HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 机械手设计论文

机械手设计论文

时间:2022-02-18 09:44:28

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇机械手设计论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

机械手设计论文

第1篇

关键词:仿人 机械手 单片机STC15F204EA 驱动器 步进电机

中图分类号: TP241 文献标识码:A 文章编号1672-3791(2015)04(a)-0000-00

中国在《国家中长期科学和技术发展规划纲要》中,把“服务机器人”研发作为重点项目。机械手是“服务机器人”的关键部位,在各种护理机器人、陪护机器人、中医按摩机器人中,机械手是机器人完成“服务”任务必不可缺的一部分。设计并制造具有感知能力的拟人化机器手,并对拟人机械手的材质、机械结构、控制技术进行了深入的调查研究。将微小型步进电机和齿轮减速器引入拟人化灵巧机械手设计结构中,实现机械手的大扭矩抓取和拟人化;机械手装有位置、力、力矩等多种传感器,可实现机械手认知能力,且所有部件均集成在手指和手掌内。开发具有认知能力的拟人化灵巧机械手集机、电、计算机软硬件、信号源处理于一体。有5个相同结构的模块化手指,具有拟人化手形外观及认知抓取能力。通过对拟人化灵巧机械手的研究,带动更多前沿学科与机器人技术的交叉和融合,促进我国“机器人”的进一步发展,提高其技术水平和国际竞争力。

1 仿人机械手工作机理分析

仿人机械手主要由手掌、手指机构、拇指机构和所有的手指驱动机构组成。手掌内放的驱动直流小电机,节约了手的空间,缩小了体积;手指机构包括小指、无名指、中指和食指,它们都由相同的构件组成,包括两个关节前指和后指,前指和后指使用螺钉连接,可以减小手指的大小。各指之间使用轴连接,用轴套保持之间的距离,防止发生碰撞。拇指机构是单独的零件体,单独与四指机构用连杆连接,减小了机构的复杂性,有利于优化机构。传动机构包括电机轴齿轮、减速齿轮、驱动手指机构的半齿和带动拇指的连杆组成。仿人机械手运动的过程是以手掌为基座,电机固定在手掌内,带动齿轮实现各级减速,半齿连接在四指上,当半齿转动时带动四指张合,四指和拇指是由连杆连接,所以四指动的时候拇指也随之而动,且与四指相反,从而最终实现物体抓握。

2仿人机械手控制系统硬件设计

2.1控制系统硬件结构设计

图3-1仿人机械手控制系统结构框图

如图3-1所示为基于单片机系统设计的仿人机械手控制系统的结构框图。其工作方式如下:

其中MCU为单片机处理器,信号采集模块包括位置传感器模块和力矩传感器模块。这两个传感器模块的主要功能是检测对被抓物体的夹紧力地大小,同时生成模拟量的电信号,然后再通过单片机内部自带有的A/D转换芯片将模拟量转换成数字量,单片机将得到的数字信息存储起来,等到要处理的时候进行处理。

当单片机根据采集到的夹紧力对应的电压信号来算得手指的运动的位移,向外部驱动电路发送不同的位移信息。外部的电机驱动器将接收到的数字信息进行处理,最后进行对电机运行的控制。

2.2控制器芯片的选择

在设计控制系统的过程中,对控制芯片的选择至关重要,从系统的稳定性,性能和价格等方面考虑选择STC15F204EA单片机。

STC15F204EA系列单片机是STC公司生产的单时钟机器周期的单片机,是高速、高可靠、低功耗、抗干扰的新一代8051单片机,可设置5MHZ-35MHZ宽范围频率,可彻底省掉外部昂贵的晶振,自带8路高速A/D转换功能,无需在系统再搭建模数转换电路。

2.3电机驱动模块的设计

2.3.1驱动芯片的选择

L293是ST公司生产的一种高电压、小电流电机驱动芯片。该芯片采用16脚封装。主要特点是:工作电压高,最高工作电压可达36V;输出电流大,瞬间峰值电流可达2A,持续工作电流为1A。内含两个高电压大电流全桥式驱动器,可以用来驱动直流电动机和继电器线圈等感性负载;该芯片可以驱动两台直流电机。引脚P1用于M1电机PWM输入控制,引脚P2用于M2电机PWM输入控制。

2.3.2单片机与驱动器之间的接线与参数设置

本文所采用的单片机STC15F204EA可以控制驱动器L293驱动两台微电机。分别是M1和M2。引脚P1、P2可用于接收单片机输出的PWM脉宽调制信号以实现对电机进行调速控制。实现电机正反转是通过D1和D2两个端口控制的,输入信号端D1接高电平,电机M1正转,如果接低电平,电机就反转。控制另一台电机是同样的方式,驱动器L293输入信号端D2接高电平,电机M2正转,反之则反转,PWM信号端P1控制电机M1速度,PWM信号端P2控制电机M2速度。下图3-2为仿人机械手控制系统接线原理图,详细地绘制了单片机控制驱动器并连接两台电动机的工作过程。

图3-2 控制系统接线原理图

3控制系统软件设计

本控制系统所采用STC15F204EA单片机对应晶振为12MHZ,利用定时器控制产生占空比可变的PWM脉冲信号。PWM输出范围为0% -100%,PWM的周期1ms,频率1KHZ,且输出低电平有效。

如下是控制机器人左右机械手运动的两台直流电机PWM调速的部分程序

#include;

Sbit KEY_M1_SW =P1^0//M1:启动或停止;

Sbit KEY_M1_DR =P1^1//M1:正转或反转;

Sbit KEY_M1_ADD =P1^2;//M1:PWM加一;

Sbit KEY_M1_SUB =P1^3;//M1:PWM减一;

Sbit KEY_M2_SW =P1^4;//M2:启动或停止;

Sbit KEY_M2_DR =P1^5;//M2:正转或反转;

Sbit KEY_M2_ADD =P1^6;//M2: PWM加一;

Sbit KEY_M2_SUB =P1^7;//M2: PWM减一;

//输出控制引脚;

Sbit PWM1_OUT=P3^0; //M1:PWM的输出脚;

sbit MOTOR1_DR=P3^1;//M1:电机转向控制;

sbit PWM2_OUT=P3^2;//M2:PWM的输出脚;

sbit MOTOR2_DR=P3^3;//M2:电机转向控制;

sbit BEEP=P3^7;//蜂鸣器;

//电机的占空比;

Unsigned char PWM1_value=50;//赋初值 50%;

Unsigned char PWM2_value=50;//赋初值 50%;

主程序

Void main(void)

{

PWM_INIT()://PWM初始化

While(1)

{

KEY_SCAN()://按键扫描

}

}

4结论

本文设计了一种仿人机械手运动控制系统,该系统充分利用了仿人机械手结构简单、体积小、重量轻,拆卸方便,各手指间都可安装传感器的优点,能使控制更加灵活,安全性增强,满足了仿人机械手对控制系统的要求。以STC15F204EA单片机为控制核心,通过与位移及力矩采集模块之间的通信,实现了信息的良好通讯。通过驱动芯片L293驱动步进电机运转实现对机械手抓握物体的良好控制。

参考文献

[1] 蔡自兴机器人学.2009.

[2] 高焕兵,鲁守银,王涛。中医按摩机器人研制与开发【期刊论文】-机器人 2011(05)

[3] 陈殿生,刘静华,殷兰兰。服务机器人辅助老年人生活的新模式与必要性 2011(02)

[4].高微,杨中平,赵荣飞。机械手臂结构优化设计【期刊论文】-机械设计与制造 2006(01)

[5]周惠明。关节机械手的结构创新设计【期刊论文】-煤矿机械 2007(10)

[6]满翠华,范迅,张华。类人机器人研究现状和展望【期刊论文】-农业机械学报 2006(09)

第2篇

关键词:采摘机械手臂;苹果;结构设计

引言

水果采摘季节性强、费用高且劳动量大[1]。加速农业现代化进程,实施“精确”农业,广泛应用农业机器人,提高资源利用率和农业产出率,降低劳动强度,提高经济效率将是现代农业发展的必然趋势。研究采摘机械人,对于降低人工劳动强度和采摘成本、保证水果适时采收,具有重大的意义[2]。我国从上世纪70年代开始研究水果蔬菜类的采摘机械,并且也逐渐起步,如上海交通大学已经开始了对黄瓜采摘机器人的研制[3],浙江大学对番茄采摘机器人进行了结构分析与设计的优化[4],中国农业大学对采摘机器人的视觉识别装置进行了研究[5]。目前,我国研究的采摘机器人还有西红柿、橘子、草莓、荔枝和葡萄采摘机器人等[6-8]。文章对苹果采摘机械手臂进行选型,进一步进行详细结构设计,最后对设计结果进行试验验证。

1 机械人机构选型及自由度的确定

由于采摘机械人的作业对象是苹果,质量轻,体积小,故而可选择较为简单、灵活、紧凑的结构形式。

根据机械人手臂的动作形态,按坐标形式大致可将机械人手臂部分分为以下四类[9]:直角坐标型机械手;圆柱坐标型机械手;球坐标(极坐标)型机械手;多关节型机械手。采摘机械臂的结构型式选取主要取决于机械人的活动范围、灵活性、重复定位精度、持重能力和控制难易等要求。以上四种型式,它们的活动范围和灵活度逐渐增大。经过对苹果采摘空间的研究,结果表明,苹果树树冠和底部的苹果分布极少,大多分布在树冠中部,大约有80%以上的苹果分布在距地面垂直高度1-2m、距树干左右方向1-2m的空间范围内,且阴阳两面的苹果分布率并无明显的差异。这就要求采摘机械手应当具有较大的工作空间,因此选用多关节型机械手较为合适,且其占地面积较小,更加适合苹果采摘作业。

实际中,苹果生长位置随机分布,这就要求机械臂的末端执行器能够以准确的位置和姿态移动到指定点,因此,采摘机械人还应具有一定数量的自由度。机械臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。一般来说,自由度数量越多,机械臂的灵活性、避障能力越好,通用性也越广,但增加一个自由度就相当于增加了一级驱动,会使得机器人的成本上升,而对于农业机器人而言,成本高将会大大的减缓其机械商品化实用化进程,同时增加自由度会相应增加机器人的控制难度,降低机器人的可靠性。综合考虑,将自由度数目定为六个,这样不仅能够使得末端执行器具有较为完善的功能,而且到达采摘空间中的任意位置,而且不会出现冗余问题。

2 采摘机械臂工作原理

图1 机械人结构简图

图1是本次设计的球类水果采摘机械人的结构简图。该结构为六自由度机构,可划分为底座、大臂、小臂、腕部和手五个部分。机械臂的底座通过舵机带动传动系统实现各个部分之间的相对转动和旋转。其中的各个转动和旋转均是通过电机驱动螺旋丝杆来实现。该设计机械臂的传动如下:(1)底座旋转。确定与底座平面互相垂直的目标采摘物所在的平面。(2)大臂转动。移动至目标采摘位置附近的上方或下方。(3)小臂转动。将采摘机械手送至目标采摘物的附近。(4)手腕转动及旋转。调整机械手末端采摘机构的姿态,使其处于一个合适的位置,保证采摘任务能够合理完成。(5)手夹紧放松,完成对目标采摘物的采摘任务。此外,将末端执行器设计为关节型的两只手指,通过舵机6(舵机分配情况见图2)、齿轮的啮合及连杆机构实现对目标采摘物的夹紧与放松。

由以上分析得出:机械手的空间位姿由各个关节的空间坐标来决定,即当机械手的各个舵机的坐标确定的时候,就可以确定机械手的空间位姿。而决定舵机坐标的因素就是臂长及臂的转动角度,而在这两个参数中,设计结束后臂长是确定的常量,角度为变量。在模型当中,舵机1、2的相对位置固定不变,控制末端执行器的舵机6用来调整手的姿态,因此可以先忽略舵机1、6,将舵机2轴线中心的位置设为坐标系原点。

图2 舵机分配方框图

3 机械臂结构设计

首先用Pro/E软件中的零件模块对机械人各个零件进行绘制,然后再对零件进行自下而上的装配,以及进行零件图及装配图的绘制。大臂、小臂和腕部、机械手零件图以及装配图分别见图3、图4、图5、图6和图7(单位均为mm)。

4 试验台搭建与抓取效果实验

根据零件图及装配图进行试验台搭建。由于设计尺寸较大,故将整体尺寸缩小4倍来进行搭建。实物如图8所示。通过操作上位机控制软件指令信号,可给伺服舵机控制器发送控制指令信号,从而实现机械人在空间中精确作业。试验结果表明:机械人能够较为平稳、准确地对目标物进行夹取、移动、放置等任务。证明设计合理,试验台搭建正确。

5 结束语

通过对水果采摘作业的分析,设计了一套六自由度关节型采摘机械人。其运动范围覆盖了水果果实的分布范围,末端执行器能够执行对水果的采摘任务。在采摘过程中,只需对舵机进行控制,在一定程度上降低了控制的难度和复杂性。当然,设计中也存在不足,例如缺少对果实的切割装置,而且对葡萄等较小、较软的果实采摘技术不成熟,有待进一步的改善。

参考文献

[1]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人,2005,27(1):90-96.

[2]张文莉.农业工程导论论文[D].江苏大学,2011.

[3]曹其新,吕恬生,永田雅辉,等.草莓拣选机器人的开发[J].上海交通大学学报,1999,33(7):880-884.

[4]梁喜凤,苗香雯,崔绍荣,等.果实采摘机械手机构设计与工作性能分析[J].农机研究所,2004(2):133-136.

[5]周天娟,张铁中.果蔬采摘机器人技术研究进展和分析[J].农业机械学报,2006,11:38-39.

[6]邹湘军,金双,陈燕,等.基于Modelica的采摘机械手运动控制与建模[J].系统仿真学报,2009,21(18):5882-5885.

[7]马履中,杨文亮,王成军,等.苹果采摘机器人末端执行器的结构设计与试验[J].农机化研究,2009,31(12):65-67.

[8]宋健.茄子采摘机器人结构参数的优化设计与仿真[J].机械设计与制造,2008,46(6):166-168.

[9]马江.六自由度机械臂控制系统设计与运动学仿真[D].北京工业大学,2009.

第3篇

关键词:六自由度机械臂;OpenCV;伺服;制动

中图分类号:TP302 文献标识码:A 文章编号:1009-3044(2016)33-0227-03

1 机械臂控制系统软件设计

1.1 开发环境

本设计的开发环境是arduino。Arduino是一款完全开源的电子原型平台,包含了arduino板和arduino IDE。由欧洲开发团队开发,使用类似C语言的processing开发环境。Arduino可以自行设计或者购买已经焊接好的板子,程序代码写在arduino IDE上,实现对arduino板子的控制。

1.2 国内外研究现状

作为近几十年来发展起来的一种自动设备,机械臂可以通过编写软件程序来完成目标任务,它不仅大部分机械臂共同的机械有点,而且特别具有人的视觉以及判断能力。在作业过程中,机械臂控制的准确性和对环境的适应性,已经使其在各个领域有着广阔的发展前景。高级类型的机械臂,可以执行更复杂的操作。将机器臂运用于工业生产过程,除了可以提高生产率之外,还能够减弱工人的劳动强度,使生产过程实现自动控制。因此机械臂在近几年得到了愈来愈广泛的应用。

在国外,工业机器人的发展已经较为成熟,涵盖于各个行业,已经得到了非常广泛的运用,而相比国内,我国基础产业跟不上,机械设计的工艺也达不到一个极高的水平,而且部分设计不够系统科学,大多处于一个模仿的阶段。以上原因导致我国工业机器人在国际上并不能达到一个较高的水准。如今国内企业需要革新自己的技术,加强学习才能在国际市场上占有一席之地。

1.3 总体思路

1.3.1 机械臂软件设计核心思路

摄像头采集视频图像->利用OpenCV获得图像的一帧->对此帧图像进行滤波处理->将图像序列帧由RGB模型转为HSV模型->对得到的二值图像进行轮廓检测->创建回调函数并对得到的三幅图像进行合并->创建滑动条窗口->将得到的图像分为H,S,V三幅单通道图像->在目标体上绘制轮廓。

本文提到的OpenCV函数库是一个开源的跨平台的视觉图像处理库,利用此库中提供的开源算法并加以逻辑上的改进来提取摄像头中帧图像,再使用颜色阈值调节功能进行颜色识别,再对结果进行一系列的处理达到预期要求。

1.3.2 OpenCV简介

OpenCV是一个基于开源发型的跨平台计算机视觉库,可以运行在众多操作系统上,由一系列C函数和C++类构成,轻量且高效,其提供的视觉处理算法非常丰富,被大量使用于众多科学领域,卫星地图的图像整合拼凑;医学界病人器官图像的去噪处理;安全系统中的物体动态监测而预警;军事行动中代替人眼而进行众多无人操作与活动,不光如此,在图像处理能力外,还能对声谱图进行识别操作从而进行对声音的识别。

1.4 单一模块

1.4.1 颜色识别

颜色识别的首当之事应是正确选取颜色空间,常用的颜色空间有RGB、CMY、HSV、HIS等。本文采用RGB和HSV。

RGB(红、绿、蓝)可以看成一个三维的坐标系,一个坐标点表示一种颜色。HSV是颜色空间模型。表示颜色的是Hue,与坐标点不同,他使用有角度的圆形来表示相应颜色,比坐标点更加灵活。表示饱和度的是Saturation,饱和度越低,则颜色填充就越少,例如圆心处取值为0,那么颜色会非常的淡,从底部往上,圆的半径r越来越大,那么颜色就会越来越深。表示颜色的亮度的是Value,同理,也是从圆锥底端到顶端的数值渐变,底部表示为黑色,而顶端表示为白色。在实际实验环境中,RGB颜色经测验非常容易受到强光、弱光、阴影等其他因素的干扰。相比之下,HSV空间能更加稳定的处理这些光照的变化从而能更好地反应颜色本质、传达正确信息。

1.4.2 图像获取与处理

1.4.2.1 图像获取与预处理

利用体感周边外设中强大的Kinectz像头(VideoCapture(…))获取周围环境图像,读取一张图片或视频中的一帧图像,进行两次滤波后利用cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV)函数进行RGB与HSV的转换,再在HSV空间下对彩色图像做直方图均衡化。

高斯滤波函数:cvSmooth(…CV―GAUSSIAN…)。真实图像的邻近点像素如果变化,不会十分明显,因为真实图像的像素点是缓慢迁移变化的,但是如果两个像素点倏忽变化的话,便会有很大的像素差,就是我们说的噪点,这时候便要用到广泛用于图像处理的减噪的高斯滤波,他对整幅图进行加权平均,从而能够减少噪声却又不失真(保留信号)。

中值滤波函数:cvSmooth(…CV―MEDIAN…)。有时候图像中会有孤立的噪声点从而会形成较大差异,这样会影响平均值也会产生较大噪音,所以便使用非线性平滑的中值滤波,他把图像中的孤立的噪声点用其领域中各个点值的中值代替从而有效的去噪并且能够保护信号边缘使之不模糊,其算法也十分简单。

1.4.2.2 图像细处理与生成

创建滑动条:返回所读取的颜色参数阙值。本文设定了6个参数:

[LowHue(色度下限值)HighHue(色度上限值)LowSaturation(饱和度下限值)HighSaturation(饱和度上限值)HighBrightness(亮度上限值)LowBrightness(亮度下限值)]

之后得到返回的参数阙值,便用于检查图像像素灰度是否在设置的范围内并且可以得到目标颜色的色度、饱和度和亮度单通道图像。

将得到的三个单通道图像进行按位与运算,这样便能检测其二值图像,由于此时会出现噪声,所以采用膨胀腐蚀的方法进行图像形态学处理,使得到的目标体进行最大的连通。

图像生成:查找轮廓和绘制轮廓,轮廓正确勾勒,图像便能正确显示。利用OpenCV中对灰度图像处理的Canny边缘检测法(cvCanny(…)),将试图独立的候选像素拼装成轮廓,轮廓的形成是对这些像素运用滞后性阙值,Canny边缘检测算法是高斯函数的一阶导数,是对信噪比与定位精度之乘积的最优化逼近算子。

Canny函凳淙胧涑龅亩嘉灰度图,在边缘检测完成后,利用“cvFindContours(…)”函数得到输出的图像的轮廓函数(在二值图像中),检测轮廓个数,然后再用“cvDrawContours(…)”函数绘制检测的轮廓。

2 机械臂控制系统硬件设计

2.1 自由度及关节

本机械手臂采用4个电机实现4自由度,进行手臂的升降,转动,抓取,移动等功能。

2.2 基座及连杆

2.2.1 基座

基座是机械手臂的支撑,起到稳固的作用,为了使机械手臂更加的稳定,增大其与表面的接触面积,降低重心,提升其稳定性能。同时,基座的剩余部分,可用于防止控制的单片机及其扩展版,使空间充分利用。

2.3 机械手臂设计

机械手是机械行业中必不可少的一个部分,主要起到操作,转移等功能。根据工件的不同,机械手的精度,重量,形状,光滑程度等都会不一样,以至于达到节省成本或准确夹取工件等实际要求。一般机械手包括:1)灵巧手;2)吸附手;3)夹取手;4)专用操作器。本设计因实现的主要功能是夹取物体并转移,工件物体不确定,因此采用夹取手作为机械手臂的机械手进行操作。

2.4 驱动方式

调用Servo实现对舵机的控制,定义多个舵机,控制多个舵机,具体内容根据实际情况进行调试。采用for语句,当红外或者视觉采集到数据,给予反馈,实现舵机的停止或执行下一步。舵机的转动的角度通过脉冲宽度占空比实现。由于舵机牌子不同,舵机转动的角度也会不同。

本机械手臂通过电机的扭矩进行传动。手臂的升降,转动,抓取都是由能够承受很大力的电机进行完成。在机械手臂抓取物体时,尽量的平稳,并且力不能够过大或者过轻,移动时活动空间大。

机械行业一般常用的驱动方式有液压驱动,电机驱动和气压驱动三种方式,每种驱动方式各有优劣。本设计机械手臂中,要求驱动时满足一下条件:1)输出功率适中,效率高;2)精准度尽可能的高;3)便于维护,调试;4)安全性高;5)成本低。

综上所述,本设计采用电机驱动的方式对机械手臂进行驱动。电机参数如表所示:

本机械手臂采用控制角度的方式控制手臂。在初始位确定的情况下,通过控制角度,实现电机的转动,其优点是,能够精确控制位置,但是因为需要进行初始位置,导致运行时间过长。本文设计方案传动方式为舵机直接传动,故不多作介绍。

3 结论

机械臂控制系统是当今社会的一项非常重要的研究课题,尽管其发展已经有了一段很长的历史,但是其发展并不完全成熟。无论是学术界、工业还是在教育教学方面都一直在进行着这方面的研究,距离成熟阶段还要有一段时间。

本设计是基于OpenCV六自由度机械臂驱动系统的设计,以六自由度机械臂为控制对象,以arduino为开发环境,辅以有着丰富视觉处理算法的OpenCV软件,并在此基础上,采用先进的控制理论,以正确的控制方法为指导,进行了系统的硬件设计。

在整个系统的设计中,硬件的设计是本论文研究的重点,芯片的选型是系统硬件设计的保证,并且辅以可靠性分析为指导,保证了系统运行的可靠性和稳定性。

从实验结果中看出,我们设计制作的基于OpenCV的四自由度机械臂能够和一些中小型机器人控制器的性能要求类似,在操作灵活度、控制精度、易操作性等方面都表现出优秀的性能。然而,仍有一些不足之处需要进一步的改进。

1)机械臂的传感器提升。作为机械臂的控制对象,其结构、性能的优劣成为了机械臂的重中之重、中流砥柱,为了实际运行效果的完美,我们机械臂的手爪部分应加入压力等传感器,为控制的精准提供、保证更为完整的信息。

2)完善机械臂自动控制算法。算法的优良决定了机械臂是否能自动协调运行,特别在输入参数和机械臂抓取后的运输,需要更加优化、灵活的算法,从而将计算出的控制参数变得更加精确和一体。

3)视觉的广泛性运用。视觉不单单只作用与颜色的阈值识别,还包括如骨骼识别,轮廓识别等等,再后续的研究中,添入以上功能,可以使机械臂的作用范围变得更加的广泛。

鉴于上述情况,在以后的工作中,我们应该不断改进、完善,以提高该机械臂系统的稳定性以及可靠性。

参考文献:

[1] 方龙,陈丹,肖献保.基于单片机的机械手臂控制系统设计[J].计算机与信息技术,2012,8(8):89-90.

[2] 任美玲.机械臂的研究与进展[J].出国与就业,2012(2):84-85.

[3] 刘少丽.浅谈工业机械手设计[J].工业自动化,2011,40(7):45-46.

[4] 毛星云.OpenCV3编程入门[M].电子工业出版社,2015.

[5] 程晨.自律型机器人制作入门[M].基于Arduino.北京航空航天大学出版社,2013.

[6] (美)Don.Wilcher.学ARDUINO玩转电子制作[M].翁恺,译.人民邮电出版社,2013.

[7] 孙骏荣,吴明展,卢聪勇.Arduino一试就上手[M].科学出版社,2013.

[8] (德)乌尔里希・菲舍尔.简明机械手册[M].2版.杨放琼,编.湖南科学技术出版社,2012.

[9] 陈明秋.机械制图[M].武汉理工大学出版社,2009.

第4篇

Advances In Climbing and

Walking Robots

Proceedings of 10th International Conference(CLAWAR 2007)

2007,763pp

Hardback

ISBN9789812708151

M.谢等编

机器人学是工程及自然科学中令人神往的领域。机器人学已经对许多工业做出重要贡献,工业机器人在诸如组装、焊接、油漆及材料处理之类的任务中广泛应用。与些同时,我们又目睹了特殊机器人的出现,它们在非工业环境中执行有价值的任务,这些任务包括搜索与救援、扫雷、监测、探险及安全保卫。此外,对在民用及专业服务部门中机器人的技术研究及发展工作正在进行。类似攀登与行走机器人这类用于在非结构性环境中执行任务的移动机器人的兴起,进一步加剧了机器人学研究必须面对的挑战。这种挑战不仅包括了涉及标准化在内的技术与工程方面,而且也包括了社会、经济与伦理方面。CLAWAR2007于2007年7月16-18日在新加坡举行,该系列国际会议自1998年起每年举行,这次是第10届。总共有来自五大洲22个国家的作者在CLAWAR2007上做介绍,这本会议录报道了攀登及行走机器人的最新研发振奋人心的应用及挑战。

本书汇集的论文共分成了5个部分。1.全体会议介绍,5篇论文;2.攀登机器人进展,26篇论文;3.行走机器人进展,24篇论文;4.似人足球机器人进展,5篇论文;5.支持技术,27篇论文。部分论文标题为:1.救援机器人滑动插座移动模块;2.有攀登腿的带轮子爬墙机器人;3.用于快速四脚移动的进化神经网络;4.绳索攀登机器人的设计与构造;5.用于长焊接线检验的攀登机器人开发;6.关于利用陀螺效应二足移动的提议;7.新型腿-轮行走机器人的设计与问题;8.利用滞后算法的似人机器人RH1的脚规划运动;9.局部模块化行走机器人的运动模拟;10.行走双脚机器人基于观测器的控制:稳定性分析;11.三维双脚机器人无驱动动态行走研究;12.ROTOPOD:一种新颖的有效带腿移动;13.似人足球机器人的分布式嵌入控制系统结构;14.快速行走拟人足球机器人的最佳性能:实证研究;15.双臂系统并行规划算法;16.利用平均移位算法的全局定域化问题方法;17.MCA2机器人控制应用的可扩展模块化框架;18.灵活连接机械手的基于隐藏马尔可失模型的模糊控制器。

本书可供从事机器人研究与开发的研究人员、工程师阅读借鉴。

胡光华,

高级软件工程师

(原中国科学院物理学研究所)

第5篇

一、选题意义:

1、理论意义:(1)学习模具设计的一般方法,了解和掌握常用模具整体设计、零部件的设计过程和计算方法,培养正确的设计思想和分析问题、解决问题的能力,特别是总体设计和计算的能力.

(2)综合运用热锻模课程和其它有关选修课程的理论及生产实践的知识去分析和解决模具设计问题,并使所学专业知识得到进一步巩固和深化.

(3)通过计算和绘图,学会运用标准、规范、手册、图册和查阅有关技术资料等,培养模具设计的基本技能

(4)可以掌握锻造工艺,熟悉各种锻造各种锻造设备,熟悉掌握计算机操作以及了解deform软件的应用,并具有机械设计及制造等综合知识.

2、现实意义:随着科学技术的不断进步和工业生产的迅速发展,许多新技术,新工艺,新设备,新材料不断涌现,进一步提高锻件的性能指标;同时缩短了生产周期,降低了成本,使之在竞争中处于优势地位.

锻造是一种借助工具或模具在冲击作用下加工金属机械零件或零件毛坯的方法.锻件的最大优势是韧性高、纤维组织合理,件与件之间性能变化小;锻件内部质量与加工历史有关,不会被任何一种金属加工工艺超过.

锻件的优势是由于金属材料通过塑性变形后,消除了内部缺陷,如锻(焊)合空洞,压实疏松,打碎碳化物,非金属夹杂并使之沿变形方向分布,改善或消除成分偏析等,得到了均匀、细小的低倍和高倍组织.而铸造工艺得到的锻件,尽管能获得较准确的尺寸和比锻件更为复杂的形状,但难以消除疏松、空洞、成分偏析、非金属夹杂等缺陷;机械加工方法获得的零件,尺寸精度较高,表面光滑,但金属内部流线往往被切断,容易造成应力腐蚀,承载拉压交变应力的能力较差.

这几年,我国火车不断提速,动车、高铁相继投入运营,这也代表着以后的发展方向,这要求我们必须保证火车导轨的安全可靠行,为保证高速列车运行的平稳性和旅客的舒适性,高速铁路的平顺性是很重要的指标,国外高速铁路采用断面尺寸公差和平直度要求很高的长定尺钢轨并焊接成超长无缝线路.接头作为连接导轨的关键部件起着至关重要的作用.

模具制造技术现代化是模具工业发展的基础,性能良好的锻造设备是提高锻造生产技术水平的基本条件,高精度、高寿命、高效率的锻模模需要高精度高自动化的锻造设备相匹配.为了满足大批量高速生产的需要,目前锻造设备也由单工位、单功能、低速压力机朝着多工位、多功能、高速和数控方向发展,加之机械手乃至机器人的大量使用,使锻造生产效率得到大幅度的提高,各式各样的锻造自动线和高速自动压力机纷纷投入使用.

二、课题关键问题及难点

本课题以锻造工序的数目确定、预成形设计为重点,对比不同形状预制坯的成形过程,给出了合理的制坯工序布排和设计,实现了一火锻造.同时,开发了封闭飞边闭式锻造预锻工序,提高了材料利用率.最后,对锻造过程进行了三维有限元模拟,在40mn热模锻压力机上进行了试验和试生产,模拟和试验结果证明锻造设计符合生产要求.该锻件形状复杂,材料分布非常不均匀,其锻造工序编排和模具设计难度更大.

本课题的难点在于应用三维绘图软件和deform软件对其进行应力应变分析,通过软件规范初设数据并反复进行修改,直到得到最优的设计方案..

三、调研报告(或文献综述)

我国的经济体制发生了根本的变化,由过去的计划经济过度到现在的市场经济.锻压生产虽然生产效率高,节约原材料和机械加工工时;但生产周期较长,成本较高,处于不利的竞争地位.铸造、焊接、机械加工豆加入了竞争.锻造生产要跟上当代科学技术的发展,需不断改进技术,采用新工艺、新技术,进一步提高锻件的性能指标;同时要缩短生产周期,降低成本,使之在竞争中处于优势地位.模具的技术水平明显有了提高,一些国产优质模具的性能已接近国外同类产品的先进水平,但由于我国起步晚,许多模具不得不依赖进口,与发达国家相比差距还非常大.

当代科学技术的发展对锻压技术本身的完善和发展有着重大的影响,这主要表现在一下几个方面:

1. 对机械零件的性能要求更高.现代交通工具如汽车、飞机、机车的速度越来越高,负荷越来越大.出更换强度更高的材料外,研究和开发新的锻造技术.挖掘原有材料的潜力也是一条出路.

2 .模具计算辅助设计、制造与分析(cad/cam/cae)的研究和应用将极大地提高模具制造效率,提高模具质量,使模具设计与制造技术实现一体化.

3. 模具的标准化、商品化、机械化及专业化自动生产.

4. 工艺分析计算的现代化.它将与现代数学、计算机技术联姻,对加工零件进行计算机模拟和有限元分析,达到预测某一工艺方案对零件成形的可能性与成形过程中可能会发生的问题,供设计人员修改和选择.

目前锻造业面临的问题大概可以归纳为一下几个方面:

1.装备水平低,其主要表现是设备老化、精确度低.

2.管理体制亟待理顺,生产厂点过多,力量分散.

3.机械制造厂家封闭式经营生产,是产品缺乏竞争力.

4.科学研究投入少,接受新技术新工艺迟缓,其结果导致搞科研也搞生产,生产厂家的问题无人去解决.

四、参考文献

【1】姚泽坤主编. 锻造工艺学与模具设计 西北工业大学出版社 XX.6

【2】卢秉恒. 机械制造技术基础. 北京: 机械工业出版社,1999.8

【3】王先奎. 机械制造工艺学. 北京:机械工业出版社,XX

【4】吴宗泽 机械零件设计手册. 北京:机械工业出版社,XX.4

【5】郑家骧 刘永田. 画法几何与机械制图. 内蒙古科技出版社,XX.8

【6】锻压手册(设备) 北京:机械工业出版社,XX

【7】锻模设计手册 北京:机械工业出版社,1991

五、研究内容及确定方案各步骤

1、研究内容:

(1)模具整体方案设计,包括零件的工艺分析、设计绘制锻件图、模具类型的确定、确定变形工步及中间坯料尺寸,压力中心计算、压力机选择、计算原坯料尺寸的确定等;

(2)模具整装配图和模具主要零件的设计;

(3)编写设计毕业论文

2、基本设计方案

本零件是属于大型锻件,首先根据相关尺寸确定其锻造工步,通过计算/r以及h/d的相关数值, 基本步骤设计如下:

1、计算毛坯尺寸

2、选择成型设备及其参数

3、用deform模拟软件进行有限元模拟并分析缺陷并加以改进

4、模具工作部分尺寸的计算

5、模具的总体设计

6、下料

7、加热

8、弯曲

9、预锻

10、终锻

11、切边

六、进度安排

第5-6周 毕业实习,撰写实习报告

第7-8周 写出不少于3000字的文献综述;根据参考文献和课题要求,提出自己拟定的可行方案;

第9-10周 写出开题报告,开题;进行总体设计

第11-12周 外文文献翻译,完成详细方案设计

第13-14周 完成结构优化设计

第6篇

论文摘 要: 概括说明机械电子控制产业发展的情况,重点介绍计算机技术在机械电子控制产业领域以及工业生产制造和人们日常生活中的广泛应用。

0 引言

现代科学技术的发展极大地推动了机械工业领域的变革,同时给相关生产产业带来了巨大的影响,提高了生产水平和技术。随着各种技术之间相融合的发展,以计算机电子技术、机械技术为核心的机电控制领域将给工业及科研等领域带来更多的实际应用。

1 计算机技术与机电控制技术的发展概况

1.1 计算机控制理论的形成与技术的发展

忽略数字信号的量化效应,可以将计算机控制系统看成采样控制系统,在这一系统中,将其中连续的环节离散化,则整个系统又可看成由不同的离散系统构成。计算机控制理论的发展主要是将采样理论、差分方程、变换理论、状态空间理论和系统辨识自适应控制等理论综合应用到控制技术中,使计算机控制系统有了初步发展。对于结构复杂、时变的非线性系统,控制系统则融入了鲁棒控制、模糊控制、预测控制等多种新型理论,逐步形成了工业过程控制系统的一个新方向。

自世界第一台电子计算机问世后,计算机首先被用来自动检测化工生产过程的过程参量并进行相关的数据处理,同时也研究了计算机的开环控制。到二十世纪六十年代,出现了用于过程控制的计算机,实现了直接数字控制。后经集中式计算机控制系统发展到现在的以微处理器为核心的分层式控制系统控制,通过计算机对生产过程进行集中监视、操作和管理控制等。伴随着计算机处理器等技术的发展,计算机控制技术也随之发生相应的变革,最终应用到工业生产中并对其产生巨大影响。

1.2 机械和电子控制技术的发展和现状

在生产、科研等诸多领域里,有大量的物理量需要按某种变化规律进行控制。在二十世纪三十年代之前,工业生产多处于手工操作的状态。最初采用基地式仪表控制压力温度等在一恒定范围内,初步有了对工业生产的机械控制实践。随着电子技术的迅速发展和计算机控制系统的出现,直接实现了工业生产中各参量和过程的数字控制。计算机的微型化使控制技术更加智能化,同时将机械、电子、计算机技术和控制技术有机结合的机电一体化技术也得到迅猛发展,且越来越被广泛的应用到各生产领域。目前主要形成并应用的机电控制技术主要有PID控制,PID是经典控制理论的代表,它吸收了智能控制思想并利用计算机的优势,形成了自适应PID和非线性PID等更利于控制的变种PID控制器。另外还有模糊控制(FLC)、变结构控制等,均随着计算机领域的发展在不断地拓宽。

2 机电一体化的发展及在工业上的广泛应用

2.1 机电一体化的简介和生产应用

机电一体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及计算机软件系统集合起来所构成的系统总称,综合运用机械技术、微电子技术、计算机技术、电力电子技术等对各生产领域的控制过程进行监督操作。它主要应用领域有数控机床,通过相应的数控技术,在工业操作上结构、功能、操作精度上都有明显的提高。采用多CPU和多主线的体系结构,丰富了数控功能,也提高了生产效率。

柔性制造系统的应用是计算机技术和制造系统在机电控制工业的应用,是计算机化的制造系统。它主要由计算机、数控机床、自动化仓库等组成。在工业上,它可以随机地、按量地按照装配部门的要求,生产其能力范围内的任何工件,更适用于多品种,小批量等的离散零件的批量生产。

交流传动技术的发展也是随着电子技术和计算机技术的发展在工业上有了重要的应用,尤其是在钢铁工业中,使复杂的矢量控制技术得以实现,无论是大容量电机还是小容量电机现均可使同步电机或者异步电机实现可逆滑调速。也使交流传动系统在轧钢生产中得到广泛的应用。

可编程控制器(PLC)是集计算机技术和自动控制化技术于一体的新型控制系统。这一系统解决了工业控制系统中大量开关控制的问题,逐渐取代了耗能多、故障率高的继电器控制系统。随着PLC技术的进步,其应用领域更是不断扩大,可采集存储数据,还可对控制系统进行监控。PLC能编制各种各样的控制算法程序,完成闭环控制。这种过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。此外,随着工厂网络自动化的发展,PLC可实现通信及联网功能,更有助于工业生产的控制过程的监控。如今,PLC技术已经被广泛应用于冶金、石油、化工、建材、机械制造、电力、汽车、轻工、环保以及文化娱乐等各行各业。

2.2 计算机在机械和电子控制产业的应用实例

计算机技术和机械电子控制技术一体化的有机结合,不断使相关的新技术应用到更多的领域中去,这些应用到的领域已经不再局限于工业的生产,更多技术是切身关系到我们日常的工作和生活。下面举几个具体实例来介绍计算机技术和机电控制相结合的实际应用。

PLC实现了机械手移动工件的控制过程。随着世界经济和技术的发展,人类活动的范围不断扩大,机器人的应用正迅速向社会生产和生活的各个领域扩展,并从制造领域转向非制造领域,各种各样的机器人产品随之出现。随着机器人的生产和大量应用,很多领域,许多单一、重复的机械工作由机器人(也称机械手)来完成。工业机器人是一种能进行自动控制的、可重复编程的、多功能的、多自由度的、多用途的操作机,广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本有重要意义。与计算机及网络技术相结合应用的工业机器人的广泛使用正在日益改变着人类的生产和生活方式。

农业方面,机械作业过程中驾驶室内的仪表盘正迅速由电子监视仪表取代并逐步由单一参数显示方式向智能化信息显示终端过渡,以此来改善人机交互界面。这种智能化显示终端又被称为虚拟化仪器显示终端(Virtual Display Terminal),它代表了当代仪器与控制装置发展的主流方向。它可通过屏幕任意选择显示机组中不同部分的终端信息,在屏幕上按操作者的需求,调用数据库信息,显示数据、图形、语音等多媒体信息。另外,还可以将数据信息动态存入类似信用卡尺寸大小的高密度智能化数据存储卡,将农业作业过程的数据信息通过智能卡带回办公室,由计算机应用高级软件进行处理。也可以将管理者的决策和操作指令通过智能卡传送到拖拉机上的智能控制终端,实现自动控制农机的操作。

PLC在自动售货机中的应用。自动售货机通过顾客选择商品开关,投入的硬币值由PLC驱动数码管显示,经过光传感器识别,通过判断,进行下一步操作,经过PLC的系统控制和信号输出完成售卖过程。计算机技术和机电自动控制在自动售货机中的这项应用极大方便了人们的生活,也使PLC的应用更加广泛。

交通信号灯系统也是微机软件应用到电子控制系统中的典型实例。通过主要应用PLC技术控制十字路口的信号灯动作。准确无误的完成信号灯的变灯动作来控制时间,这项应用更是极大方便了人们日常生活工作的出行。

电脑横机中计算机技术的应用给机械编织行业带来了巨大的变革。现在的电脑横机是一种涉及到计算机、机械、电子、控制等诸多领域的复杂系统。电脑横机的编织是一个极其复杂的过程,最初的横机是手动横机,只能胜任比较简单的编织过程。随着计算机技术应用到电脑横机中,通过电脑的自动控制,设计人员可对编织花型进行数字化设计,通过计算机数字直接控制机械的退圈、垫沙、脱圈、弯沙等相应的机械编织动作,由计算机指令控制系统完成整个设计的编织,极大地提高了工业生产效率。

与机电一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,以机械技术、微电子技术的有机结合为主体的机电一体化技术是机械工业发展的必然趋势。

3 总结

在机械生产领域,电子技术和计算机技术的融入发展,机电一体化的形成是机械工业中的重要变革。通过不断发展的计算机技术,使机电一体化相关的技术在诸多领域中得到了广泛的应用。

参考文献

[1]张东宝,工程机械与控制技术[M].筑路机械与施工机械化,2007.

[2]马增强等,数据采集系统的研究,微计算机信息,1998.

[3]王立新,浅谈数控技术的发展趋势[J].赤峰学院学报,2007.

[4]杨明等,机电一体化的研究现状及发展趋势,农机化研究,2006.

第7篇

关键词:空间机构;机构自由度分析;机械原理;教学探索

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)33-0243-03

机构自由度分析是机械原理课程和机构学研究的基础与重要内容。机构是指可以完成规定动作的结构组合,是可动的,机构自由度分析是研究机构运动规律和设计机构时的重要参数。在机械原理课程研究范畴和教学中,研究对象大多是平面机构,对空间机构涉及甚少,而在实际中空间机构却占有重要地位,本文着重对空间机构的自由度分析和教学探索进行研讨。

一、自由度概念

(1)自由构件(刚体)自由度:自由构件(刚体)拥有的独立相对运动的数目。一个物体(刚体)在三维空间中有6个自由度,分别是绕3个坐标轴的转动和沿3个坐标轴的移动。(2)运动副自由度:运动副是构件间的一种活动连接,它既限制所连接的两个构件的相对运动,提供一定约束,又保留了构件间的一定相对运动,所保留的独立相对运动数目称为运动副的自由度。(3)机构自由度:指机构中各活动构件相对于机架所具有的独立运动的数目,即主动件或可控关节的数目[1]。

二、运动副分类

用f表示运动副的自由度,c表示运动副提供的约束数目,则二者具有如下关系:f=6-c(1)根据运动副的自由度可以将运动副分为5类。

1.Ⅰ类副(f=1,c=5):转动副(R):只保留一个旋转自由度。移动副(P):只保留一个移动自由度。

2.Ⅱ类副(f=2,c=4):圆柱副(C):具有一个转动自由度和一个移动自由度。球销副(S′):具有两个转动自由度。

3.Ⅲ类副(f=3,c=4):球面副(S):具有三个转动自由度。平面副(E):具有两个移动自由度和一个转动自由度。

4.Ⅳ类副(f=4,c=2):圆柱平面副(CE):具有两个转动自由度和两个移动自由度。球槽副(SG):具有三个转动自由度和一个移动自由度。

5.Ⅴ类副(f=5,c=1):球平面副(SE):具有三个转动自由度和两个移动自由度。

三、机构自由度分析

1.空间(一般)机构自由度。在空间机构中,每个可动构件在三维空间有6个自由度,若该机构有n个可动构件,则构件自由度总数为6n。其中:每个Ⅰ类副提供5个约束,若机构中有p1个Ⅰ类副,将提供5p1个约束。每个Ⅱ类副提供4个约束,若机构中有p2个Ⅱ类副,将提供4p2个约束。每个Ⅲ类副提供3个约束,若机构中有p3个Ⅲ类副,将提供3p3个约束。每个Ⅳ类副提供2个约束,若机构中有p4个Ⅳ类副,将提供2p4个约束。每个Ⅴ类副提供1个约束,若机构中有p5个Ⅴ类副,将提供1p5个约束。

即:F=6n-(5p1+4p2+3p3+2p4+p5)

=?摇6n-[(6p1-p1)+(6p2-2p2)+(6p3-3p3)+(6p4-4p4)+(6p5-5p5)]=6n-6■pi+■ipi (2),式中:■pi——机构中各类运动副的数目之和;■ipi——机构中各类运动副的自由度数目之和。令p=■p,■fi=■ipi。则机构的一般自由度计算公式为:F=6(n-p)+■fi (3),式中:n——可动构件数目;p——各类运动副数目总和;■fi——各类运动副自由度数目总和[2,3]。

2.机构自由度分析应注意的问题。之所以有时运用前面介绍的自由度计算方法不能得到正确的结果,是由于某些特殊的机构存在过约束问题。在这些机构中,由于运动副位置的特殊布置或者机构中的特殊几何约束条件的存在,使得机构自由度发生了变化,在计算此类过约束机构的自由度时应加以额外考虑。①公告约束m。当机构中所有构件都受到相同的约束时,它们将失去相同的基本运动。把各构件共同失去的相同基本运动数目,称为公共约束,用m表示。由机构的一般自由度计算公式(2)可以看出,当计算闭链机构自由度时,若机构的公共约束为m,则相当于多减去了m个约束,故在计算时应该将多减去的公共约束m加上。②虚约束(消极约束)λ0:机构中的约束有些往往是重复的,这些重复的约束对构件间的相对运动不起独立的限制作用,称之为虚约束或消极约束,机构自由度计算时应先将其除去后再进行。应当指出的是,从机构运动的观点分析,虚约束是多余的,但从提高构件的刚度和改善机构的受力条件来说却是有益的。如图3所示的平行四杆机构中,中间的连杆EF与AB和CD杆平行,对机构运动不起独立的限制作用,是虚约束,计算时应该除去,但是从提高机构的受力条件出发却是有意义的。③局部自由度ft:机构中,某些运动副或运动链的运动自由度只在局部起作用,对整个机构的运动没有影响,称为局部自由度,不应参与整个机构计算。④消极自由度fp:由于机构结构的特殊几何条件,使机构中原有自由度中的一些不起运动学作用或作用重复,称之为消极自由度。如图3中D处的球面副,所拥有的三个转动自由度只有绕Z轴的转动具有意义,其余的两个转动在机构中不起作用,故在计算机构自由度时应减去。需要指出,消极自由度与局部自由度在计算机构自由度时没有本质区别,可以按照局部自由度来处理。

四、几种特殊机构自由度

1.空间开链机构自由度。空间开链机构中,可动构件数目与运动副数目相等,即有n=p,将其代入式(3)可得:F=■fi (4),由此可见,开链机构的自由度等于机构中各类运动副自由度数目之和[4]。计算图1中所示机械手的自由度。该机械手为一个空间开链机构,有4个转动副、一个移动副和一个圆柱副。其中,转动副与移动副自由度数为1,圆柱副自由度数为2。

因此,F=■fi=4+1+2=7,该机械手自由度数为7,需要有7个主动件。在机械人相关学科领域中,习惯上不将末端执行器部分参与机构的相关计算。

2.单环闭链机构自由度。单环闭链机构的特点有p-n=1,代入式(3)得:F=■fi-6 (5)

计算图2所示机构的自由度。

按空间机构进行计算,则构件5两端的球面副E和F均为虚约束,应除去不参与计算;■fi=6;m=3;fp=2;ft=0。

F=6(n-p)+■fi+m-fp-ft=6(3-4)+6+3-2-0=1

若按平面机构进行计算,则构件5为两端的球面副E和F均为虚约束,不参与计算,D处的球面副在平面机构中等同于转动副。F=3n-2pl-ph=9-2×4-0=1

3.多环闭链机构自由度。使用“拆开末杆法”,空间单环闭链机构自由度可由下式计算:F=■fi-λ (6)若为多环闭链机构,则为:F=■fi-■λ1 (7),式中:■fi——相当于把闭链机构末杆拆开后的开链机构自由度;■λ1——多环闭链机构中各闭环末杆拆开后的自由度之和;λ——拆开后的闭链机构末杆自由度;L——多环闭链机构闭环数。

在实际的机构学研究和机械原理课程教学中,空间机构较为常见,在进行自由度研究时依据平面机构的自由度理论已经不能满足要求,本文对空间机构的自由度进行了有益探索,分析了刚体、运动副以及空间机构的自由度问题,对空间机构的特点与自由度分析方法进行了归纳研究,总结了自由度分析时应注意的几点问题,并对一些结构特殊的机构进行了自由度分析探讨。

参考文献:

[1]张春林.高等机构学[M].第2版.北京:北京理工大学出版社,2006.

[2]吴昊.林木自行升降式采种机的研制[D].哈尔滨:东北林业大学硕士学位论文,2011.

[3]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.

第8篇

论文摘要:采用了ug motion的辅助运动仿真分析方法,在仿真系统运动过程的基础上,详尽分析了该模块内部的运动约束关系,提出了系统运动优化目标,进而求解了系统时序最优安排,并根据求解结果,对驱动凸轮部件进行了动力学相关参数优化,为系统在设定工况下能按较佳的运动和动力特性工作提供了保证。

1引言

led显示屏阵列式插件机是针对 led显示屏生产工艺过程中led发光管插件工序开发的一种新型高速自动插件设备,如图1所示,采用阵列机械手同步工作方式,单次动作循环完成整列发光管的插件工序过程,实现高速、自动插件,以替代目前 led显示屏生产中插件工序的大量人工操作,提高生产效率。

由于led显示屏阵列式插件机采用功能模块化设计,各模块之间衔接紧密,模块内部动作部件较多,动作同步性要求高,同时,为提高工作能力,关键部件均处于较高速度运动状态,在其设计开发过程中,各动作部件的动作时序和同步问题、关键零部件的运动学和动力学特性成为需要解决的核心问题之一一,特别是送料模块,动作零部件多,动作顺序之间有进…步进行优化,提高模~块工作效率。

2机构动作过程

led显示屏阵列式插件机送料模块,如图2所示。

其送料动作过程为:

(1)发光管来料同步送入第一分料动栅板后,第一分料动栅板向一侧移动,至八槽通料静栅板通料槽奇数槽位,槽 口对齐后,发光管被推入八槽静栅板通料槽,至第一分料挡板停;

(2)发光管离开第一分料动栅板后,第一分料动栅板退回至原始接料位,第二批管料通过四槽通料静栅板同步送人后,第一分料动栅板向另一侧移动,至八槽通料静栅板通料槽偶数槽位,槽口对齐后,发光管被推入八槽静栅板通料槽,至第一分料挡板停 止:

(3)八槽通料静栅板中储存八个发光管后,第一分料挡板移动,发光管离开挡板被送入冲裁模板,冲裁模板动作,裁去长余部分管脚;

(4)冲裁后的发光管被推入到极性旋转组件处,按照检测的极性正反顺序进行旋转,调整成统一极性排列;

(5)完成极性调整后,发光管被推人第二分料动栅板,其动作顺序同第一分料组件,最终完成十六列发光管排列输送到位。wWW.133229.cOM整个动作过程示意,如图3所示。

3运动仿真分析

按照设计工作能力要求,并为后续改进中设备工作效率提升预留空间,该送料模块单次动作周期须≤3.6s,由此可推算出送料机构各动作部分动作频率及时序约束关系:

即第二分料挡板处出料动作频率为 1/3.6hz以上;

即第一分料挡板处出料动作频率 为 1/1.8hz以上(该处十六列发光管由第一分料动栅板经过两次分料动作后储存完成); 与之对应,第二分料动栅板和第一分料动栅板都需经过左移分料一回位接料一右移分料一回位接料的循环动作过程 ,其动作周期 满足:

—第二分料动栅板左移分料、回位接料 、右移分料动作周期时间;

;一分料动栅板左移分料、回位接料 、右移分料动作周期时间。

该过程各步动作时间周期受驱动凸轮运动特性和驱动电机特i生参数限制,需根据仿真分析结果,对凸轮运动曲线进行优化,同时应考虑驱动电机转矩特性,选取满足条件的驱动电机。 受机构动作频率限制,极性旋转和管料纵向移动也需要消耗一定时间,该部分时间安排在上述各动作部分时间周期内,以减小时间消耗,

四槽通料静栅板、八槽通料静栅板、极性旋转输出栅板、十六槽通料静栅板中发光管通过时间周期; 一分料动栅板和第二分料动栅板左移分料、回位接料、右移分料动作升程、停留、回程时间周期。

为在各 自动作频率和运动特性限制范围内合理安排各动作步序,需要将各机构动作综合进行运动分析,以寻求合理的时序安排和相应时序安排下各驱动元件的运动学和动力学特性设计,根据上述各动作时间周期模型,利用设计软件的运动仿真分析功能辅助求解,以得到合理的时序安排结果。

仿真分析过程中,首先将各动作机构运动形式按相应运动副形式进行设置;然后按照式(1)、(2)、(3)、(4)、进行动作时序关系设置,并按运动先后顺序和机构动作互锁性质对各动作机构动作触发关系进行设定;参照驱动电机动力特性参数预设置驱动力形式,并对不同机构中间间歇时间分别以区问限定的时间自变量予以代替,设定完成后运行仿真系统,系统按设定情况进行解算,输出运动模拟情况和仿真数据结果。第一分料动栅板和第二分料动栅板机构动作时序,如图4所示。

4驱动凸轮运动曲线设计

图4显示的第一分料动栅板和第二分料动栅板机构动作时序是系统根据设定机构动作约束关系解算后得到的最佳时序,用于指导动作机构驱动组件的运动设计。设计中,驱动组件为步进电机驱动凸轮实现预期动作,根据凸轮运动学和动力学特性,不能将二述时序曲线直接转化成驱动轮的运动曲线,必须以上述时序要求为指导,对轮运动曲线进行优化,以获得较好的系统动力学特性,避免驱动组件工作时产生较大的冲击和噪声,提高系统工作寿命。如表 1所示,为优化后的常见凸轮运动曲线特性值。

按凸轮运动形式分类,本插件机送料机构属中速轻载形式根据凸轮运动 规律 的选用原则,对中速轻载晴况,应选用a 和 较小的曲线,以保证从动件运转时的工作精度。

由表数据可以看出,修正梯形和通用优化 i具有较低的 值,分别为61.43和 69.47(当 取值不同时略有变化),而修正梯形曲线的 值和 t 值(分别未 4.888和 26.71)均较通用优化 i(分别为 5.528和34.17)小,可见修正梯形较适用于该场合应用。修正梯形是由等加速度曲线修正得到,即在等加速度的不连续处(两端和中间)加上简谐曲线作为过度曲线并且仍保持其对称性 ,即

该曲线保留了等加速度曲线 a 小的优点,又克服了其不连续的缺点,适合中速轻载的场合。插件机的送料驱动凸轮选用该型运动曲线进行设计,以获得较好的运动和动力学特性,保证从动件的工作精度。根据以上挣陛,插件机送料机构第一分料动栅板和第二分料动栅板驱动凸轮运动曲线按该曲线进行设计。

根据仿真结果,取动力学特性良好 。

5结论

led显示屏阵列式插件机送料模块动作循环周期短,运动速度较高,配合零部件数量多,在对相关运动参数和约束进行分析的基础上,采用相关软件辅助进行运动仿真分析,求解系统时序最优安排,得到较合理的时序安排结果,根据求解结果,对驱动部件进行了动力学相关参数优化,并在此基础上对驱动凸轮进行了曲线优化选取和设计,从仿真反馈和实际系统工作测试情况看设计方案较好的满足了设计需求。

参考 文献

1关积珍,陆家和.2005年我国led显示屏产业 发展 综述[j]激光与红外2006.36(12):1089~1091

2 led显示屏生产工艺分析报告. 企业 内部调研资料,2007(4)

3阵列式插件机开发可行胜调研报告.企业内部调研资料,2007(4)

4欧笛声,高中庸.连杆出件机构运动优化没汁 jj.锻压机械,2002(01):20--21

5彭国勋,肖正扬.自动机械的凸轮机构没汁 m]北京:机械 工业 出版社1990,12

6 unigraphics solutions inc.,ug cast,ug help documents,2005

7 mzhou,h.walter,m.andersson,j.e.stah1.effect of chamfer angle on wear opcbn cuttingtool[j].machinetools andmanufacture,2004(43):301~305

8 j.e.mayer jr,di stauffer.effects oftool edge hone and chamfer onwearlifel jj.manufacturingengineeringtransaction,1974(3):[m]

第9篇

    论文摘要:数控机床电气系统故障的调查、分析与诊断的过程也就是故障的排除过程,一旦查明了原因,故障也就几乎等于排除了。因此故障分析诊断的方法十分重要。 

    一、故障的调查与分析 

    这是排故的第一阶段,是非常关键的阶段,主要应作好下列工作: 

    1、询问调查在接到机床现场出现故障要求排除的信息时,首先应要求操作者尽量保持现场故障状态,不做任何处理,这样有利于迅速精确地分析故障原因。 

    2、现场检查到达现场后,首先要验证操作者提供的各种情况的准确性、完整性,从而核实初步判断的准确度。由于操作者的水平,对故障状况描述不清甚至完全不准确的情况不乏其例,因此到现场后仍然不要急于动手处理,重新仔细调查各种情况,以免破坏了现场,使排故增加难度。 

    3、故障分析根据已知的故障状况按上节所述故障分类办法分析故障类型,从而确定排故原则。由于大多数故障是有指示的,所以一般情况下,对照机床配套的数控系统诊断手册和使用说明书,可以列出产生该故障的多种可能的原因。 

    4、确定原因对多种可能的原因进行排查从中找出本次故障的真正原因,这时对维修人员是一种对该机床熟悉程度、知识水平、实践经验和分析判断能力的综合考验。 

    5、排故准备有的故障的排除方法可能很简单,有些故障则往往较复杂,需要做一系列的准备工作,例如工具仪表的准备、局部的拆卸、零部件的修理,元器件的采购甚至排故计划步骤的制定等等。 

    下面把电气故障的常用诊断方法综列于下。 

    (1)直观检查法 这是故障分析之初必用的方法,就是利用感官的检查。 

    ①询问 向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析判断过程中可能要多次询问。 

    ②目视总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、装置等)有无报警指示,局部查看有无保险烧煅,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等。 

    (2)仪器检查法 使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC编程器查找PLC程序中的故障部位及原因等。 

    (3)信号与报警指示分析法 

    ①硬件报警指示这是指包括数控系统、伺服系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。 

    ②软件报警指示如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。 

    (4)接口状态检查法现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。 

    (5)参数调整法数控系统、PLC及伺服驱动系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而随机床的长期运行所引起的机械或电气性能的变化会打破最初的匹配状态和最佳化状态。此类故障多指故障分类一节中后一类故障,需要重新调整相关的一个或多个参数方可排除。 

    (6)备件置换法当故障分析结果集中于某一印制电路板上时,由于电路集成度的不断扩大而要把故障落实于其上某一区域乃至某一元件是十分困难的,为了缩短停机时间,在有相同备件的条件下可以先将备件换上,然后再去检查修复故障板。

    鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤 之后再动手,以免造成更大的故障。

    (7)交叉换位法当发现故障板或者不能确定是否故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查,例如两个坐标的指令板或伺服板的交换从中判断故障板或故障部位。这种交叉换位法应特别注意,不仅硬件接线的正确交换,还要将一系列相应的参数交换,否则不仅达不到目的,反而会产生新的故障造成思维的混乱,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。 

    (8)特殊处理法当今的数控系统已进入PC基、开放化的发展阶段,其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用者自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律或者其他有效的方法。 

    二、电气维修与故障的排除 

    电气故障的分析过程也就是故障的排除过程,因此电气故障的一些常用排除方法 在上一节的分析方法中已综合介绍过了,本节则列举几个常见电气故障做一简要介绍,供维修者参考。 

    1、电源电源是维修系统乃至整个机床正常工作的能量来源,它的失效或者故障轻者会丢失数据、造成停机。重者会毁坏系统局部甚至全部。西方国家由于电力充足,电网质量高,因此其电气系统的电源设计考虑较少,这对于我国有较大波动和高次谐波的电力供电网来说就略显不足,再加上某些人为的因素,难免出现由电源而引起的故障。 

    2、数控系统位置环故障 

    ①位置环报警。可能是位置测量回路开路;测量元件损坏;位置控制建立的接口信号不存在等。 

    ②坐标轴在没有指令的情况下产生运动。可能是漂移过大;位置环或速度环接成正反馈;反馈接线开路;测量元件损坏。 

    3、机床坐标找不到零点。可能是零方向在远离零点;编码器损坏或接线开路;光栅零点标 记移位;回零减速开关失灵。 

第10篇

关键词: 线性系统 实践教学 理论教学 实际操作

1.引言

“线性系统理论”是控制科学与工程专业、机电类专业以及其他研究生专业的一门非常重要的专业课程。在控制系统理论的研究领域中,线性系统是研究的主要对象,而在此基础上形成的线性系统理论是现代控制理论中最基本、最重要也最成熟的一个分支,所涉及的内容包括生产过程控制、信息处理、通信系统、网络系统等多个方面。线性系统理论所涉及的概念、方法、原理和结论对于系统和控制理论的许多学科分支,如最优控制、随机控制、非线性控制、系统辨识、信号处理、故障检测和滤波等都具有十分重要的作用[1],[2]。作为控制工程与控制科学方向研究生从事科研的一门基础课程,开设“线性系统理论”课程的目的就是培养其运用所学到的专业基础知识,包括控制理论,机电课程,电子技术等,以解决实际问题[3],[4]。该课程的开设,不仅可以帮助他们开展科研工作,还对他们今后从事本专业工作奠定了很好的基础。

“线性系统理论”课程在国内许多控制学科的研究生专业都有开设,无论在教学内容、教学方法和手段、学生实践等方面都各有所长,有许多值得我们学习,也为我们进行教学提供了参考依据。安徽大学电气工程与自动化学院,现设有控制理论与控制工程,检测技术与自动化转置以及模式识别和智能系统等硕士研究生专业。自开展“线性系统理论”课程以来,一直得到学生们的支持。实际上,很多院校“线性系统理论”教学都会存在或多或少的问题,主要有:1.1忽视了实验教学环节,理论课程远远多于实践课程,导致理论与实践脱节;1.2教学内容相对简单,实验课时非常少,导致学生做科研时,不能学以致用。研究生教育作为我国教育结构中最高层次的教育,肩负着为现代化建设培养高素质、高层次人才的重任。研究生的教育主要包含课程学习和学位论文研究两个重要阶段,其实就是学和做两个层面。所以,我们在对研究生学习能力、创新精神的培养同时,也必须对他们的课程学习阶段予以同等重视。因此,我们在教学过程中,需要结合线性系统理论课程的特点,有意识、有目的、针对性地把系统控制理论中的研究方法贯穿于教学中。

本文拟从理论教学和实践教学两个方面,有针对性地对线性系统理论的教学工作进行课程教改探讨,以增强教学的效果。以期对研究生进行学习、研究问题方法的培养和熏陶。并加强实践教学,提高学生理论和实际操作的能力,更好地为研究生的科研工作服务。

2.理论教学的改革分析

2.1形成完整的理论教学体系。

实际上,“线性系统理论”可以看成本科课程“自动控制原理”、“现代控制理论”和“控制系统仿真”等课程的延伸。那么,怎么样将这些本科课程进行整合,并结合各个具体研究生专业,有机地处理好各课程之间的关系,是亟待解决问题。因此,在进行本课程教学时,需要结合不同专业,加入能反映或联系学科的新思想、新概念和新成果,构建并完善由经典控制理论与线性系统理论基础为主组成的控制理论课程体系,为相应的研究生研究专业和方向服务。同时,要避免与本科课程的重复,增设相关研究方向的内容、完善课程体系,以适应了学科发展需要,更有利于研究生人才的培养。以下分别从课程研究方法和教学方法两个方面进行阐述。

2.1.1课程研究方法分析。

线性系统理论着重于研究线性系统状态的运动规律和改变这种运动规律的可能性和方法,以建立和揭示系统结构、参数、行为和性能间的确定和定量的关系,即研究系统的分析和综合问题。由于线性系统的数学模型主要包括时间域模型和频率域模型,所以综合线性系统的发展过程(主要包括经典线性理论和现代线性理论两个过程),主要的研究方法包括状态空间法、几何理论法、代数理论法和多变量频域法四个方面。

状态空间法是线性系统理论形成最早和影响最广泛的一个分支,分析的对象是系统的状态方程和输出方程,属于时间域方法,主要的数学基础是线性代数和矩阵理论。几何理论法就是将对线性系统的研究转化为状态空间中的几何问题,并采用几何语言对系统进行描述,分析和综合,其数学工具是以几何形式表述的线性代数。代数理论法即采用抽象代数工具表征和研究线性系统,该方法起源于卡尔曼,并在模论方法的影响下,形成了相应的线性系统代数理论。而多变量频域法,其实质是以状态空间为基础,采用频率域的系统描述和计算方法,分析和综合线性时不变系统,主要包括简单的频率域方法和多项式矩阵方法。相比较状态空间法而言,多变量频域法物理直观性强,便于综合和调整。

2.1.2教学方法。

从线性系统理论和研究方法可知,其研究基础以线性代数和微分方程为主要数学工具,并以状态空间法为基础来分析与设计控制系统,内容比较抽象,涉及的研究方法很多。因为,为突出问题的背景和增强说服力,我们在教学过程中增加工程实际系统范例,并通过对实际系统的讲解给出抽象的定义,使得抽象的理论概念与实际系统相结合。这样,可以让学生在学习理论知识的同时,做到理论与实践相结合,适应专业发展需要。我们的课程教学团队在授课过程中,将倒立摆、双容水箱、机械手和电力系统等复杂的控制系统作为例子始终贯串在整个教学过程中,并在各个章节的教学中加以深化。采用机理建模方法建立这些复杂系统的数学模型,并通过线性化分析方法建立系统的状态控制表达式,并根据各个章节的教学内容分析研究,主要包括判别能控性和能观测性;判别系统的稳定性;设计出状态反馈控制器和观测器,进行极点配置分析;设计镇定控制器和二次型优化控制器,进行优化控制等等。通过各个章节循序渐进的学习,以达到理论和实际的结合。不仅有助于 将实际系统贯彻到理论学习中,也有助于学生对抽象理论知识的理解和学习,得到了学生的普遍欢迎。

3.实践教学的改革分析

3.1多媒体教学和仿真实验工具结合。

我们的课程教学团队在授课过程中,主要结合多媒体技术、板书推导和教师讲解三个方面进行教学。很多画图和表格可以通过使用多媒体课件来展示,这样既减少板书量,又增加了教师课堂讲解的时间,提高了课堂教学效率。对一些重要的公式推导和理论证明,通过板书书写,可以让学生跟着老师的思路,加强学习。而且,我们可以利用多媒体技术在课堂上借助Matlab/Simulink[5]、VRML、CACSD和CAI等仿真平台,适当地插入有仿真工具编程实现一个实际系统的数学模型的表示、能控性能观性和稳定性分析,以及状态反馈实现极点控制等。其实通过这些仿真工具的课堂教学引入,不仅可以很方便地求解高阶系统的状态转移阵、特征值和特征向量等,还可以借助仿真教学辅助方式,使学生从实际的程序分析和图形描述中更形象地理解和掌握现代控制理论分析系统的方法,从而激发他们的学习兴趣。很多学生表示,通过多媒体技术、板书推导和教师讲解三个方面的教学,并结合实验仿真的动态演示,极大地激发了他们的学习热情和兴趣。

3.2网络资源学习和数据库资源利用。

为了学生更好地消化和吸收课堂内容,我们的课程教学团队拟建立相应的教学网站,学生通过教学网站获取学习资料,包括课程课件,教学教案,习题答案和实验指导等,还可能通过网络工具和教师进行在线交流和讨论。通过这种网上学习和交流,可以进一步巩固学习,加大学习空间。同时,作为研究生,必须会使用数据库资源进行科研学习。对此,我们通过课程论文写作环节的训练,使得学生掌握了利用网络电子资源,如中国知网、万方数据库、Springer、Elsevier、IEEE/IEE和ISI等数据库进行检索文献的方法。虽然加大了本课程学习的难度,但是为攻读学位期间顺利发表核心期刊论文奠定了基础,受到了学生的一致好评。

3.3教学实验和教学实践。

根据课程的安排,我们课程教学团队的教学实验主要包括基础性实验和设计性实验。其中,基础性实验主要是通过Matlab/Simulink等仿真平台的应用,研究线性系统的动力学分析,系统的能控制和能观测性分析、稳定性分析、极点配置和观测器设计等。综合性研究性实验包括直线倒立摆的控制实验。对于设计性实验,让学生自己提出实验方案,并选择合适的控制方法,自己动手设计实验程序,并进行实验结果测试验证,主要包括直线倒立摆的控制,双容水箱的控制和机械手臂的运动轨迹优化设计等。

在加强学生基本工程实践能力培养的同时,鼓励学生走出课堂,到专业实验室、校企共建实验实习基地和校外工厂的自动化生产线参观学习,了解所从事专业的特点,明确科学研究生产实践与所学课程的关系,开阔视野,提高学习兴趣,并增强学习意识。

4.结语

本文针对线性控制理论课程的特点,并结合我们的教学团队,提出了本课程在理论教学和实践教学中的一些改革举措,并通过本校的实际情况进行了分析说明。从目前的情况而言,不少学生反映效果很好。课程教改是一个需要不断完善的过程,永无止境。我们需要在教学过程中,不断地加快教学改革,改进教学方法,提高教学质量,为国家培养更多的优秀的研究生人才。

参考文献:

[1]刘晓云,徐红兵.线性系统理论课程创造性教学初探[J].高等教育研究,1999,15(4):73-75.

[2]祝晓才,张明,辛华.“线性系统理论”实践教学的改革[J].实验室研究与探索,2011,30(8):130-134.

[3]齐晓慧,王敬.线性系统理论教学与研究生科学方法论培养[J].科教文汇,2009,2:44.

[4]毛晓波,梁静,黄俊杰.“研究生智能仪器与仪表”课程教改探索[J].电气电子教学学报,2012,34(3):50-51.

第11篇

[论文摘要]数控机床故障的诊断是数控机床维修的关键。一般来说,随着故障类型的不同,采取的故障诊断的方法也就不同。本文从数控机床故障诊断的内容、原则、方法等方面入手来简要阐述一下数控机床故障的诊断方法。

系统可靠性是指数控系统在规定的条件和规定的时间内完成规定功能的能力。故障是指系统在规定的条件和规定的时间内失去了规定的功能。数控机床是个很复杂的大系统,它涉及光、机、电、液、气等很多技术,发生故障是难免的。机械磨损、机械锈蚀、机械失效、插件接触不良、电子元器件老化、电流电压波动、温度变化、干扰、噪声、软件丢失或本身有隐患、灰尘、操作失误等都可导致数控机床出故障。

一、数控机床故障诊断内容

故障诊断的内容:

1)动作诊断:监视机床各动作部分,判定动作不良的部位。诊断部位是ATC、APC和机床主轴。2)状态诊断:当机床电机带动负载时,观察运行状态。3)点检诊断:定期点检液压元件、气动元件和强电柜。4)操作诊断:监视操作错误和程序错误。5)数控系统故障自诊断:不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。

二、数控机床故障诊断原则

在故障诊断时应掌握以下原则:

(1)先外部后内部数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。

(2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。

(3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。在运行工况下,进行动态的观察、检验和测试,查找故障。而对破坏性故障,必须先排除危险后,方可通电。

(4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。

三、数控机床故障诊断的方法

1.直观检查法它是维修人员最先使用的方法。在故障诊断时,首先要询问,向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析、判断过程中可能要多次询问;其次是仔细检查,根据故障诊断原则由外向内逐一进行观察检查。总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、装置等)有无报警指示,局部特别要注意观察电路板的元器件及线路是否有烧伤、裂痕等现象、电路板上是否有短路、断路,芯片接触不良等现象,对于已维修过的电路板,更要注意有无缺件、错件及断线等情况;再次是触摸,在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。

2.仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如:用万用表检查各电源情况,以及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有、无,用PLC编程器查找PLC程序中的故障部位及原因等等。

3.功能程序测试法功能程序测试法是将数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上。在故障诊断时运行这个程序,可快速判定故障发生的可能起因。功能程序测试法常应用于以下场合:

1)机床加工造成废品而一时无法确定是编程操作不当、还是由于数控系统故障引起的。

2)数控系统出现随机性故障。一时难以区别是外来干扰,还是系统稳定性差时。

3)闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。

4.信号与报警指示分析法

1)硬件报警指示这是指包括伺服系统、数控系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。

2)软件报警指示如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。

5.接口状态检查法现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。这种检查方法要求维修人员既要熟悉本机床的接口信号,又要熟悉PLC编程器的应用。

6.参数检查法数控系统、PLC及伺服驱动系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而随机床的长期运行所引起的机械或电气性能的变化会打破最初的匹配状态和最佳化状态。此类故障需要重新调整相关的一个或多个参数方可排除。这种方法对维修人员的要求是很高的,不仅要对具体系统主要参数十分了解,既知晓其地址熟悉其作用,而且要有较丰富的电气调试经验。

7.试探交换法即在分析出故障大致起因的情况下,维修人员可以利用备用的印刷电路板、集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。采用此法之前应注意以下几点:

1)更换任何备件都必须在断电情况下进行。

2)许多印制电路板上都有一些开关或短路棒的设定以匹配实际需要,因此在更换备件板上一定要记录下原有的开关位置和设定状态,并将新板作好同样的设定,否则会产生报警而不能工作。

3)某些印制电路板的更换还需在更换后进行某些特定操作以完成其中软件与参数的建立。这一点需要仔细阅读相应电路板的使用说明。

4)有些印制电路板是不能轻易拔出的,例如含有工作存储器的板,或者备用电池板,它会丢失有用的参数或者程序。必须更换时也必须遵照有关说明操作。

鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤之后再动手,以免造成更大的故障。

8.测量比较法CNC系统生产厂在设计印刷线路板时,为了调整和维修方便,在印刷线路板上设计了一些检测量端子。维修人员通过检测这些测量端子的电压或波形,可检查有关电路的工作状态是否正常。但利用检测端子进行测量之前,应先熟悉这些检测端子的作用及有关部分的电路或逻辑关系。

9.特殊处理法当今的数控系统已进入PC级、开放化的发展阶段,其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律。

参考文献:

第12篇

关键词:“变形金刚”机器人;设计;实现

0 引言

随着机器人技术不断发展,机器人的应用越来越广泛,几乎渗透到所有的领域,使人类的生活发生了显著的改变。

美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。第一台可变形机器人样机就诞生于1988年,由美国卡内基・梅隆大学机器人研究所研制的可重构模块化机械手系统(RMMS)。自此,变形机器人系统不断完善,各种可变形机器人层出不穷。

我国在某些关键技术上有所突破,但未掌握整体核心技术,具有中国知识产权的变形机器人较少。目前我国机器人技术相当于国外发达国家20 世纪80 年代初的水平。特别是在制造工艺与装备方面,不能生产高精密、高速与高效的关键部件。总而言之,国内产业缺乏可变形机器人的制作技术。

综合国内外机器人的发展状况,可见机器人的研究已经取得了一定的成绩。但是,由于某些机器人因机械结构的限制,很难适应工作环境和任务的变化,因此迫切需要一种能够灵活地根据周围环境调整运动姿态的机器人,以适应更为复杂的任务。

变形机器人是机器人领域中新兴起的一个研究方向,同时也是当前机器人学研究领域的一个热点和难点。变形机器人又称可重构机器人,是一种具有较强环境自适应能力的机器人,它可以根据环境变化和任务要求而改变自身的构形来完成不可预知的作业任务。目前已经开发的变形机器人系统根据其能否实现自动重组,一般分为两类:静态变形机器人和自变形机器人。但目前这两种机器人大多还处于原理样机研究阶段,其移动与变形速度比较缓慢。本项目所设计的变形机器人,由许多功能简单并具有一定感知能力的模块机器人有机联接而成,有效地解决了上述机器人移动和变形速度缓慢的问题。变形机器人通过变形获得不同的形态,实现机器人在不同的环境情况下采取不同的运动步伐或机器人关节的运动导致本体的某些部分相对位置的变化而呈现一种新的作业构形,以适应环境的要求,从而发挥不同的作用。

1 “变形金刚”机器人的设计

本项目对变形机器人进行合理的优化,在保证机器人整个拓扑连接关系不发生变化的前提下,通过机器人关节的运动导致本体的某些部分相对位置的变化而重新呈现一种新的作业构形,完成给定的任务。其次,通过汲取美国孩之宝公司推出一系列级别的变形金刚玩具构思,改进本项目变形机器人的形态和构形的整体协调运动形式。最后,通过3D-MAX等三维图解对机器人在变形过程中进行形象的运动过程进行分析,为机器人的设计与实现提供了实质性的参考依据。

1.1 机器人的结构设计

变形机器人的设计不同于一般人形机器人的设计。为了实现人形状态的完备功能,机器人的构型需要依照人类运动关节的构造而设计。本项目变形机器人采用了19个舵机实现其完整的功能。首先是变形机器人人形基本结构的设计(如图1)。腿部由10个舵机来实现人形的基本功能,保证变形机器人处于人形状态下能够自由行走,并且能够实现劈叉、侧走等多个功能。手部应用了6个舵机,能够实现手部的前举、上举、侧举等功能。另外是头部的设计。在变形机器人处于人形状态时,用舵机替代变形机器人的头部,而头部的挡板转至胸前,作为机器人的胸板;在变形机器人处于车型状态时,挡板转动覆盖住头部舵机,作为机器人车型的车头结构。为保证车型机器人(如图2)的实现,在机器人膝关节处加装了一对360度舵机并配有防滑轮作为主动轮,而在机器人的肩部加装了一对防滑轮作为从动轮,由主动轮带动从动轮实现机器人的自由前进。同时,在变形构型设计上既要考虑在变形过程中模块间的碰撞、一次结构改变的步数以及确保模块集合可以到达必要的位置,又要精确设计车型四轮的安装位置,以及其他构型对其变形过程所造成的影响。

图1 机器人人形结构设计图

图2 机器人车型结构设计图

1.2 机器人的运动模式及运动姿态设计

本项目机器人变形过程中,脚踝上360度舵机、膝盖舵机、腰部舵机照指令旋转,促使变形机器人身体部位前倾,根据惯性,机器人身体部位向前转动落于腿部、腰部部位接触地面、腿部呈现折叠状态。这时,变形机器人腿关节处装有的车轮便与地面接触,使其变成车型机器人的车轮,从而实现人形到车型的状态。接着,根据指令,轿车形态的机器人开始运动。

在实现轿车形态与双足形态的转换时,利用机器人的车门即手来做定点支撑,腿部伸直,脚板贴地,利用舵机的力度,使机器人缓缓撑起,从而得到双足的状态。(如图3)

图3 机器人变形过程图

2 “变形金刚”机器人的实现

变形机器人所有模块的运动都基于一套几何学的原理,并通过程序算法控制机器人的运动动作,实现机器人能够在不同的地面和环境情况下采取不同的运动步伐或机器人关节的运动导致本体的某些部分相对位置的变化而呈现一种新的作业构形。采用通用的权限算法和操作步骤,支持变形机器人处于双足状态时具备人形机器人舞蹈、格斗、行走等多种功能。

2.1 机器人基本部件

本项目所涉及的变形机器人采用舵机来实现机器人各部件的衔接,其中腿部为串联机构,共有12个舵机,单条腿上由5个180度舵机和1个360度舵机组成,具有6个自由度、6个旋转关节、4个轮子和多个连杆。

2.2 人形机器人转换成车型机器人

此转换过程是“变形金刚”的主要功能体现之处。机器人的驱动系统由左右2个电机构成,分别带动其对应的一侧车轮转动,从而实现机器人平台的前进、后退和转向等动作。车轮直径为200mm,正常行驶下采用轮式行进。机器人接收到操作员发出的信号,可以实现前进、转弯、后退等作业。当遇到高于轮子半径且低于250mm高的障碍时,通过前后腿协调摆动来实现越障;当遇到高于250mm的障碍时,可实现差速转向。轮腿之间的角度可以调节,进而调整机器人的横滚角,在遇到左右高度不同的地形时,可以通过调整轮腿之间的角度来保持机器人的平稳。

当机器人接收到无线遥柄发出的信号时,机器人从站立的姿势开始,机器人的头部、胸部关节舵机先收起,然后其腿部关节、腰部关节以及肩部关节舵机按照指令进行旋转,直到手臂盘旋着贴近背部,随之双膝弯曲,类似于“扎马步”。根据惯性,变形机器人的重心往前倾,在此过程机器人的2个驱动轮和2个滚向轮落地。再者,脚板处的舵机向上收起,呈现折叠状态,作为车型状态下机器人的尾翼。而位于身体一侧的手部挡板则作为“车门”,可以实现“车门”的打开与关闭等动作,此时,背部的挡板作为车身的主体部位。由此实现了人形机器人(如图4)到车型机器人(如图5)之间的转换。

图4 该研究项目机器人变形人形状态的结构图

图5 该研究项目机器人变形车型状态的结构图

2.3 车型机器人转换成人形机器人

车型机器人转换成机器人是变形机器人在实际操作过程中的一个重难点。其结构左右分别对称,主要由“头部”、2只“手”、2条“腿”和“身体”构成。其中,对可变形机器人的单腿串联机构进行了运动学分析,构建了可变形移动机器人腿部的运动学模型。在结构上,单腿是由5个舵机通过U形构件连接而成,使得机器人能够保持平稳和正常行走,甚至具备舞蹈、越障等能力;单手由3个舵机构成,能够向360度“伸手”,实现多种功能。在站起的过程中要充分考虑机器人重心的问题,使之在整个变形过程中找到平衡点。在实现轿车形态与双足形态的转换时,利用机器人的车门即手来做定点支撑,腿部伸直,脚板贴地,利用舵机的力度,使机器人缓缓撑起,从而得到双足的状态。

3 结束语

“变形金刚”机器人采用适当的优化方法确定最优的装配构形,通过机器人关节的运动导致本体的某些部分相对位置的变化而重新呈现一种新的作业构形,以适应环境的要求,完成各种给定的工作。“变形金刚”机器人是由许多功能简单并具有一定感知能力的模块机器人有机联接而成。变形机器人通过变形可以获得不同的形态,即通过人工操作无线手柄根据变化的环境和任务调整自己的结构,实现机器人能够在不同的地面和环境情况下采取不同的运动步伐或机器人关节的运动导致本体的某些部分相对位置的变化而呈现一种新的作业构形。变形机器人突破了单一形态机器人特定的运动方式的限制,直观具体展现不同形态机器人各自特征以及相互之间转换与衔接,更易理解机器人各关节运动对机器人动作运动的影响,其核心是智能技术。再者,机器人人车自由转换这一特点不仅可以完成不同性质的任务,还大大地节约了资源,降低了成本。

参考文献:

[1] 刘金国,王越超,李斌等.链式可重构模块化机器人变形机理与实现[J].农业机械学报,2005(9):101-105

[2] 李斌,董慧颖,白雪.可重构机器人研究和发展现状[J].沈阳工业学院学报,2000(4).

[3] 王永甲,可重构模块化机器人构型设计理论与运动学研究[D].南京:南京理工大学,2008:2-3.

[4] 刘明尧,谈大龙,李斌等.基于多Agent可重构机器人控制方法的研究.中国机械工程,2002(20).

[5] 郑浩峻,汪劲松,李铁民.可重构机器人单元结构设计及组合特征分析[J].机械工程学报,2003(7):34-37.

[6] Schmitz Donald,Khosla Pradeep,Kanade Takeo.TheCMU reconfigurable modulai manipulator system[C].Proceedings of the International Symposium and Exposition on Robots.1988,473-4

88.

[7] C.J.J.Paredis,H.B.Benjamin,P.K.Khosla. A Rapidly Deploya