的电路来检测TA饱和,缺点是现场工程应用很不方便;提高定值,缺点是降低了内部故障的灵敏度;采用流出电流判据的标积式比率差动,理论计算表明当发电机发生某些内部故障时,也有流出电流,存在拒动的可能性。

二、主设备保护的发展趋势

(一)保护装置的一体化发展

1.充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。

2.主后一体化装置,给故障录波、后台分析带来了便利。任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。

3.主后一体化装置便于保护双重化的实现。主后共用一组TA,TA断线概率大大下降;装置数量少,误动概率降低。

(二)新型光电流互感器、光电压互感器的应用

传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。

新型光电流互感器(OTA)、光电压互感器(OTV)相对于电磁式TA具有明显的技术优势:不存在饱和问题,频率响应宽,动态范围大,在很大的电流变化区间内保持线性变换关系;实现了强电和弱电的完全绝缘隔离,具有很强的抗电磁干扰能力;不存在二次开路的问题,二次输出值较小,适合与保护直接接口。因此其将成为主设备微机保护的发展趋势。

(三)信息网络化

变电站监控和发电厂电气监控系统的发展,要求主设备保护具有强大的通信功能,以便通过监控系统实现保护动作报文管理、故障数据处理、定值远方整定、事故追忆等功能,实现了电气智能设备运行的深层次管理。

在采用高速度、大容量的微处理器及高速总线设计后,保护装置将具有更完善的数据处理功能和通信功能,可以更好地实现保护信息化、网络化设计。主设备保护除了动作后经通信网络上传故障报文、数据到监控系统以外,还可以为系统动态提供保护装置的运行状态和信息,并可根据系统运行方式的变化通过数据交换,提供修改保护判据和定值的依据,保证全系统的安全稳定运行。

(四)故障分析技术

新一代主设备保护必须具有强大的故障录波功能,除了记录完整的事件报文、故障数据外,装置还可以记录故障发生前后全过程所有的模拟量、开关量、启动量、中间量的变化,完整地记录每个保护的动作行为。主设备保护的故障信息上传至电气监控系统或保护信息管理系统后,通过高级应用软件,分析保护的动作行为是否正确,为故障查找、分析提供充分的依据。完整的故障数据经数字仿真系统可实现主设备的故障再现,对事故进行深入分析,为保护性能的改进完善提供重要的依据。

(五)信息网络技术

当代继电保护技术的发展,正在从传统的模拟式、数字式探索着进入信息技术领域。在变电站综合自动化方面,保护的配置比较灵活。如果变电站综合自动化采用传统模式,也就是远方终端装置(RTU)加上当地监控系统,这时候,保护装置的信息可以通过遥信输入回路进入RTU,也可以通过串行口与RTU按照约定的通信规约进行信息传递。

(六)自适应技术、智能技术和数字技术的发展

自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。对于主设备保护而言,它与某些保护的判据、定值和系统的变化也是息息相关的,比如发电机失步保护、变压器零序保护等。目前,部分保护功能已经具备了一定的自适应能力,比如浮动门限、变斜率比率差动保护中的制动特性、自适应3次谐波电压比率定子接地判据等。随着与微机保护技术密切相关的其他科技领域新技术和新理论的出现,通信技术、信息技术、自适应控制理论、全球定位系统(GPS)等的应用,必将促进自适应保护的飞速发展。

三、结语

随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。为此,必须从电力系统全局出发,进行电气设备继电保护的相关研究。

参考文献

第6篇

【关键字】智能技术 继电保护 电力系统

中图分类号:F407文献标识码: A

继电保护能够及时地切除电力系统中的故障,以保障电力系统的安全,所以对电力系统的作用是不可估量的。继电保护的发展过程由电磁型开始,经过了整流型――晶体管型――集成电路保护,如今多数采用的是微计算机技术的数字式保护装置。如今,对继电保护的研究仍然在继续,新的方法和途径也在不断出现。人工智能作为一门新兴的学科,它所包含的人工神经网络、专家系统、模糊理论和多系统在继电保护中的运用在目前看来是取得了有效的成果的,但仍然存在着一些问题。

一、人工神经网络

这种信息处理系统是模拟人脑的组织结构和人类的认知过程。人工神经网络拥有自适应、分布处理以及联想记忆等诸多优点,所以在智能保护中也开始受到广泛地重视,也成为了继电保护的新途径。人工神经网络这个新方式是通过对大量标准样本进行学习和训练,从而不断地调整人工神经网络中的阈值和连接权,实现人工神经网络的模式记忆。这种方式不但拥有强大的数据获取能力,而且能够有效的进行含有噪音的数据的处理。

人工神经网络利用的是非线性的映射方式,所以一些无法列出方程式的问题,或者是一些无法求解的非线性问题都能得到有效的解决,所以这一个方法也在继电保护中得到了广泛的应用。比如如果输电线的两侧系统在电势角度摆开的情况下发生了经过渡电阻的短路,这就属于非线性的问题,对故障的位置很难做出正确的判断,但是人工神经网络能够通过对集中样本的分析和考虑,就能正确判断出发生故障的位置。通过几年的发展,人工神经网络在继电保护中不但能够用来判别故障的类型、测定故障的距离,而且能够有效保护主设备。另外,人工神经网络中所具备的强大的学习能力、自适应能力以及模式识别能力等,能够清楚地识别电力系统中出现的任何故障,帮助解决电流保护中的故障方向识别和灵敏度补偿等问题,保证电流保护对反方向上的故障进行封锁,对正方形上的故障有足够的保护范围,从而有效实现电流保护自适应,提高自适应能力。

由此可以看出,利用人工神经网络能够提高故障的诊断和解决效率。但是我们必须看到,这个方法也存在着一些问题,比如样本的完整对解决故障的效率有决定性影响,一旦样本不够完备,可能就无法有效地及时地解决故障。这将成为我们未来讨论和研究的方向。

二、专家系统

专家系统属于人工智能应用最广泛也是最活跃的课题,与知识工程研究的联系十分紧密。在这一方式中,不但可以通过书本上相关的理论来处理各种已经定型的问题,而且可以利用和总结专家的经验来解决问题,所以被称为专家系统。最突出的是,专家系统在解决问题时,可以缩小推理的范围,也可以缩小对知识的搜索,从而提高解决问题的速度,提升解决问题时的推理效率。此外,专家系统中所具备的解释模块功能也十分强大,它不但能解释推理出的结论,而且推理的过程,以及推理时用到的知识,它都一清二楚。

当专家系统用于继电保护时,有许多种知识表达方式,其中有两种是在计算机技术、计算机语言技术与智能技术的基础上发展起来的,分别是知识模型表示法以及面向对象表示法。而除此之外,还有生产式规则表示法、谓词逻辑表示法、框架式表示法以及过程式表示法。其中知识模型表示法和面向对象表示法是后面四种表示法的融合与发展,是新的形势和新的结构。

专家系统在继电保护中的作用也越来越重要,应用范围也越来越广泛。比如电力系统中如果发生运行方式的变化,或者在检修设备、投入新设备时,都有可能引起定值和保护配置的变化,这时专家系统就能根据电网结构、专家经验以及运行的规程等给出决策,帮助制定保护对策。另外我们还发现,专家系统可以和人工神经网络在许多方面相互协调、互相补充,

所以,怎样才能更好地做到取长补短将二者更和谐地融为一体,是目前的一个研究方向。

虽然专家系统有如此多的优势和优点,在工作中也有极高的效率,但是这个方式在实际的工作和运用中还是存在着一定的缺陷和问题。例如,对于知识库的建立和维护,一直都是最大的问题,是这项技术的难点。另外在专家系统中,一旦遇到的故障相对复杂时,推理的速度就会变慢,而且容错的能力也有待提高。这些问题的存在都在很大程度上影响了保护动作的准确性,影响了工作的效率。

三、模糊理论

模糊理论是在模糊集合理论的基础上发展而成的,是采用了模糊隶属度的概念,来描述不确定的事件、不精确的现象,以区别于经典的集合中用0和1来表示的非此即彼的概念,引入的是近似推理和语言变量的模糊逻辑,从而来表述专家的知识经验。模糊理论作为人工智能技术中的一种,经过多年的发展和研究,已经具备了完整的推理体系,其运用也越来越广泛了。模糊理论在识别时更倾向于特征识别,更像是人类的识别过程。人类对于事物的认识过程是通过事物的特征对事物进行识别与分类,在这一过程中,不用进行复杂而精确的计算,模糊理论在继电保护中为这种类型的识别提供了有效工具。比如在电力系统中,一直都存在着大量的电气量,利用模糊理论可以区分和辨别不同对象的特征,以实现更高的性能。

模糊理论在继电保护中,对于线路的保护、发电机的保护等方面都起到了非常重要的作用。但是由于这一方式中对于获取隶属度、建立和辨识复杂系统的模型、获取和修改语言规则等相关的具体方法和理论还没有得到足够的完善,而且模糊理论没有学习的能力,所以这个方式的运用有了一定的限制。

四、综合运用各种智能方法

可以看出,每一种人工职能技术都有着自身的极大优势,但同时,又都存在着一定的问题或缺陷,单独使用可能无法完美地解决继电保护中出现的复杂问题。目前主要的研究方法是将这些智能方式有效地结合为一体,成为一种综合的人工智能技术,该项技术能够充分体现出各种智能方法的长处,而在短处上相互补充和协调,例如上文提到的专家系统与人工神经网络的互相“取长补短”。从而实现继电保护的可靠、灵敏、快速。

五、结束语

综上所述,电力系统中的继电保护有着非常重要的作用,当电力系统出现故障时,继电保护能够迅速而准确地判断出故障的元件和故障的性质,并对故障进行自动地处理,使电力系统能够恢复正常的运行。这都是因为智能技术在继电保护中起到的作用。随着继电保护问题的复杂化,单一的人工智能技术可能无法满足解决问题的要求,所以将各种不同的职能技术进行融合,取长补短,是今后智能技术发展的方向和必然趋势。

【参考文献】

[1] 吕卫胜.人工智能技术在电力系统继电保护中的应用[J].山东电力技术,2006,(1):61-63.

[2] 曾宪知.分析继电保护中的人工智能技术及其应用[J].城市建设理论研究(电子版),2013,(24).

[3] 吉军.刍论人工智能技术在电力系统继电保护中的应用[J].城市建设理论研究(电子版),2013,(23).

[4] 陈斌.人工智能技术在继电保护中的应用与发展[J].广东科技,2009,(22):140-142.

第7篇

关键词:大规模风电接入;电力系统;继电保护;风电机组;电能输送;电网运行 文献标识码:A

中图分类号:TM773 文章编号:1009-2374(2016)32-0087-02 DOI:10.13535/ki.11-4406/n.2016.32.043

电网的安全运行离不开继电保护,作为电网安全运行必不可少的要素,可以快速准确地查找到故障所在并将其隔离,从而尽可能地降低对系统运行的危害,最大程度地保证电能的平稳输送以及应用。风能越来越为广泛应用,随之而来的则是风电场对电力系统的极大影响。尤其是风电场的接入不同则继电保护装置的故障各有其特性,其复杂化个性化的特点,就使得研究大规模风电场接入的继电保护问题尤为紧迫与重要,从而确保电网系统的安全运行。

1 风电场和风电机组的故障特性

继电保护的设计以及计算均是以故障特性为基础进行的。那么对风电场以及风电机组的故障特性进行分析就是必不可少的。传统电力系统的继电保护的基础是三相对称系统和同步发电机电源。在这个基础上建立的继电保护理论体系存在着自身不足,此理论假设故障出现时,同步发电机是以恒态存在的,也就是故障发生前后,其运行的状态和参数没有改变,一如既往,并计算相应的短路电流和其衰减特性,以此作为整定继电保护原理和选择开关设备的依据。目前,大多数风电机组使用的发电机都是异步发电机,由于其自身结构的特殊性而形成的故障特征也就具有了特殊性,必须要与传统的同步发电机的特性进行区分。永磁直驱机组虽然是同步发电机,但是在并网后,不论是在故障特征还是在短路电流上都已经于并网前发生了非常大的改变。当电网出现短路故障时,普通的异步发电机可以提供短暂的、短时间就可以衰减为零的极大电流,缺乏提供持续提供短路电流的能力。双馈式的发电机在故障发生时,其短路电流要小于前者,但衰减时间比前者长,故可以提供连续的短路电流。

2 大规模风电接入输电网的继电保护问题

伴随着风电在电力电网中的百分比的逐步增加,继电保护的问题日益凸显。近年来,国内外学者对这一问题进行了探究,现综述如下:

风电电源接入后,电力系统的零序网络要随着升压变压器的接地而发生了与之相对应的变化,结果就是使得零序保护的灵敏度降低;并网联络线的自动重合闸在大规模风电场联络线跳开后很难重合。之所以出现这个问题是因为我们国家现阶段使用的是在电网并网点接入风力电源的检同期方式,这就要求具有稳定性,来保证供电的平稳进行,但是大规模的风电场在联络线跳开后,风机会进入动态过程,检同期成功与否就存在着不确定的可能,继而出现自动重合闸无法重合,最终导致风电脱网事故的出现;拒动向常态转化。缺乏弱馈保护的专门设备将会使得并联网点联络线的保护性能大大降低,从而出现拒动由偶发变为常态。

风电场接入电力电网系统对速断保护的影响。配电网的主保护是以传统电流也就是同步发电机提供的短路电流为速断保护,而风电场是以类似于异步发电机方式提供短路电流,这就使得风电场接入电力电网系统后产生影响速断保护的问题;距离保护的动作裕度降低。异步发电机的阻抗是正电抗与负电阻的特征,所以阻抗平面轨迹很有可能至第二象限,进而使距离保护动作幅度降低;电磁暂态过程被忽视。由于风电场内机组和机群在现实中的客观问题,如分布以及型的不同,使得理想化的组合――理想电源与系统抗组组成的经典串联模型难以得到,自然也就无法通过采用等效风电场的方式来获得相应的电磁暂态;风电场输出功率波动性对并网联络线距离保护的影响。风电场的大规模的应用必然伴随并网联络线距离保护问题,这与测量所得电流、电压还有风电随机电源的个性化的特殊的故障问题密切相关。实质上就是对整定与管理高压电网的继电保护工作提出了更高的要求。

3 大规模风电场接入电力电网系统的继电保护思路及方法

风电场接入电力电网系统的继电保护问题,国内外学者仁者见仁,智者见智,至今并没有一个统一的标准,相关的研究工作也只是局部地片面地开展,缺乏系统化的深入研究。本文认为,对于大规模风电场接入电力电网系统的保护问题应从以下方面来展开深入的

研究:

3.1 故障出现后的电流波形特点的研究

继电保护的关键是要进行短路故障特征的分析,只有分析清楚问题的所在,才能够着手进行问题的解决。参考相关文献,发现研究者在对短路电流的最大值以及短路电流衰减特性上进行了大量的深入研究,也有从继电保护的配合与整定上来对保护的影响展开工作进行研究。这些研究是必要的但是却不是本质的。继电保护体系中,主保护作用的重要地位不容质疑,而衡量主保护性能的关键的、本质的因素是继电保护的根本原理――故障暂态的滤波算法以及波形特征。波形特征以及滤波算法的异同,不论是在计算工频电器量还是在保护判据方面都会产生很大的差别,对于结果的判别也都有着非常大的影响,是继电保护性能中决定性的因素。这就要求我们在发生故障短路后,必须进行电流波形特征的分析以求加强电网继电保护自动装置与风电场操控系统的配合。

第8篇

关键词:变电站 继电保护 自动化系统

中图分类号:TP2 文献标识码:A 文章编号:1672-3791(2012)12(a)-0124-01

1 变电站系统中继电保护的基本任务和主要作用

1.1 基本任务

在变电站系统当中,继电保护的基本任务包括以下几个方面的内容。

(1)迅速、自动、有选择地控制特定的断路器跳闸,借此来对系统或是线路中发生故障的元器件进行保护,避免故障继续扩大或持续对元器件造成破坏。

(2)能够对变电站中各种电气设备的异常运行情况进行反映,并按照预先设置好的运维条件,发出相应的报警信号,同时减轻负荷,并自动完成跳闸。在这一过程中,通常不要求继电保护装置快速动作,只需要保护装置按照异常现象对电力系统及其各个元器件形成的危害程度进行相应地延时,以此来防止因干扰造成的误动作。

1.2 主要作用

当电网出现故障时,会引起以下问题:其一,造成系统中的电压急剧降低,这样极易引起用户负荷的正常工作被破坏;其二,在故障发生的位置处一般都会产生出较大的短路电流,由此引发的电弧会对电气设备造成一定程度地破坏;其三,会影响发电机的运行可靠性,这样便有可能导致系统振荡,严重时甚至会造成整个电力系统崩溃;其四,由故障引起的电流再流经电气设备时,会引起设备发热,进而导致设备的使用寿命下降,若是电流过大还有可能造成设备损坏。变电站继电保护能够在故障发生时将故障位置迅速从线路当中切除,从而有效地减轻了故障的破坏程度,同时还使故障影响的范围进一步缩小,确保了电力系统的安全、可靠、稳定运行。

1.3 变电站继电保护分类

变电站的继电保护按照被保护对象的性质大致可分为以下几种类型:其一,发电机的继电保护。此类保护包括发电机外部短路、定子绕组相间接地短路及过电压、对称过负荷、失磁故障、励磁回路接地等等。其出口方式主要有解列、停机、信号传输以及缩小故障影响范围等等;其二,线路的继电保护。按照线路的实际电压等级、中心点接地方式以及线路长度等又可分为相间短路、单相接地、过负荷等等;其三,变压器的继电保护。具体包括绕组短路、过负荷、中性点过电压、油箱压力过高、油面降低、变压器温度升高以及冷却系统故障等等。

2 变电站继电保护自动化系统的技术分析

2.1 相关技术

(1)继电保护技术。目前,在我国电力系统快速发展的推动下,继电保护技术获得了长足进步,继电保护装置也从以往单一的元器件逐步发展成为大型的现代化设备。继电保护可以持续对电力系统的运行状况进行检测,一旦检测到系统当中出现故障时,相应的继电保护装置便会快速、准确地将故障位置从系统当中切除。继电保护装置的应用进一步降低了系统因故障造成的损失。继电保护装置正在朝着监测、通信、保护等功能一体化的方向发展,相信在不久的将来,其势必会实现电力系统的自动化控制。而想要实现这一目标,继电保护装置应当具备足够的灵敏性、速动性和选择性。

(2)变电站自动化系统。其具体包括自动化监控系统、自动装置以及继电保护装置等等,属于集多功能于一身的系统。自动化系统借助数字通信技术、网络技术可实现信息共享。由于系统取消了控制屏和表计等常用的传统设备,从而使控制电缆的使用大幅度减少,这样一来有效地缩小了控制室的总体面积,减轻了维护工作人员的劳动强度。

2.2 系统功能分析

继电保护自动化系统主要是从电力调度中心当中获取所需的信息,而调度中心能够提供给系统所需要的全部信息,因此,该系统的实现有充足的信息资源作为保障。

(1)对复杂故障准确定位的功能。通常情况下,复杂故障定位的研究大多是基于装置的测距原理。目前,较为常见的测距方法主要有以下两种:①A型测距法。该方法又被称之为单端电气量法,具体是指测量故障行波脉冲在母线与故障点的反射时间来进行距离测量,该方法的优点是无需通信、成本低,缺点是容易受到其它线路末端发射的影响,致使测距结果误差较大;②D型测距法。该方法又被称之为两端电气量法,主要是通过测量故障行波脉冲传送至母线两端的时间差来进行测距的,其优点是测量原理简单、结果准确可靠,缺点是必须在母线两端分别设置测量仪器并进行通信。

(2)辅助决策功能。当系统出现故障时,常常都会伴随出现保护误动作的情况。以往传统的故障分析一般都是依靠人来完成,这就使得分析结果经常会受到人的经验和水平等因素的影响。而继电保护自动化系统由于是收集了故障发生前后的系统运行状态信息和相关的故障报告,所以能够进行模糊分析,并根据继电保护以及故障录波的采样数据来完成精确计算,这样便可以快速、准确地对故障进行判断,从而实现故障恢复的继电保护辅助决策。

(3)继电保护的状态检修。通过对相关统计数据的分析可知,导致继电保护装置误动作的主要原因有装置设计缺陷、生产质量问题以及二次回路维护不良等等。而微机型继电保护装置本身具有自检功能,并且还具备存储故障报告的能力,为此,能够利用继电保护自动化系统来实现状态检修。

3 结论与展望

总而言之,实现变电站继电保护对系统运行的自适应,若是按照整定计算会非常复杂,并且还有可能出现以下问题:其一,保护范围缩小、保护动作延时的时间延长;其二,系统有可能被迫退出一些受运行方式影响较大的保护;其三,还有可能发生失去配合的情况。凭借当前现有的技术力量和相关设备,并利用继电保护自动化系统,能够采集到每一次故障发生时周围系统的数据,然后通过线路短的故障电压和电流,可对线路的参数进行校核及修正,这样便能够实现线路参数的自动监测,但是却不能实现准确、快速判断出继电保护装置整定值的可靠性。为此,在未来一段时期内,应针对继电保护自动化系统在这个方面上的问题进行研究,这有助于继电保护自动化系统的实现。

参考文献

[1] 马益平.变电站自动化系统的应用体会和探讨[J].电力自动化设备,2010(5).

[2] 王中元.在变电站综合自动化系统中有关继电保护问题[C]//第三届电力系统与电网技术综合年会论文集,2009(5).

[3] 李君会.浅谈220 kV变电站综合自动化系统的发展及应用[J].城市建设,2010(33).

第9篇

关键词: 继电保护;故障;查找方法;研究;分析

中图分类号TM7 文献标识码A 文章编号 1674-6708(2011)53-0124-02

继电保护是随着电力系统的发展而发展起来的,从20世纪50年代到90年代末,继电保护经历了4个阶段,即其从电磁式保护到晶体管式继电保护、到集成电路保护、再到微机继电保护。继电保护工作是一项具有很强技术性的工作,随着科学技术的不断进步,继电保护故障也随之增多,而从很大程度上来讲,继电保护的技术性就体现在故障的分析和处理能力上。因此,明确继电保护故障的常见方法,以最有效最快的方法处理故障,已经成为当前摆在继电保护工作者面前的重要课题。

1继电保护常见故障

继电保护常见故障主要包括以下几个方面:产源故障,继电保护的装置生产属于技术性生产的范畴,其质量的好坏对于保护装置的运行有着直接的影响,如机电型、电磁型继电器零部件的精确度和材质等;整体性能不合格,晶体管保护装置中元器件的运行不协调、性能差异大、质量差,易引起装置的拒动或误动;运行故障,在设备运行过程中,因温度过高会导致继电设备的失灵,具体表现为住变动保护误动、开关拒合,而继电保护工作当中,电压互感器二次电压回路故障是最薄弱环节,电压互感器作为继电保护策略设备的起始点,对于二次系统正常的运行十分重要;隐形故障,相关资料显示,全世界有大约75%的大停电事故都同不正确的保护系统运作相关,继电保护的隐形故障已成为一种灾难性的电力机理,故很多文献中都对继电保护隐形故障的分析加以强调。对于一些重要输电线路,断路器故障的就地保护可以对监管所有跳闸元件加以确定,且在跳闸元件故障中,所有的远方和就地跳闸的指令才有效。

2 继电保护中常见的几种故障查找方法研究

2.1基于替代法的故障查找

所谓替代法,就是将正常的插件或相同元件替代有故障疑问的插件或元件,来对其好坏作出判断,从而快速地缩小故障的查找范围。这是微机保护装置内部故障最常见的故障处理方法,当存在一些微机保护插件故障,或复杂回路的单元继电器时,用配件将其取代,若故障消失,则说明故障存在于换下来的元件中。基于替代法的故障查找需注意以下几点:第一,应注意插件内的定值芯片、程序及跳线是否相同,确定相同后,方可可实施调换,并依据实施进行传动模拟;第二,明确运行继电器或插件在替代前是否需采取一定措施,如纵联保护需要对侧保护推出,一些插件需要电源退出,继电器或电流变换插件需要电流短接,电压切换插件需要短接电压;第三,注意产品同厂家但型号不同的现象,故需在对外部加电压实施极性核对后才可加以确认。

2.2基于短接断开法的故障查找

所谓短接断开法,就是将回路某一部分或某一段用短接线实施认为断开或短接,来对故障是否存在于断开线或短接线范围内作出判断,从而使得故障范围得以缩小。此种故障查找方法主要用于电气闭锁、刀闸操作、切换继电器不动作、电流回路开路、判断转移及辅助开关。把手接地的切换是否良好等。对于不该闭合而闭合的接点采用断开法,该闭合而未闭合接点则采用短接法。

2.3基于顺藤摸瓜法的故障查找

所谓顺藤摸瓜法,就是从出错点为起点,一环紧扣一环的实施查找,直到检测到故障位置所在为止。例如保护屏或光子牌发告警信号等可以异常点为依据顺藤摸瓜地去查找,上述内容中的电位测量更多地是同此法相结合的故障查找。还有情况就是在交流或直流电源均断开的情况之下,采用顺藤摸瓜法用万用表电阻档一步一步地检查。此种故障查找方法可对诸如继电器和串联接点组成回路、断路器及刀闸的刀闸操作、辅助接点控制回路进行检查。

2.4基于直观检查法的故障查找

如果直接看到线头脱离、线圈烧坏等,高频通讯不正常,结合滤波器测至上桩头,将其打开,便可发现滤波器内高频电路的连接芯线断线现象。此外,检修或运行人员改动或操作了什么东西,亦会致使一些缺陷的形成,这时就可以对这些变动内容中问题是否存在进行直接的检查。在下发操作断路器命令后,观察到跳闸线圈或合闸线圈能动作,则说明是正常的电气回路,随之便可确定故障存在于机构内部当中。在现场如直接观察到哪个元器件发出浓烈焦味,或继电器内部有明显发黄等,便可对故障所在作出快速的确认,这时,对损坏元件及时更换便可将故障消除。

2.5基于带负荷检查法的故障查找

对于新建变电站PT或更换PT,需要对电压互感器进行二次核相和极性检查,特别是用于开口三角电压的三次绕组,其极性和接线容易出错,在现场可通过带负荷检查法来发现问题。基于带负荷检查法的故障查找是实施继电器检查和改造工作的最后一环节,亦是发现交流回路缺陷和问题的途径。在实际的故障查找中必须对以下两个方面加以注重:第一,选择好的参考对象,如对相位参考电压进行测量时,一般情况下会选择相母线电压,若不存在电压,也可选择电流,但最终两者的参考点必须相同一;第二,必须明确潮流的走向,如本开关难以作为参考,则需要选择本侧或者对侧对应的几个断路器潮流或对应串联之和。同时还应注意所测电流电压的相位、大小是否同一次潮流相一致。

3结论

继电保护是电力系统技术性较强的一个专业,想要迅速及时地判断故障点并不是一件简单的事情,不但要有扎实的理论基础,也需要在长期的工作实践中积累一定的现场经验。明确继电保护故障查找的常见方法,将其融入与实际的故障查找当中,从而保证继电保护的有效运行。

参考文献

[1]孟晓光.探讨继电保护中现场故障查找的方法[J].广东科技,2009(20).

[2]周振军.论继电保护故障及处理方法[J].科学与财富,2010(12).

[3]胡炜.继电保护故障信息系统的研究[J].电力系统自动化,2009(11).

第10篇

关键词:继电保护;故障原因;解决方法

继电保护对电力系统的安全正常运行具有重要的作用,它能保证电力系统的安全性,还能针对电力系统中不正常的运行状况进行报警,监控整个电力系统。目前我国电力系统继电保护工作还是会存在一些问题,容易出现各种故障,造成电力系统无法正常运行。这要求继电保护工作人员能及时掌握故障产生的原因,并且结合自身工作经验及时解决故障问题,确保整个电力系统的正常、安全工作。

1 常见继电保护故障

1.1 设备故障

继电保护装置是电力系统中不可或缺的一部分,是保护电力系统的基础和前提。一般设备有装置元器件的损坏、回路绝缘的损坏以及电路本身抗干扰性能的损坏,具体的表现为整定计算错误,这主要是由于元器件的参数值和电力系统运行的参数值与实际电流传输的参数值相差甚远,从而造成整定计无法正常工作。还有,设备很容易受到外界因素的影响,如温度和湿度。由于设备具有不稳定性,很容易由于温度和湿度的变化而造成定值的自动漂移,有时候也可能是因为设备零部件的老化和损坏造成的。再者,在电力保护系统中,装置元器件和回绝路缘的损坏也容易引起继电故障问题,这主要是在电线管道中三极管被击穿导致保护出口处异常,管道内出现漏电现象,导致整个电力系统内部电流过大,发射出一种错误的信号,在电流回流时导致回路中接地的开关频繁跳闸,于是就会停电,这就是绝缘被刺穿,造成电路中电流的混乱,容易短路或者发生故障。

1.2 人为操作

人为原因一般就是工作不够细心,对系统内各项设备数值的读数观察不够仔细,导致读错设备整定器上的计算数值,导致继电保护故障,且对故障的检查技术水平不够,无法及时准确地发现故障段,从而造成大面积的电路故障问题,导致系统无法正常供电。或者是工作人员在操作时采用的方法不正确,在带电的情况下直接拔除插头,导致保护出口的动作,就容易造成保护装置的逻辑混乱,不能正常发生信号,整个系统就会接受错误的信息,无法正常运转,而且带电拔除很容易导致电源出现问题,长期这样的操作很容易烧毁电源。当工作电源出现问题时,电力系统保护出口处的动作过大,造成电路内波纹系数过高,输出的功率就不够,电压便会不稳定,当电压降低或者电流过大时,如果保护行为不恰当极容易出现一系列的继电保护故障。

2 继电保护故障的处理方法

在继电保护工作中,出现继电保护故障的原因有很多,面对这些故障问题,继电保护的专业人员要具有专业的理论知识,还要有丰富的工作经验,在工作时运用理论知识作为指导,将保护工作做到位,避免不必要的继电保护故障,尽量将损坏缩到最小的范围,在最短的时间内运用合理的方法处理问题。下面将介绍几点有效的处理方法。

2.1 严格检查继电保护基本设施

基础设备的质量和使用的安全直接关系着整个保护系统,要对设备的采购和投入使用各个环节进行管理,尤其是把牢继电保护装置的投运入关口。继电装置的投运主要包括下面几个内容,装置的科研究性、初步设定模型、设计施工组织图纸、投入安装、试调、检查和最终的运行等。在可研究性和初步设定阶段,要根据有关的规定和电网运行情况制定安装完成后的管护方案,确保整个装置安装的安全和正常使用。当初步施工图纸设计出来后,技术人员要严格按照图纸施工,将装置安装到合理的地段,使之与原有的电力系统相匹配,如果技术人员觉得图纸有误,应该向设计部门和监理部门反映,及时纠正错误。这主要是由于很多图纸的设计人员没有参与实践,对实际情况的估计总会有些偏差,所以设备安装人员要及时发现问题。在试调和检查阶段,要有针对性保护配置的功能,全面检查设备各个零部件是否安装正确,在确保没有错误的情况下,才能进行试调,这样能保证工作人员的安全。只有试调和检查都没有发现问题时才能将整个设备投入使用中,这时继电保护工作还没有结束,还需要定期对整个保护系统设备进行检查,及时更换老化的零部件,注重电源处的检查,确保保护系统中电源不会遭到损坏。

2.2 提高继电保护故障处理的技术水平

在继电保护管理中,造成继电保护故障的原因有很多,而一般工作人员很难快速地找到故障段,这时便可以采用调换方法。所谓调换法就是用完好无损的元器件替换技术人员认为存在故障段的元器件,如果故障现象消失,那就说明故障就是存在试验阶段中,只需要更换新的元器件就可。但是这种方法不能控制时间,如果对故障段判断不准确就很容易造成长时间的停电,导致电能在无形中流失。有时候我们还可以采取参照法,将系统中正常与非正常的设备参数进行对比,然后得出故障出现的原因,这种方法对接地出关口故障问题十分有效,通过不同处的检查和试调找出故障点,在进行电网改造和设备更换时,如果不能正常与原有电网连接,就可以参照同类型设备的参数值,利用闲置的设备更换新的控制开关,如果在设备中开关失灵,则说明新设备的参数值与原有的电网设备不能兼容,必须更换设备。

在继电保护工作中,由于工作人员的工作经验会不断地丰富,长期的实践积累就是工作人员最好的财富,尤其是经验丰富的员工,他们总是能根据自己的经验判断故障问题出现的原因,并且准确度极高,很多时候不需要多花时间去检查和试调故障出现段,他们能通过肉眼的观察,结合长期故障诊断的经验,立刻就知道什么地方出现问题,这种被称为经验处理法。在继电保护故障处理工作中,往往有很多方法能及时有效地解决故障问题,其工作效率主要靠工作人员的技术水平、理论知识和实践经验,一个综合水平高、能力强,且具有丰富工作经验的技术人员,在出现故障问题时,一定能准确有效地处理和解决问题。

3 结束语

综上所述,继电保护对整个电力系统的正常运转具有重要的作用,它是电力系统正常运作的最基本保障,也是确保电网工作人员安全的必要工作。在继电保护中有很多因素都会影响继电保护,不管是人为的还是设备故障都会造成保护故障问题。因此,技术人员必须具备专业的职业技能,在继电故障发生时采用有效的解决方法,在最短的时间内找到故障的根源,并维修解决故障问题,确保电力系统的安全,为人们提供安全可靠的电力。

参考文献

[1]朱曼青.继电保护故障处理分析[J].新农村(黑龙江),2012(12).

[2]杨莹.浅析电力系统运行中的继电保护故障处理[J].华东科技:学术版,2012(12).

第11篇

关键词:电力系统;故障诊断;人工智能;实际应用

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2017)02-0183-03

科学技术的发展带动智能生活面向全社会各方面的逐渐普及,而我国现阶段正在大力推广实施智能电网,使现代的电力系统向着信息化、智能化迈进,在这些前提下人工智能技术在现代智能化电力系统建设中所起到的作用可以说相当重要。电力系统作为人们日常生活中组成的部分,其稳定性和安全性的保障至关重要,如果电力系统由于各种各样的原因出现了故障将会直接影响到人们正常的成产成活。同样的,如若电力系统的稳定运行不能得到及时的故障诊断,那么就会导致故障问题没办法得到及时的确认和处理,从而造成不必要的损失。为了避免这一现象的出现,应用人工智能的各种实际方法来对日常电力系统进行故障检测,是工作室以后电力系统检测维修的关键。接下来我们就分析一下人工智能技术的具体含义和实际应用。

随着人工智能技术的发展普及,其在现代电力系统中起到至关重要的作用,在电力系统日常生产运行的各个阶段中,专家系统( Expert System,ES )、人工神经网络(Artificial Neural Network,ANN)、模糊理论(Fuzzy Theory,FT )、遗传(Genetic Algorithmic,GA )等人工智能技术已经被广泛深入地运用到生产控制、监督管理、故障z测等电力作业当中。现代电网系统当中的智能检测系统主要是指,依托人工智能为专业的理论知识依据以及相关的技术手段来对电力设备中的各种故障进行智能化、信息化监督管理。为什么现在人工智能系统被得到广泛的认可,主要就是因为在平时的电力系统故障诊断工作中造成故障发生的原因多种多样,而安全检测人员在实际故障检测时容易出现失误,因此,人工智能技术可以帮助解决这些问题,从而保证资源的合理运用,节省人力物力等。

在这里,文章针对目前在国际电力故障诊断系统市场中最广泛的智能型FD-PS进行深入全面的归纳整理和分析探究,主要是对ES、ANN、FST、GA及Petri网络等技术在FD-PS中的实际应用进行整理。

1 基于ES原理的电力系统故障诊断

ES原理指的是结合相关专业电力方面的书籍上的理论知识,再结合电力监督管理方面专家和工作人员们的实际作业经验来对各种电力故障问题进行科学合理的处理。对于那些单纯依赖普通解析办法无法解决的问题而言,ES的只是表达方式可以有效减少故障问题造成原因的范围,有助于提升工作效率,另一方面ES的推理解释也可以在很大程度上帮助电力系统故障检测与诊断作业的高效有序进行。

对于ES在电力系统故障诊断方面的具体应用进行分析,其主要的知识表达方式包括有:基于谓词逻辑表示法,基于产生式规则表示法,基于过程式知识表示法,基于框架式表示法,基于知识模型表示法还有基于面向对象表示法,这些表示方法当中基于谓词逻辑表示法、基于产生式规则表示法、基于过程式知识表示法是比较传统普遍的应用模式,而基于知识模型表示法和还有基于面向对象表示法呢,则是对于以上表示方法的进一步延伸扩展,是在其基础上形成发展出的新的表达形式和新的表达模式。接下来,我们就系统的分析一下这些表达方式在店里故障检测方面的具体应用:基于谓词逻辑表示法可以说是一种相较于其他表达方式比较早的专业知识表达描述方式,其主要的工作方式是利用保护和断路器信息的方法来构建专属的电力知识库,之后再使用Prolog语言为谓词逻辑搭建构造几个知识库。第一个是用来系统的描述展现电力系统的具体结构,注重于保护和断路器动作关系这方面的专业知识以及正确描述断路器的状态;第二个则是主要用来强调如何对电力系统保护原理进行全面正确的描述表达;第三个呢则是具现到了实际的故障处理工作中,用以对日常故障出现位置的规律进行描述,还有利用反向推理的方法结合上面故障设备与保护、断路器的信息关系来完成诊断故障作业中出现的抗拒性因素处理。虽然办法简单有效,但是实际造作过程太麻烦并且效率较低是谓词逻辑法最大的局限。

1)以推理为基础的人工智能技术在电力系统故障诊断中的应用分析

以推理为基础的人工智能技术指的是通过计算设备或其他工具,模拟人的思维模式和思维过程,对于出现的电力系统故障问题,结合之前累积的相关经验以及专业的故障诊断理论知识,来进行正常的逻辑推理工作,从而诊断出真正的问题缘由,这样的推理模式称之为显性推理。而与之相反的就是利用数字化、抽象化等逻辑思维进行故障诊断作业的推理方法称为隐性推理。其中显性推理最主要的就是专家系统,指通过对电力系统故障诊断方面专家进行决策过程的适当模拟,再结合工作人员所掌握的专业知识以及相关经验,可以更好地完成对电力系统使用过程中出现的各种复杂问题的正确判断和适当处理。但是,由于专家系统要想完善构建程序,其中全面科学的专家知识库构造问题是一大难点,而如果知识库不够完善,就很容易造成故障诊断工作中出现差池,比如说发生遗漏掉每个因素而造成错误的判断等,这些问题都是不可以轻视更不可以忽略的,因此,在现阶段这种系统只能应用在针对于中小型的电力系统的故障诊断工作当中。

2)另外一种以推理为基础的人工智能技术,就是依靠对于人类神经系统的信息传输和处理等过程的模拟,在通过一般电力系统故障所特有的警示标志来于知识库进行对比,从而准确判定出故障问题出现的真正原因,再进行合理的处理修复。这样的诊断方法简便快捷,而且可以大大地解决人力、物力、财力方面的资源消耗比较大的问题,也正因如此,这样的诊断模式在电力系统故障诊断领域的应用相当广泛,只不过这种诊断系统也存在着一些弊端,那就是在诊断工作中实际算法收敛速度和具体解释能力等方面还有很大的缺陷。Petri网的应用在电力系统故障诊断作业中也至关重要,主要是利用网络表示电力系统各元件之间同时、次序或循环发生的关系,这样可以完成对电力系统的实时监控管理,对与电力系统出现故障时的数据静态变化和动态变化之间的关系进行详细描述,特别是通过继电保护装置来对发生故障的反应以及切除行为的具体描述获取正确的故障诊断结果。虽然通过这种方法得到的诊断结果会比较准确,但是因为大量的故障诊断经验会影响作业人员的实际判断,并且当设备出现错误虚报故障时,其识别能力较弱且计算工作时间较长,另外一点最关键的,这种技术目前并不完善,主要技术还在深入的钻研探究阶段,所以其在实际电力系统故障诊断领域的应用范围并不广,很多时候都是结合着其他的人工智能技术来进行作业。

2 以不确定性理论为基础的人工智能技术在电力系统故障诊断中的应用分析

信息的故障诊断是不确定的,主要是由于保护装置,断路器拒绝移动或者信息的传输过程中受损等原因。为此,研究人员在故障诊断领域都公布了一些不确定性的信息,引入不确定性的理论是基于这样的事实,该故障信息是由多种因素,并且通常不安全颜色的影响。基本的人工智能技术主要包括模糊理论,概率论,粗糙集等。模糊理论是关于专家,但他在实际作业的过程中延长时间,在实践能力,通常与其他方法结合起来,信息的模糊与专家的完整的系统诊断故障,计算传输使用Petri网的不确定性和终止网络建成后,虽然有一定效果,但了解和控制的实际应用与维护的学习和功能的辛勤工作相结合,以确定成员的变化有关的问题仍处于研究阶段等因素的影响,应用仍然是有限的。概率理论被分成理论的理论贝叶斯可靠性,信息表现概率作为初步或电力系统的故障,实际执行的通过产生规则产生的信息保护的值的信念,该方法的组合的基础上概率Petri网。效果是显而易见的,但由于其对一些信息经验的依赖,公式用于解决事件论自主决定能源系统粗糙认为,作为一个阶级属性一定的防御设备和交换机相结合故障表可能是不实际的决定控制。原设定的信息,以减少的原则算法的作用下,原太,减少粗糙集的最小化采取尽量减少决策。然而,真正的故障做出诊断,在这个阶段它的实际应用,很难影响当前表重大决策的形成是赏心悦目的效果。

1)以优化技术为基础的人工智能技术在电力系统故障诊断中的应用分析

基于计算机技术和计算机科学,工艺优化等于解决了这个问题无限的优化和全局优化算法,人工智能技术的不断发展零编程问题。例如,故障诊断诊断系统故障能量,根据使用开关保护遗传算法或数学理论,故障诊断之间的关系,可以被看成是基于使用整数编程,可以解Q的问题之前和改变网络拓扑之后创建区模型数据的故障的过程中网络发生解算法模拟退火以实现有效的还原基于配置车辆和故障信息介质溶液的数量,建立诊断故障的是用来模拟模型故障诊断。然而,这是难以建立为在实际应用中的故障诊断一个合理的模型,并且有许多随机因素,为了实现电力系统的故障诊断精准而快速的目的。

2)以多种方法融合为基础的人工智能技术在电力系统故障诊断中的应用分析

合并多种方法、以多种方法融合为基础的人工智能技术是基于这样的思想:该电力系统的故障是复杂的,如果只进行单个的诊断方法,则全面性较差。例如,结合神经网络方法和模糊逻辑,整体性能实践显著改善,在这种方式下Petri网的整合,以提高自学成才的信息不安全的能力和算法的神经可以组合与遗传算法和专家系统,以提高电力故障诊断系统的速度。而他的表现抗干扰能力强,可以看得出,在各种基于电力系统故障诊断工作中,人工智能技术集成方法是其未来发展的主要方向之一。

3)专家系统

ES是国内形成最早,最成熟的人工智能技术,根据知识和经验方面的专家进行理性的分析判断,解决那些需要专家决定的复杂问题模拟专家决策的具体过程。应用ES故障诊断应该要基于生产的规则,即形成故障诊断专家知识库系统,然后根据这些信息,保护电路动作数据稳定和经验诊断操作人员按照故障报警进行推理的知识基础,通过故障诊断得到结论,再利用一定的技巧来解释。一般的推理机制,诊断依据故障-ES可分为两类:一类是基于规则推理,它采用推理着相匹配的信息与知识库中的规则故障采取的故障诊断的完成演绎系统;系统逆推理。推理规则基于保险丝和保护设备之间的逻辑关系创建,并且可靠性被重合的实际信息和假设故障保护之间的程度来衡量。该方法提高混合推理和故障诊断专家系统的自学习能力的适用性。虽然理论ES是成熟和清晰,并能提供的诊断的完整说明,ES仍具有在实际应用中存在以下缺点,它难以得到知识的一个完整的基础上,并且其验证难度比较大;智能网络信息的变化,需要重新构建知识库,维修难度大;容错性比较低,存在着功能障碍现象,容易出现误判以及错判的情况。 ES诊断方法可以提供增强人类语言的习惯能力,这更适合于电力系统的二次诊断和小故障诊断相应的结论和解释。

4)人工神经网络

ANN同样也是一种人工智能技术,是通过模拟传输系统和人类的神经信息处理来进行工作的过程。它具有并行处理,非线性映射,联想记忆和在线学习能力的特点,已经被广泛应用于电力系统的各个领域当中。与ES相比,使用神经元和运行知识的隐式处理的权重之间的联系,与地图的强非线性和技术推广的优点,容错率要更高,即使与输入信号固定噪音,还可以给出准确的故障诊断结果。

基于神经网络故障诊断,故障信息被定义为用作神经网络的数字输入。生产代表了故障诊断的结果。首先,神经网络训练和学习,具体的故障报警作为样本,与样本知识库建设相吻合;然后利用神经网络,该网络将保留在连接的权利的形式的网络的知识的所有训练样本;在计算神经网络的时候可以输入相应的数据值,从而完成了故障诊断。使用记忆联想Hopfield神经网络模型,按照根据设计原理逆学习算法用它来实现系统故障,由部分信息扰动宽容的表现。结合参考文案中提到的径向核心功能(RBF)神经网络来实现高压输电线路故障诊断和反向传播(反向传播,BP)对比神经网络,速度训练网络和宽容故障都优于应用传统的BP神经网络。然而,在实际应用中仍然有存在一些问题,大量需要加强练习的网络智能信息技术,学习算法收敛速度缓慢;缺乏能力诊断结果的解释;良好地进行启发性知识处理。

3 基于优化技术的故障诊断方法

随着科学技术水平的不断发展,计算机技术也逐渐地应用到我们的日常生活,我们的生活和工作学习也变得越来越快捷方便,在很大的程度上提高了工作效率。电网故障的诊断也需要与时俱进,不能只是应用传统的技术来进行诊断,应用新兴科技,把以往的优化技术更新换代,使得优化技术更加灵活,不再像传统技术一样死板。新兴的优化技术诊断方案相比以往的方案来讲,系统更加全面,分析数据更加准确,不会像传统技术那样出现失误,出现数据分析不合理的现象。所有的新兴技术都不是完美的,都会多多少少存在一些漏洞,这时候需要我们在实际的工作当中,进行实地地调研和分析,寻找到最优的解决方案。

电力系统的诊断过程中,以往采用传统的技术来进行诊断,诊断的过程中,数据分析并不是十分的准确,诊断出的问题并不是十分理想。人工智能的系统诊断并不能应对一些突发的情况,不能诊断出一些新出现的问题。人工智能诊断的方式是将以往发生过的问题和毛病,统一进行合并处理,然后将这些出现过的数据存入这个人工智能系统中,再通过这套系统来诊断,这样的诊断方式存在很多的漏洞。基于这种现象的发生,采用新兴的科学技术,将模糊理论应用到诊断系统中来,模糊理论不同于以往的技术理论,这套理论系统会处理一些突发的紧急的状况,不像以往的系统一样只能处理一些以前发生过的问题,这套系统会灵活诊断出一些新出现的问题和漏洞。模糊理论系统相比较与人工智能系统,能更好地灵活诊断,这套新兴的系统会根据人脑的判断来处理信息,同样也会存在一些漏洞,任何系统的完美程度都是比不上人脑系统的,模糊理论不具备自主思考的能力。

随着科学技术的发展,各种各样的技术都会研究和开发出来,不同的技术应用在不同的岗位需求上,在很大的程度上帮助人类解决了很多的问题,同样也提高了人们的工作效率,因为这些技术能够帮助人们处理大量的信息,从而能诊断出一系列的问题和漏洞。人工智能系统应用在电力诊断系统中,无疑是一项很大的突破,帮助人们处理了大量的信息,而且还能进行准确的分析,第一时间诊断出电力系统存在的问题,从而能够第一时间进行解决。随着技术进步,更多的新兴科技会应用到电力诊断系统中来,我们要根据自身的实际情况,制定出更适合我们的系统,更加方便我们工作的优化方案。

随着中国人口增多,企业和工厂在不断增加,我国的用电量也随之不断提升,这时候应该更好的解决电力系统。电力系统是一项庞大的系统,里面设计到很多的细节和面板问题,这是一项精密的系统,怎样能够更好的诊断电网故障,这项问题一直是国家电网立志研究的课题,当然随着科学的进步,各项新兴的技术应用到电网诊断系统中来,帮助电网事业解决了很多的问题,从而避免了很多的危险,毕竟电力诊断也是一项很危险的事情。这使得人们的生活更加便捷,用电更加的方便,方便了人们的生活。所以,致力于电网诊断的系统研究是目前很重要的一项工作。

4 结语

国家的电网事业在不断上升,电网工程也在不断的壮大,随之居民和工厂、企业用电量也在不断增加,这对于国家电网事业是一项新的考验,同样也是利国利民的好事。怎样能够进一步提高电网的安全系统,对于电力系统的研究方向,毕竟随着生活水平的提高,各种各样的用电量在不断增加,对于电网的安全问题是一个很大的考验。将新兴技术应用到电网诊断系统中来,能够在很大的程度上解决这项问题。但随着电力系统的发展,各种各样的问题也会随之增加,以往的科学技术解决不了新出现的问题,这时候需要重新定义,研究出更适合现在电网系统的技术。电力系统稳定的运行才是电网事业关心的重大问题,综合现在的电力系y的内部分析,结合目前我国的用电量的多少,最重要的是对于以往诊断出的问题进行综合的分析,从而才能制定出更加完善的系统,研制出更符合现代的优化技术,我们要根据自身的实际情况,制定出更适合我们的系统,这项问题才是电力系统需要考虑的方向。

参考文献:

[1] 钟金, 郑睿敏, 吴复立, 等. 建设信息时代的智能电网[J]. 电网技术, 2009, 33(13): 12-18.

[2] 孙静, 秦世引, 宋永华. 模糊Petri网在电力系统故障诊断中的应用[J]. 中国电机工程学报, 2004, 24(9): 74-78.

[3] 孙静, 秦世引, 宋永华. 一种基于Petri网和概率信息的电力系统故障诊断方法[J]. 电力系统自动化, 2003, 27(13): 10-14.

[4] 占才亮.人工智能技术在电力系统故障诊断中的应用[J].广东电力,2011(9):87-92.

[5] 王磊.电网故障诊断方法及其系统架构研究[D].山东大学,2013.

[6] 吴欣.基于改进贝叶斯网络方法的电力系统故障诊断研究[D].浙江大学,2005.

第12篇

后勤保障工作是供电企业生产、经营工作中的一个重要环节,是以服务为重,以大局为先。向企业的职工提供保障性的服务,也就是说是服务于全局的每一项工作;随着供电企业三集五大体系建设,后勤保障工作向大规划、大建设、大运行、大检修、大营销模式的转型,后勤保障和专业化能力需要提高。充分利用现有的资源,建立和完善后勤保障工作有效措施,是本文研究的重点方向。

【关键词】

供电企业;后勤服务;保障能力

1 引言

供电企业后勤保障工作是服务于安全、生产、经营工作,后勤管理工作怎样利用现有的资源基础,为安全、生产、经营工作提供有力保障的作用。是对现有的物质基础条件、有限的资源,合理调配与管理能力的显现;实时维护、清洁办公场所的秩序和卫生,保障公司办公、生产和经营工作的顺利开展;因此,后勤保障是企业正常运转和持续发展的基础性工作。

后勤管理工作是一项担负着政治性、经济责任,与内外、上下沟通、协调联系,政策性强,涉及面广,工作项目多且繁锁,涉及到企业的方方面面,如:房地产,水电资源,安全保卫,接待,食堂、车辆,卫生、办公秩序管理和办公耗材的补给及对外接待等工作项目。全面生产、经营工作良性运转提供有力保障,是提高后勤工作管理的出发点和落脚点。

随着长葛电网的建设与发展,后勤管理工作,应该以保障、精益化管理和形象的视角和层次来定义后勤管理与服务工作。

2 实施精益化管理,是适应企业发展战略和自身工作特点的客观要求,是后勤保障工作发展的方向和提高保障能力有效途径,后勤保障工作实现精益化管理,要摆正四种关系

(1)主要问题与次要问题的关系

供电企业后勤保障工作所涉及面广、点多和事情多,不能认为只有管好了主要问题就是解决了根本性的矛盾,对次要性的问题缓一下,可能不会造成不好的后果。但是,次要问题不能得到及时的解决或存在遗留问题,也会上升为主要问题,一旦爆发其后果也是不堪设想。因此,要摆正主要问题与次要问题的关系,找出问题要点和根本性原因,做好沟通与协调,防止问题扩大,化不利因素为有利条件,找出解决问题的有效方法在付诸于实施中防止滋生其他问题。

(2)重点工作与后勤工作的关系。

供电企业中心工作是生产、经营这两项工作,后勤保障工作就是保证生产、经营这两项中心工作有效、持续开展,是后勤保障能力提升的特征。就是做好沟通,减少中间的不必要环节;将大事化小,把主要矛盾化为次要矛盾,保证各项工作有计划、有预案、有落实、有反馈,做到布置与落实同步跟进。

(3)技术能力与服务态度的关系。

后勤保障工作是集服务性与技术性的综合性工作,无论是技术能力还是服务态度,掌握工作方面的技巧,提高服务的质量,而这个质量的评价是来自于服务对象,决不是自我评价的结论;如水电资源,安全保卫,接待,食堂、车辆,卫生管理等项目,日常工作运转必须依靠严格的管理和技能培训来提高解决问题的能力。在实际工作中,必须坚持“技术支持和优质服务”的保障原则,以加强管理来有效提升后勤保障工作的效率。

(4)参谋与助手的关系。

后勤保障性工作实施过程,就要考虑能够达到一种什么样的效果,就具体的工作而言,即是领导的参谋,又是助手的角色;无论是参谋或是助手,对待每项工作要从全局的利益着手,本着对领导和公司职工负责的工作态度;在对待具体工作时,当局部利益与整体利益、当个人利益与集体利益、当主要问题与次要问题、当重点工作与时段任务相互冲突时;要积极出主意、想办法,把领导的意图和职工的要求相互兼顾,即让职工和领导满意的结果。

3 供电企业后勤保障工作发展的方向

(1)标准化与规范化

后勤保障性工作,所涉及的是领导和职工敏感的问题,也可能会涉及到相关部门或个人的切身利益,尤其是接待性的工作,如接待规格,办公器具的配置、车辆使用等诸多问题,直接反映出党风廉政建设;只有严格的按照标准制度来执行才能确保生产活动的顺利进行。

随着企业的快速发展,一是按照“一强三优”的管理目标,建立与完善现代管理制度和后勤管理保障、服务机制,进一步明确责任和不断规范后勤管理的职能;二是牢固树立“以人为本”的观念,在工作内容、方式方法上充分体现职工的愿望,依照建立“和谐企业环境”的原则,努力满足公司员工对后勤保障的需求;三是应加强后勤服务的统筹规划,在企业环境的布置、美化上要充分体现国家电网公司的企业文化理念;四是加强后勤工作的规范化管理,使后勤工作做到“有章可循、有据可查、有人负责、有人考核”的管理要机制。

(2)精益化管理

后勤保障工作从“面”上能够反映公司的形象,从“点”上能够彰显公司员工的精神面貌,精益化管理的核心是“人、财、物”的管理,通过程序化、规范化、科学化的运作,控制、降低成本, 把有限资源投入到无限的服务中去。首先是对人的管理,要通过有效的培训、现场指导与监督,来提高人员的综合素质和执行力;其次是经费管理,经费是保障完成各项工作任务有效落实的基础,必须严格控制和落实,建立有效的成本核算体系,发挥后勤保障工作集约化、专业化的特点,保证各项维护(修)的成本得到有效控制;再次是建立物品、材料的台账,尤其是消耗性材料,严格保证物品和材料发给最需要的部门、班组,防止意外性的流失,让材料和物品发挥其最大的应用价值。

(3)创新管理

提高后勤保障工作能力,应有一套技术能力的提升与相关理论知识互补的结合,从管理创新上入手,这是供电力企业的后勤保障工作重要的管理项目之一;一是提供更加个性化和人文化的服务,保证对服务效果的满意;二是引用先进的技术规范和服务标准,提升后勤服务保障的能力。三是供电企业在实行专业化生产和集约化经营模式时,确保后勤服务保障更加到位。创新是一个涵盖面广泛的话题,就是从管理创新突破制度创新,从制度保障上实现技术创新,不断地在技术创新的实践,为企业提供技术先进、质量可靠的服务,为后勤管理、技术和服务提供创新平台。

(4)信息资源的整合与应用

信息是企业发展的一种特殊性资源,信息不但是经济、社会政治方面的信息;还是对今后发展、巩固、提高依据性的信息;通过互联网、企业的信息网络,拓宽信息网络渠道,了解和掌握国内外社会经济发展战略性信息,为后勤服务领域科学发展的决策提供可靠的信息,后勤保障工作与公司发展相适应,减少漏项或失误;从服务的延伸上体现出价值。

4 结束语

后勤保障工作的效果取决于服务能力的提升,尽管其工作具有广泛性、复杂性、琐碎性和时效性的特点,必须树立“优质服务”和“提高服务的满意率”的意识和观念,优化后勤资源配置,加强对员工的教育培训,建立完善后勤服务机制和工作流程,使后勤服务工作更趋于规范化、科学化、精准化的管理。