时间:2023-03-24 15:33:19
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇电源设计论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
最近,我遇见了一个老朋友,他是一位很有经验的模拟电路工程师,从事高可靠服务器用电源子系统的设计工作。他说,他设计的宽度为19英寸的典型机架安装电路板要消耗100A的电流。我对此一点也不感到惊讶。我们都知道,今天的处理器耗电很大,因为芯片上有几百万个有源器件,其耗电累加起来也就不得了。
但我的朋友又披露了另一个统计数字:他设计的典型电路板上有约30个独立的电源网络。每个电源网络都有不同的标称电源电压、精度以及调整率;在有些情况下,这些标称电压只相差十分之几伏。再则,每个电源网需要有自己的稳压器以及一系列去耦电容器,以便控制从近乎直流直至几百千赫带宽内的旁路阻抗。设计师必须分析并实现每个电源网络的供电与返回路径,以及大量的PCB板走线。在最终设计中,直流电源子系统的走线与电容器要占去电路板面积的一大部分。设计师必须精心建立所有这些因素的模型,以确保电流路径得当,以及IR压降很小。在达到这些电流电平时,这可不是件简单的工作。
然而,高质量电源子系统与其配电系统之间却存在一个难题。尽管供电在任何系统中都是一种不可或缺的功能,但它却无法获得用户的直接赞赏或认同。用户需要的是额外的特性、功能和性能;供电被看作设计中固有的部分。增加特性有利于营销宣传,并获得更多的利润,而电源网络的元件成本和占板面积却没有这些好处。事实上,有些人会把电源子系统占用的电路板面积看作没有意义的负担,就像财务部门或邮件收发室一样。
我希望,你作为系统设计师或电路设计师能对物料清单上的元器件的选择产生重大影响。我的这位朋友指出,为最大限度地减小电源网络的负担,你可以做几件基本工作。首先,要帮助电源子系统设计师开发设计一组基本的稳压器(可以使用线性稳压或开关稳压技术),这样,你就可以在电路板上重用这些设计。为了使这项工作有价值,你还应该根据每一个标称电压来平衡电流负载,使之处于同一范围内,因为你找不到一种经济实惠设计能支持10mA和1A两种负载。
其次,你还必须律已。面对浩瀚的IC世界,切忌贪婪心态。要选择那些共同使用标称电压较少的元件。要努力寻找符合数据表规格的部件,尽管其电源调整率为5%,因为更严格的规格会限制电源的灵活性。要使用标准的多输出电源的电压组合(最好来自多个厂家),这样就可以成对地选择不同的输出电流和调整率,以支持多个IC,而不是仅仅支持一两个IC。
你要在两个方面进行权衡:一方面是你想选用最合适的IC,另一方面你在了解其独特的电源要求时电源网络设计的影响后想获得所需的特点与功能。换句话说,你要做工程师们经常做的折衷工作(这些工作有时一目了然,但一般都难以定夺):权衡优缺点,对折衷方案作出评判,努力达到能满足市场要求的功率、价格和性能最佳点。
汽车电源模拟测试系统的原理如图1所示,分为波形采集与波形模拟和测试输出两部分。波形采集部分:由于汽车在研发过程中,需经历样车的不同的阶段,在这些过程中,车载电器件的开发也不是一蹴而就的。通常车载电器件根据阶段性被分成C样件、B样件以及A样件(最终稳定状态)。也就是说在样车各阶段时,不能保证每种车载电器件的状态都是A类样件,因此,各阶段时,存在汽车启动瞬间电源电压变化的不同。而启动瞬间电源电压波形的获取较为简单(见图1中波形采集部分),利用示波器,采集汽车蓄电池正负两端在启动瞬间的电压即可。对于波形模拟及输出测试部分,使用NI工控机和程控电源的USB通信,同NI-VISA(virtualinstrumentsoftwarearchitecture)建立连接,通过LabVIEW软件编程录入采集的启动电压波形,并对程控电源进行实时控制,模拟输出,对被测样件实时测试。
2测试系统软件设计
2.1NI-VISA调用程控电源功能的实现
在本测试系统中,工控机采用NI公司的PX-I-8110,可编程直流电源采用TOELLNER公司生产的TOE8815-64。工控机与可编程直流电源之间的通信利用Agilent公司的USB/GPIB转换模块实现[1]。在利用LabVIEW软件设计控制程序时,需要使用LabVIEW软件中的[VISAOpen]子VI,并指定程控交流电源的GPIB地址,例如在本测试系统中程控直流电源的GPIB地址为GPIB0:1:IN-STR,通过这样的设置就可以建立起工控机与直流电源之间的联系[1]。
2.2可编程直流电源的控制指令的实现
在测试系统进行模拟输出时,最重要的是将采集到的波形进行提炼,并通过控制程控直流电源进行输出。在这里,需要设置的参数为电压、电流、时间以及起始和结束地址等。在GPIB模式下,TOE8155的控制可被设置为“听”模式和“说”模式。TOE8155的指令架构符合IEEE-488.2标准,除了上述标准中通用的指令外,TOE8155还具有专门的控制指令集,可通过工控机对直流电源进行参数设置和输出控制,且需要向直流电源传送符合TOE8155语法格式的控制指令[2]。其中,在本测试系统中需要用到的TOE8155特定的部分主要指令有[3]:(1)FBbbb将程序设置为触发模式,循环次数设置为bbb(=0...255);(2)FCVaaa,eee初始地址为aaa,终止地址为eee间的电压值线性计算;aaa=0...999,eee=0...999;(3)FCCaaa,eee初始地址为aaa,终止地址为eee间的电流值线性计算;aaa=0...999,eee=0...999;(4)FCTaaa,eee初始地址为aaa,终止地址为eee间的时间值线性计算;aaa=0...999,eee=0...999;由于这些特定指令,在LabVIEW中并无现成的控件可供使用,因此,在程序设计时,相当一部分的工作量为针对特定指令控件子VI的编程。以FCV指令为例,其子VI的LabVIEW编程见图2和图3。汽车启动瞬间的电源电压波形不是一个周期性、规律的电压波形,见图4(某汽车启动瞬间的因此,在进行模拟电压的设定时,这种电压信号是由几段不同状态的电压信号组成的,程序定义时不仅要设置每段电压信号的电压幅值、持续时间,和起始终止地址位等信息,还有设置两端相邻电压信号之间的过渡时间[4]。在本设计中,是利用LabVIEW软件中的簇和条件结构实现这一过程的[3]。写入波形程序编辑见图5。
2.3自动测试的实现
前面提到,测试系统中很重要的一部分是波形采集,这个需要针对不同的车型,以及各不同车型的不同阶段。这意味着需要进行大量的模拟波形的调用并输出。因此,采用自动测试的方式可以有效地降低测试人员的劳动强度,更能提高测试系统的效率。在本测试系统中,利用Test-stand与sequenc系列调用测试程序的子VI,其架构见图6[5]。由于成本的考虑,车载电器件往往多为平台产品,但是也存在个别车载电器件是专用件的情况。因此在技术人员选择测试波形的分类时,参考图7的测试流程进行操作。测试系统的操作时,首先选择被测DUT所应用的车型,其次,导入该车型的电源曲线,并进行模拟测试。在测试完成后,判断该DUT是否为平台化产品,如果判定结果为“是”,则导入该DUT所应用的各车型电源曲线,并进行模拟测试;如果判定结果为“否”,则再次进行是否随即抽取模拟波形并测试的判定。若判定结果为“是”,则随机导入电源曲线,并进行模拟测试,若判定结果为“否”,则完成测试,退出程序。
3验证及总结
关键词:放电开关IGCT,预燃电路,保护电路
一.常用固体激光电源的组成及特点
1.1 激光电源设计要求和技术指标
电源输出能量必须使工作物质的反转粒子数大于阈值,超过越多,输出光能越大。电源的功率和设计方案应随估算出的泵浦能量而定,这主要取决于工作物质的电光转换效率。为使激光输出稳定,要求电源的输出能量必须稳定。总体而言有如下几点:1.为使放电器件有高的动力指标和运行指标,电源的输出电压或电流特性必须与负特性匹配。2.为使激光器输出能量均可调,一些电源主要参数既能手动控制,也能自动控制。3.要求电源的泵浦电压,电流稳定。4.激光电源发展向小型化,重量轻,效率高的方向发展。5.使用要安全可靠,要有过压,过流等现象的保护电路。
1.2 传统固体激光电源的组成
传统固体激光电源由专用供电电源(充电和放电电路)、预燃电路、触发电路及定时(同步)电路组成。如下图
1.3 激光电源的工作原理
单向AC220v.50/60Hz输出整流,经软启动后在滤波电容上形成一个直流电源。氙灯点燃后,给出信号到控制板,若主电路没有欠压、过流,激光器冷却液断水等故障,控制板允许主电路工作,产生40kHz左右的震荡信号到驱动板,在驱动信号的驱动下,功率开关元件VMOS将直流电压变换成40kHz的交变电压,经过高频高压器进行开压,高频整流桥整流后,送到充电储能网络,当储能电容充到额定电压时,控制板板给出停振信号,逆变电路停止工作。在系统信号驱动下,储能电容给氙灯放电。在主电路工作过程中,调Q电源给出一个2000~5000v的晶体高压。氙灯放电时,相对放电信号延时50~400us,退压触发信号也送到调Q电源板上。另外,电源还具有内外时统转换功能,电源可由外时统控制放电,并具有时统输出端。
二.放电电路的特点及设计方法
2.1放电开关的选择
放电电路在激光器电源中起很重要的作用,在放电电路中,把储存在储能器中的电能直接转换成光能,因此放电电路决定了激光器的效率。论文参考,放电开关IGCT。当工作物质萤光寿命一定时,要求的泵浦光脉冲就一定。目前占主导地位的功率半导体器件主要有晶闸管、GTO和IGBT等,随着技术水平的不断提高,这些传统器件无论在功率容量还是在应用复杂程度等方面都有了长足的进步,但在实用方面还存在一些缺陷。传统GTO关断不均匀,需要笨重而昂贵的吸收电路。另外,因其门极驱动电路复杂,所需控制功率大,这就使得设计复杂,制造成本高,电路损耗大。IGBT虽无需要吸收电路,但它的通态损耗大,而且可靠性不高。另外,单个IGBT的阻断电压较近,即使是新型的高压应用场合须串联,增加了系统的复杂性和损耗。
IGCT是一种新型的电力电子器件,它将GTO芯片与及并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管和晶闸管两种器件的优点,即晶体管的稳定的关断能力和晶闸管的低通态损耗。IGCT具有电流大、电压高、开关频率高、可靠性高、结构紧凑、损耗低的特点。此外,IGCT还像GTO一样,具有制造成本低和成品率高的特点,有极好的应用前景。IGCT的一个突出的优点是存储时间短,因而在串联应用时,各个IGCT关断时间的偏差极小,其分担的电压会较为均衡,所以适合大功率应用,正好适合本实验。
2.2 预燃电路
放电电路的电光转换效率对激光输出的高低非常重要。为了提高电光转换效率,减少电磁辐射的干扰,提高灯的帮助,在放电电路中采用了预燃型放电电路。如图:
这种电路与一般放电电路不同之处在于,有一附加的直流高压电源,这种高压电源可采用任何一种整流方式,关键是能够给出一定的电压和电流。当然,采用LC恒流变换器是理想的预燃电路,由于电路中有高压直流电源,灯始终处于稳定的辉光状态,而流过灯的预燃电流将由预燃电路中的限流元件来限定。为了保证储能器的能量以一定频率向灯供给,在灯与储能器之间接有放电开关。
三.保护电路极其设计方法
3.1 电源保护电路的考虑:欠压、过压保护
欠压、过压保护在激光电源中很重要。如果欠压,为了输出额定功率,则必须具有过大的输入电流。如果过压,则电源有过高的输入电压峰值,增大了对于逆变桥中IGBT功率开关的反向耐压,易造成过压击穿。故为保证系统工作稳定必须具有欠压、过压保护电路,电路如图3所示。利用电阻R,R1,R2取样,在LM339,2D1-4门通过调节电位器Rw,将电网输入电压限制在AC380土10%的允许变化内。
图3 过压保护电路 图4 过流保护电路
3.2过流保护
设置过流保护电路主要解决两个问题:其仪:保护电源在各种强干扰环境工作时,充电电路中不因逆变失败使功率开光(IGBT)超过额定电流值而损坏。其二,保证脉冲电源按脉冲方式进行从放电,一旦出现氙灯连弧故障时主回路过流加以切断,实现保护,如图4过流保护电路所示。论文参考,放电开关IGCT。论文参考,放电开关IGCT。图中R为过流取样电阻,调节电位器RW设置过流值,一般取电流的1.5-2.0倍,当发生过流故障时,LM339反转经光电耦合送到主控信号板,使逆变信号发生芯片SG3525关断。论文参考,放电开关IGCT。论文参考,放电开关IGCT。同时面板上故障显示灯亮、报警。论文参考,放电开关IGCT。
3.3其他保护
为了保证激光器安全工作和操作人的人身安全,在激光电源的设计中,无源水压控制,湿度控制和激光腔盖控制,利用与门关系,不论那方面出现故障保护,电路接受到故障信号均及时的关断逆变信号控制,进行报警。
参考文献
1.梁国忠,梁作亮著《激光电源电路》兵器工业出版社1989
2.电子工业部第11所《高频大功率激光器电源设计报告》1996
3.电子变压器专业委员会编《电子变压器手册》辽宁科学技术出版社1998
4.刘敬海编《激光器件与技术》北京理工大学出版社1995
5.(美)RF格拉夫W希茨著《电子电路百科全书》科学出版社1997
6.HighEnergyLaserWeaponSystemsApplicationsScienseBoardTaskForce,Junw2001:34
7.JRWall,AW&ST,Januaryl,2001:57
关键词:数控直流电源;稳压电源;电压源;电流源
中图分类号:TM461文献标识码:A文章编号:10053824(2013)04006707
0引言
数控直流稳压电源应用非常广泛,是学习电子信息工程、通信工程、机电一体化、电气自动化等电类专业学生必然涉及到的一个电工电子课程设计项目。全国大学生电子设计竞赛曾于第一届A题、第二届A题和第七届F题(电流源),全国首届高职院校技能竞赛样题以及省级院校竞赛都有涉及,用来检验学生的电子设计能力,可见其普遍性。
虽然较多论文都涉及,但电路设计的多样性以及制作经验篇幅鲜少,不足以使读者完成作品并举一反三。笔者参阅数十篇关于数控直流电源系统的设计,发现许多很难读懂的问题。例如,给出参数设计输出达20 V电压,但运放直接驱动达林顿管明显无法输出达22 V以上。又如,通篇无关紧要的内容,唯独缺少比较放大环节设计及关键电路的完整连接,也就是说DAC输出到调整管之间内容匮乏,这也是本文解决问题的初衷。
直流稳压电源按照功率管工作状态,分为线性稳压电源、开关稳压电源2种。鉴于电类专业课程设计的需要,本文重点解析线性稳压电源之关键设计,如与OP放大器设计联系密切的部分,希望对读者制作该项目或写论文有所帮助。
1设计要求的性能指标与测试方法
1)输出电流IL(即额定负载电流),它的最大值决定调整管(三端稳压器)的最大允许功耗PCM和最大允许电流ICM,要求:IL (Vimax-Vomin)
2)根据输出电压范围和最大输出电流的指标,U/I可计算出等效负载阻值。例如,输出电压要求达30 V,最大输出电流1 A,因此模拟负载应满足从几Ω到30 Ω之间,调整管耗散功率应满足30 W以上,考虑加散热片。
1.2质量指标
纹波电压:是指叠加在输出电压Uo上的交流分量。在额定输出电压和负载电流下,用示波器观测其峰一峰值,Uo(p-p)一般为毫伏量级,也可以用交流电压表测量其有效值。纹波系数是纹波电压与输出电压的百分比。设计中主要涉及滤波电路RLC充放电时间常数的计算。一般在全波式桥式整流情况下,根据下式选择滤波电容C的容量:RL・C=(3-5)T/2,式中T为输入交流信号周期,因而T=1/f=1/50=20 ms;RL为整流滤波电路的等效负载电阻。
稳压系数Su和电压调整率Ku均说明输入电压变化对输出电压的影响[2],因此只需测试其中之一即可。电源输出电阻ro和电流调整率Ki均说明负载电流变化对输出电压的影响[2],因此也只需测试其中之一即可,具体操作参照指标的定义来实施。
2.2DAC接口电路的设计
2.3调整管控制电路、电压采样与电流采样电路的
2.4ADC接口电路的设计、同时具备电压源与电流源功能的设计
2.6具备电压预置记忆存储部分的设计
2.7保护电路的设计
2.8.2滤波电路的设计
3结语
曾经查阅数十篇类似稳压电源电路图,深感模拟电路设计的重要性。本文将电压源与电流源的设计方案同时罗列,便于读者理解设计要领。重点解析DAC输出后的电路设计,图中电压、电流数据全部基于proteus交互式仿真完成。电路设计的连贯性、采样电路取值、运放电路与驱动电路设计等,是同类论文较少论述的环节,可以有效解决目前存在的诸多问题,有助于读者提高电路解析能力。仅此抛砖引玉,希望本文的设计能对读者在实际工作中有所帮助,不当之处请多指教。
参考文献:
[1]高吉祥.全国大学生电子设计竞赛培训系列教程――基本技能训练与单元电路设计[M].北京:电子工业出版社,2007.
[2]邓坚,杨燕翔,齐刚. 数控直流稳压电源设计[J].计算机测量与控制,2008,16(12):19911993.
[3]杨秀增,黄灿胜. 基于Nios II的高精度数控直流稳压电源设计[J]. 电子设计工程,2009,17(9):4749.
[4]许艳惠. 一种智能化高精度数控直流电源的设计与实现[J]. 微计算机信息,2007,23(32):136138.
[5]DAC0832手册.National Semiconductor Corporation DS005608[EB/OL].(20020120)[20121011]. http:///product/dac0832.
[6]冈村迪夫.OP放大电路设计[M].王玲,徐雅珍,李武平,译.北京:科学出版社,2004.
[7]铃木雅臣.晶体管电路设计(上)[M].周南生,译.北京:科学出版社,2004.
[8]江海鹰,孙王强,孙杰,等. 实用高精度数控直流电流/电压源[J].济南大学学报:自然科学版,2006,20(3):249251.
[9]彭军.运算放大器及其应用[M].北京:科学出版社,2008.
[10]清华大学电子学教研组.模拟电子技术基础简明教程[M].3版.北京:高等教育出版社,2006.
[11]黄智伟.全国大学生电子设计竞赛系统设计[M].北京:北京航空航天大学出版社,2011.
[12]陈光明,施金鸿,桂金莲.电子技术课程设计与综合实训[M].北京:北京航空航天大学出版社,2007.
关键词:TCA785,调压调功,感性元件,感应钎焊
1 引言
在感应钎焊过程中,为了适应负载随温度变化和加热工艺的需要,电源应能对负载功率调节。其中调功方式主要有以下几种:直流调压调功、移相调功、扫频调功和脉冲密度调功等。其中直流调压调功有以下特点:逆变器输出电压波形与负载无关,均为交变方波。在串联谐振负载下,利用锁相电路实现负载电流频率跟踪使负载始终工作在谐振状态,输出功率因数较高;逆变器中各个功率器件均在零电流方式下开通和关断,器件的开关损耗和应力都很小。其中调压调功电路采用晶闸管作为开关器件,利用相控方式调节输出电压。这种方式具有控制方便,价格便宜等特点,因而得到了广泛的应用。
2 直流调压调功电路的设计研究
目前国内外已经研制生产出多种用于晶闸管电路的集成触发器。其中TCA785集成触发器是由德国西门子公司研制生产的。它内部集成有同步检波、移相脉冲、过流过压保护等电路,是一种锯齿波移相触发器。与其它集成触发器相比,由它构成的晶闸管触发电路具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外部器件少、单一电源工作、调整方便等优点。论文参考网。本文所设计的直流调压调功具体电路如图1。
图1 直流调压调功电路图
图1中,220V交流电经过变压器T1、二极管D2、电容C1以及稳压管7815转变为+15V直流电,给该调压电路提供电源。TCA785的1和16端分别接地和+15V电源。5端是同步信号的输入端,该信号取自R6两端交流电压,同步信号经同步过零电路送至同步寄存齿波信号发生器,在每个正弦信号的过零点矩齿波发生器迅速放电并从0初始值开始充电,从而产生和同步交流信号一致的三角波,如图2。9端外接固定电阻R7和可变电阻RW1,10端外接电容C5,通过调节RW1可以调节锯齿波的斜率。6脚为脉冲封锁控制端,当检测负载电流过大时,通过控制辅助电路,使6端有由高电平变为低电平,封锁脉冲的输出,从而切断主电路,它是为系统过流过压或进行其它控制而设置的控制端。11脚外接控制电压,改变该控制电压可以控制触发脉冲的触发角在0-180°范围内移相,该控制电压可以有手工给定,也可以由PLC系统自动给出。论文参考网。12脚外接电容C4,可以控制触发脉冲的宽度。
图2同步交流信号和三角波
在一个周期内,TCA785的14和15端分别是正、负半周对应的脉冲输出端,如图3,图中“1”为触发脉冲,“2”为干扰信号。为保证在一个周期内正负半周均有输出,利用CD4017的或门逻辑电路,将14和15端输出脉冲或逻辑运算后,得到频率增加一倍的触发脉冲信号,如图4所示。再将该信号送到MC1413进行功率放大,以提供足够的功率触发脉冲来驱动整流模块,如图5,该信号电压为7.5V左右,持续时间约为75μs,可以满足整流模块的触发功率要求。
图314端对应的触发脉冲
图4或逻辑运算并功率放大后的触发脉冲
图5示波器时间轴调整后的触发脉冲
根据感应钎焊的使用要求,控制触发脉冲触发角的电压分手动和自动两种方式提供。手动控制方式的电压源来自于7810提供的+10V电压,调节RW3就得到所需的11脚控制电压。而自动控制方式时的控制电压源来自于PLC相关模拟端口的输出电压,该电压大小通过PLC的给定电压与所采集的负载电压大小的比较后得到的。脉冲变压器T2起到电气隔离的作用。
其中检测系统主要检测主电路电流,将检测电流转换为电压后,一方面给PLC自动控制系统提供采集电压,另方面给保护系统提供保护依据,当该电压大于设定保护电压时,就停止触发脉冲的输出,进而切断整个主电路。
3 直流调压调功电路使用中存在的问题
在该电路调试过程中,当晶闸管后边电路不存在滤波电感等感性元件时,整流后所得电压从零到最大值能够可靠调节。
而负载要求很平稳的直流电压,则需要在晶闸管后采用滤波环节,即电路中有较大电感。这时当电压调节到一定值时,会出现输出电压突然跳变为零的现象,使负载运行出现异常。如果该现象出现在感应钎焊电源中,则可能在钎焊尚未完成就停止加热,造成钎料熔化不完全,工件焊接质量不合格。
解决的办法是:首先测量出电压突变时TCA785的6端的电压U6,然后采取相应措施,比如串接分压电阻,使U6为6端电压的一端极限值,从而可以避免电压突变现象。论文参考网。
4 在感应钎焊电源中的应用
感应钎焊电源整体结构如图6。主要包括整流、滤波部分,逆变器部分,变压器部分,感应圈,调压部分以及控制部分等。主电路采取串联谐振电路,逆变部分采用半桥结构,逆变元件采用一个IGBT模块,整流部分采用的是半控晶闸管整流器件,触发脉冲通过控制其导通角的大小可以得到幅值大小变化的直流电压并供给其后的逆变环节,从而改变逆变器输出功率。
图6 感应钎焊机整体结构框图
图中直流调压调功方框内就是前面所设计电路,要想检测其功能是否正常,可以通过测量主电路中变压器原边电压或者副边电压波形加以判断。调节图1中TCA785的6端电压,测得其中两组对应的波形分别如图7和图8。图7中电压为50V且很平稳,电流较小,而图8中电压为100V左右且较平稳,电流较大。根据电流波形可以看出,两种电压下电路都可以起振并正常工作。所以所设计的直流调压调功电路可以进行电压调节且所得电压比较平稳,感应钎焊电路能够可靠起振,满足了对不同负载进行感应钎焊的要求。
图7 电压为50伏的电压和电流波形图
图8 电压为115伏的电压和电流波形图
5 结论
本文设计了一种直流调压调功电路,可以使所得电压从零到最大值之间连续稳定变化,不仅满足手动调节模式,也可以和PLC系统配合进行自动调节,并具有可靠的保护功能和相关的控制功能。通过试验,该电路已成功应用于感应钎焊电源之中,使其可以稳定起振,对于不同负载进行功率调节,可靠保证了逆变部分的IGBT元件,具有一定的实用价值和经济价值。
参考文献
[1] 潘天明.现代感应加热装置[M]. 北京:冶金工业出版社,1996,1-135
[2] 林渭勋.现代电力电子电路[M]. 杭州:浙江大学出版社,2002,34-35
[3] 张智娟,侯立群. 电力电子技术在感应加热电源中的应用[J].应用能源技术.2000,(5):41-43
[4] 龙飞,李晓帆,蔡志开等. TCA785移相控制芯片应用方法的改进[J]. 国外电子元器件. 2004,(3):25-28
>> 德国分布式电源发展启示 分布式电源并网的思考 浅谈分布式电源技术应用 分布式电源发展现状 分布式电源的建模研究 分布式导弹测试系统设计 分布式软件测试的管理 微电网中的分布式电源及其特性 小议分布式电源的配电网保护 分布式电源与微网管控技术综述 分布式电源对电网影响探析 浅谈基于分布式电源的微电网接入 分布式电源的故障特性及其仿真分析 解析分布式电源对电网调度的影响 基于Isight的分布式电源优化设计 分布式电源对继电保护的影响探讨 分布式电源的概述及应用 含分布式电源配电网规划 我国分布式电源系统发展浅析 分布式小电源入网电能计量方案探析 常见问题解答 当前所在位置:l来查看);ATI:ATI HD2000系列/3000系列/4000系列。
第二步:下载并安装Folding@Home显卡客户端(NV:stanford.edu/group/pandegroup/folding/release/Folding@home-Win32-NV-GPU-systray-623.msi;ATI:stanford.edu/group/pandegroup/folding/release/Folding@home-Win32-GPU-systray-623.msi)
第三步:设置客户端(ID可以使用自己的名字,前面添加[CFan]也可以、队伍号码一定要设置为China Folding@Home Power的号码3213,这是中国在Folding@Home项目上的唯一队伍,具体参数见下图)。
运行客户端程序,右键点击右下角图标Configure(设置)
填写User name(用户名)及Team number(队伍号码)
说三道四,
Folding@Home在公益之外的话题
West:等等,你说了半天,今天就是教我们如何参加Folding@Home项目咯?
Alpha:也不完全是这样,慢慢听我说就是了。
显卡通用计算的准绳
由于Folding@Home(以下简称F@H)利用了显卡的通用计算能力,并且斯坦福的疯子们对这个东西钻研的极透,所以基本上F@H的成绩就是显卡通用计算的能力。
电源负载能力的杀手
玩F@H不得不说电源的问题,因为F@H可以使显卡、CPU满负载运行,并且长时间不间断,所以对于电源的考验(主要考验最重要的12V输出能力)可谓是苛刻至极。这里说的满载可不是3D Mark、Crysis等测试的满载,它要更胜其一筹。让我们手握F@H这把利刃,披荆斩棘看看谁才是经得住考验的电源吧。
专家评论
CT:
Folding@Home是一件不错的公益活动,那个财主West,你那么多机器不如参加一下吧,为人类的将来着想一下多好。不过说实话我疑问蛮多的,我无私地运算,如果项目方将这些结果封闭甚至用来卖钱,那我不是白白打工?
west:
我倒是没意见,就是这东西要求过于苛刻了,7×24小时不停,这个电费貌似很可怕。另外,据我所知从SETI开始的分布式运算已经有10多个年头了吧,到现在为止有没有什么成果?
Alpha:
其实参加这种公益性的活动一来是增加自己多方面的知识储备,二来还能认识许多有同样见解的朋友,何乐而不为。任何分布式计算就是借助志愿者的力量来完成积累,因此任何项目都承诺将结果完全无隐瞒地分享给公众,如果不公开运算结果,那有谁会参与运算?另外,计算得到的很多论文,斯坦福都会公布在官方网站上,比如F@H项目61号论文就是研究与H5N1(禽流感)相关的项目(地址:psb.stanford.edu/psb-online/proceedings/psb09/kasson.pdf )
CT:
话说,很久以前我貌似就参与过F@H,只是后来就放弃了,那个时候还是用CPU,那个速度啊,怎是一个慢字可以了得。我记得那个时候P4D 2.8GHz只有可怜的几百分/天。不过每天看着自己的分数上涨倒是蛮有成就感的。
west:
嗯,确实,CUDA、GPGPU的普及让分布式运算大展拳脚,一会儿NV塞斯坦福点钱,让他们给优化优化,一会儿ATI又塞点钱让劣化劣化NV之类的,反正是你方唱罢我登场。不单单F@H这样,游戏厂、软件商也是如此,什么The Way之类的,不都是送钱等优化吗,冤冤相报何时了啊,不过好在两方牵制斯坦福还能保持起码过得去的中立性。
关键词:微网;控制策略;现状
中图分类号:TM77 文献标识码:A
Analyses the micro network control research status
DUAN Xiao-rui,LI Jin,ZENG Zhao-wei
(College of Electrical Engineering, Guizhou University, Guiyang Guizhou,550025)
Abstract: In recent years, Distributed Generation obtained more and more attention and application, and by the small capacity of distributed power network research. This paper first introduces the concept of micro network and micro network control strategy, and then summarizes and analyzes the current research status of micro network.
Key words: Micro network;The control strategy;The status quo
引言
随着国民经济的发展和人民生活水平的提高,近年来用电负荷正急剧增长。与此同时,能源危机与环境保护的压力正逐渐加大,化石燃料的迅速消耗和燃烧应用中产生的污染问题也已严重影响到了人们的正常生活。因此,绿色清洁的新能源以及可再生能源的应用得到了越来越多的重视。分布式发电将分散存在的清洁能源转化为电能,使分布式能源得到最有效的利用,因此分布式发电技术为清洁能源的推广应用提供了有力的技术支撑[1]。分布式发电技术不断发展,将分布式发电供能系统以微网的形式运行,与大电网互为支撑,是发挥分布式发电供能系统能效的最有效方式。
微网概念
微网是一种可将各种小型分布式电源组合起来为当地负荷提供电能的低压电网。它具有联网和孤岛两种运行模式,能提高负荷侧的供电可靠性。微网中的分布式电源常采用电力电子接口连接到微网,这增加了分布式电源接口控制的灵活性,但是减少了系统的惯性。微网缺少惯性和运行模式的多样性增加了系统在维持能量平衡及频率稳定等方面的控制难度。微网既可以通过配电网与大型电力网并联运行,形成一个大型电网与小型电网的联合运行系统,也可以独立地为当地负荷提供电力需求。该灵活运行模式大大提高了负荷侧的供电可靠性。同时,微网通过单点接入电网,可以减少大量小功率分布式电源接入电网后对传统电网的影响。
微网控制策略
微网在实际运行中需要解决的关键问题之一就是控制问题。当微网中的负荷或网络结构发生变化时,如何通过对微网中各种微电源进行有效的协调控制,以保证微网在不同运行模式下都能够满足负荷的电能质量要求,是微网能否可靠运行的关键[2]。
目前的微网控制方案,按整体控制策略可分为对等控制、主从控制。主从控制一般是指底层微电源的控制是一种主从控制结构:以一个微电源作为主单元,其控制器作为主控制器,其余微电源的控制器作为从控制器。从控制器必须服从主控制器,其之间的通信联系是强联系,一旦通信失败,微网将无法正常工作。主从控制策略主要用于孤岛运行时的微网。对等控制就是微网中每个微电源地位相等,不存在起主要支撑作用的主控制单元。对等控制策略基于下垂控制法,分别将频率和有功功率、电压和无功功率关联起来,通过一定的控制算法,模拟传统电网中的有功、频率特性曲线和无功、电压曲线,实现电压、频率的自动调节而无须借助于通信。
下垂控制、恒压恒频控制和恒功率控制是目前常见三种的微电源接口逆变器控制方法。下垂控制方法就是使接口逆变器模仿传统电力系统的下垂特性,通过有功和无功来调节微电源输出的频率和电迅。该控制方法是基于本地测量的有功和无功值对逆变器进行控制,各微电源之间不需要通信,因此一般用于对等控制策略中[3]。恒压恒频控制通过直接给定电压和频率的参考值,设计控制器来调节接口逆变器的输出电压和频率,主要用于孤岛运行模式,给微网提供频率和电压的支撑[4]。主从控制策略中主微电源的控制一般釆用此控制方法。通常PQ控制用于并网运行状态。设计控制器在并网运行时使逆变器按照给定的有功和无功参考值输出功率,微电源一般不参与电压、频率的调节,主要由大电网提供支撑[5]。当处于孤岛运行状态时,微网必须中有维持电压和频率的微电源。
研究现状
微电网是目前国内外学者的研究热点,其灵活的运行方式、高质量的供电服务以及绿色高效的经济性能,使其具有良好的发展前景。我国对微网的研究尚处于起步阶段,在国家科技部“863计划先进能源技术领域2007年度专题课题”中已经包括了微网技术,目前中国科学院电工研究所、清华大学、天津大学等单位相继开始了对微网的研究。
文献[6]通过对微网实验系统微网主从控制模式和对等控制模式进行比较,得到结论:主从控制微网系统可以实现电压和频率的无差控制,但对主控单元有很强的依赖性,主控单元的选择至关重要; 若微网中存在燃机等输出稳定且易于控制的DG时,应优选其作为主控单元,而光伏风力等间歇性DG作为从控单元; 若微网中不含有可控DG,则选择储能装置为主控单元,但储能装置容量将限制其长时间孤岛运行。对等控制微网具有冗余性,但没有考虑系统电压与频率的恢复问题,属于有差控制,鲁棒性差,并且在控制和应用上尚存在若干关键技术问题亟待攻克,目前仅限于实验研究阶段。
文献[7]研究了下垂控制和混合控制的微源控制方法,并建立了微网系统仿真模型, 针对计划孤网和非计划孤网中的下垂控制和混合控制进行了仿真分析。仿真结果验证了2种控制方式对维持微网孤网稳定的有效性,并且任何控制方式下,微网再并网时均需对微源出力进行重新调整,才能平滑过渡至并网稳定运行模式。
文献[8]分析了微网中多个分布式电源采用 P-f 和 Q-V 下垂控制时,微网的频率稳定性。根据微网内分布式电源的输出特性和负荷需求特性,设计了一种分布式电源层对等控制与主从控制相结合的微网控制策略,并分析了采用此控制方案后微网在不同运行情况下的暂态特性。
文献[9]主要研究了微电源接口逆变器的控制方法,通过建立下垂控制小信号模型,仔细分析了电压频率、电压幅值下垂参数和低通滤波器的截止频率三个参数对于系统稳定性的影响。将微电源等效为直流源或经整流后的直流源,在坐标系中建立了三相逆变器的数学模型;在分析微电源逆变器控制方法和原理的基础上,设计了基于下垂特性的双环反馈控制器、PQ控制器。
文献[10]只考虑并网后电网向微网注入功率时,对含有一个DG的微网并网过程仿真,研究了并网过程中频率和电压波动变化,着重分析了在并网前开关两侧电压相对相位超前和落后的两种不同情况,提出了微网并网的最佳控制策略:并网时开关两侧的电压差必须很小,理想状态为零;电网频率必须稍高于微网频率;并网时刻电网电压必须超前于微网电压。
文献[11]详细分析了PQ控制和V/f控制的原理和方法,对相应的控制器进行设计,并在此基础上建立起微网的模型。通过不同运行方式仿真验证了该模型的运行特性,从而证明了控制策略的有效性和正确性。
文献[12]分析了传统的下垂控制策略在微电网系统中应用所存在的缺陷,并提出采用倒下垂控制与下垂控制相结合的综合控制策略。该策略在改善微电网的稳定性,最大限度地限制过流情况发生等方面都具有显著特点,而且能实现微电网在网络结构或状态转换过程的无缝切换,同时也为不同响应时间的储能装置选择合适的控制策略提供了可能。
由以上的分析可知,目前我国针对微网控制的研究主要集中在下垂控制、恒压恒频控制和恒功率控制三种控制方式,在假定条件下通过对其控制原理和方法的分析进行控制器设计,进而搭建模型进行仿真,从而验证控制策略的有效性。
总结
面对能源危机的挑战,加强绿色能源的利用,既符合国家的能源政策,又可以缓解现阶段能源供求紧张的关系。智能微网的出现,可以较好地解决整个电网控制的复杂性。虽然目前微网的实用化还存在着各种各样的困难,但微网在降低能耗以及补充电网不足方面的优点会促进专家学者的研究,微网的巨大潜力会凸现出来。
参考文献
[1]丁明,王敏.分布式发电技术[J].电力自动化设备.2004, 24(7): 31-36
[2]鲁宗相,王彩霞,闵勇.微电网研究综述[J].电力自动化设备.2007,31(19): 100-107.
[3]黄胜利,张伟国,等.电力电子技术在微网中的应用[J].电气应用.2008,27(9):55-58
[4]赵宏伟,吴涛涛.基于分布式电源的微网技术[J].电力系统及其自动化学报.2008,20(1): 126-128
[5]鲁鸿毅,应鑫龙,等.微型电网联网和孤岛运行控制方式初探[J].电力系统保护与控制, 2009, 37(11): 28-31
[6]王成山,杨占刚,王守相,车延博.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105.
[7]欧阳翚,牛铭.基于不同控制策略的微网仿真[J].电网与清洁能源,2011, 27(3):19-24.
[8]肖朝霞.微网控制及运行特性分析[D][博士论文].天津大学,2008(7).
[9]赵巍.微网综合控制技术研究[D][硕士论文].南京理工大学,2013(4)
[10]杨艳天, 张有兵, 翁国庆.微网并网控制策略的研究[J].机电工程,2010,27(2):14-20.
[11]董鹏.微网的控制与保护策略研究[D][硕士论文].华北电力大学,2009(3).
关键词:冗余技术,Redundancytechnique,网络network,通讯Communication
前言:目前在热力汽轮发电机中广泛应用冗余技术,其特点是自控系统安全可靠,便于集中管理,本文重点从几个方面介绍汽轮发电机自控设备中冗余技术的安全措施:
1.冗余的控制系统配置
目前莱钢煤气-蒸汽联合循环发电工程自控系统采用ABB公司的AC800FR控制系统,过程站采用冗余的PM803总线控制器和分布式S800I/O,两个配置完全一样的AC800控制器可实现控制器1:1冗余,主备控制器之间可无扰动切换。每个控制器上都插有两个Ethernet网卡,第一个网卡用于连接系统网络(diginets),而第二个网卡彼此互连以形成专门的冗余通讯链接(diginetR),确保主备控制器之间的冗余信息同步。一旦主控制器故障,备用控制器能迅速无扰的从主控制器中断点接替工作。
现场过程控制器AC800F、操作员站OS及工程师站ES之间的数据通讯由系统网络(diginets)来完成,采用标准的TCP/IP协议、RJ45通讯传输介质和网络拓扑布局,控制器上的第一个Etherent网卡提供控制器与系统网络(diginets)的通讯接口。工程师站上组态好的用户控制程序由diginets和第一个网卡下载至控制器的RAM中,Ethernet网卡的电池卡槽上装有RAM后备电池,可在控制器掉电时保持RAM中的用户控制程序实现上层工业以态网络通讯和下层Profibus现场总线的冗于,保障通讯数据传送的稳定安全性。
冗余的CPU过程站处理器,保证数据的正常采集、处理。冗余的网络通讯技术,信息数据得以畅通无阻。冗余的监控平台就象运行人员的两只眼睛,监控设备工况,使运行人员在第一时间内得到信息资料,及时处理故障,保障设备安全运行。
见图1
图1 系统网络图
2.可靠的并联式不间断的冗余供电模式
电源作为设备的动力来源,是设备关键性因素。突发性系统供电中断将会直接导致计算机随机存储器中数据丢失,设备停机,造成无法挽回的损失。控制系统中引入不间断电源UPS,外来两段母线市电先经过UPS,再分路供给DCS系统及仪表器件。一方面可对输入电源起到稳压作用,另一方面当市电故障停电时UPS可在小于5ms时间间隔内利用蓄电池逆变自动切换至由UPS供电,根据所带负荷及UPS容量大小设计要求UPS至少能够提供半小时时间。市电恢复正常后,UPS自动切换市电供电模式,从而保障自动控制系统电源始终连续与稳定,彻底解决因电网波动或突发性失电损坏自控设备,影响设备的正常运行,造成无法挽回的损失。
两台不间断工装UPS电源,正常运行时同时工作,共同分担负荷。当其中任意一台故障时,另一台自动切换至主机状态,全带负荷。并联UPS的软件和硬件完全一致,其控制电缆形成闭环连接,保证自动控制系统稳定、持续的供电电源。
3.关键停机仪表设备参数采用模拟和数字信号相结合的冗余思路
汽轮发电机油压力低低联锁停机参数灵活运用,保护机组工况安全运行。论文格式。论文格式。论文格式。油压是否正常,作为汽机联锁停机的信号,采用了在油进汽轮机轴承末端管道上安装了油压检测压力开关,其设定值均为30KPa,用于采集开关信号,优点抗干扰能力强,同一位置安装智能变送器提供模拟信号,优点精度高显示方便。二者在DCS系统中进行与逻辑关系,再通延时1秒钟判断,若二者同时低于设定值30KPa,证实油管路油压低,则保护机组停机,有效的消除了外界磁场干扰信号源的突发性。见图2:
图2逻辑图
汽轮发电机轴承油温度采用外装双质热电阻,两模拟信号同时采集去DCS系统,并判断温度可能存在的误差,逻辑判断再发出停机指令。更有推力瓦温度选用内藏式热电阻,每个瓦块上安装四个相同热电阻信号采集,根据工艺要求灵活运用或四选二、或四选三,并进行温度断路或开路逻辑判断发出停机指令,大大提高了机组连续安全生产。
TSI轴系监测装置是一种面向汽轮发电机组的多通道监视保护系统,主要监视转子和汽缸的机械运行参数,如轴振动、轴向位移、胀差、转速等,输出的模拟信号至DCS系统显示、处理报警,输出的接点信号可用于停机保护。目前,应用最广泛,技术成熟的美国本特利公司生产的3500系列大型旋转机械监测装置。其重要的联锁停机信号采用双传感器进行数据采集,内部冗于判断数字量输出去DCS系统并在程序中判断,延时控制联锁停机,有效的消除了误信号造成不必要的停机。
结论:生产过程中冗余技术安全可靠、灵活多样的控制思
参考文献:1、《汽轮机设备运行》北京:中国电力出版社,1997
2、《热工自动控制技术问答》北京:中国电力出版社,1996
【Abstract】With the development of time, the PLC automatic control system based on the advanced computer control technology and electrical automation control technology, has been actively applied in many areas, and rapid developed. This paper explores the integrated design of PLC technology automation control system.
【关键词】自动化控制系统;PLC技术;集成设计
【Keywords】automatic control system; PLC technology; integrated design
【中图分类号】F407.67 【文献标志码】A 【文章编号】1673-1069(2017)03-0100-02
1 引言
在衡量一个国家生产力发展水平以及生产发展中,工业自动化水平是一个重要的指标,并且在工业自动化中,电气自动化是其重要的组成部分。在基于可编程控制器基础之上PLC技术的发展和生产,不仅仅克服了之前控制的许多缺点,还提升了电气自动化控制的水平,解决了甚多技术上的难题,有着较好的应用和推广前景。该研究中所提到的单片机选择变频器与PLC,方便用户管理,维修相对比较方便。为了较好地发挥PLC自动化控制系统所产生的积极作用,论文就从PLC自动化控制系统以及PLC技术优化设计的基本论述出发,对基于PLC技术的自动化控制系统的集成设计展开讨论。
2 PLC自动化控制系统以及PLC技术优化设计
2.1 PLC自动化控制系统
每一种控制系统所进行的优化设计都是为了更好地提升自动化生产的效率和质量,更好地满足被控制对象的基本工艺要求,然而在PLC自动化控制系统中,不仅要遵循优化设计的原则,还需要依据一定的生产工艺要求[1]。
2.1.1系统安全性的保证
在控制系统进行优化的设计过程中,应该保证可靠、安全这一条主线,在保证不断提升PLC自动化控制系统质量以及效率的过程中,保证系统的使用可靠性和安全性。
2.1.2 被控制对象基本工艺要求的满足
优化设计最基本的原则,就是要最大限度地满足被控制对象的基本工艺要求。在PLC自动化控制系统进行优化设计之前,就需要先进行必要的调查研究,关于控制系统的重要应用环境和基本用途,将相关的数据资料进行整理和搜集。详细地优化设计方案的形成就需要有专业的设计人员并做好准备工作。协同各方面的关系积极解决设计过程中出现的问题。
2.1.3 生产效率的提升
在PLC自动化控制系统的优化设计中,生产效率的提升就是其目的,这样的过程还需要在许多工艺的改进和生产路线伴随之下进行。所以在选择PLC容量的过程中,紧密地联系实际,为日后优化改造留有一定余地,并确定合理的容量。
2.1.4 优化设计方案的优化
对于PLC自动化控制系统而言,为了使基本的使用功能不受影响,就需要在最大的可能之下优化PLC自动化控制系统的优化设计方案。为了实现合理而且经济简便的优化设计方案,就需要达到更佳的控制效果并进行更为简单的设计。
2.2 PLC技术
所谓的PLC技术,就是一个关于可编程控制器的简称,自身的计算机技术的一种表现,也是在计算机基础之上发展而来的一种全新的技术,而且这样的技术日趋成熟,也为电子自动化生产创造出了一种具有较强专业性的自动化控制器,不断地被应用在电气自动化控制中。实现电气自动化的控制实现,就需要按照不同用户的需求,依据既定的顺序和命令进行处理,通过相关的软件进行控制。与传统的电气自动化控制系统进行比较,PLC控制系统进行连接只需要通过相关的软件,以及较少的接线量,通常情况下其他的线路是不需要实际线路连接的。另外,还可以依据既定的程序,将这种系统所涉及的信息存储、处理以及获取进行。
3 PLC自动化控制系统的集成设计
相较于传统的电气自动化控制系统而言,其需要通过多种连接线才可以将处理和连接实现,从而消耗较多的财力、物力以及人力,还不能够积极地促进高效维护和统一管理,各式各样的障碍对系统的正常运行产生着严重的阻碍。然而,随着时间的发展,在先进的计算机控制技术以及电气自动化控制技术的基础之上所发展开来的PLC自动化控制系统,已经在许多的领域被积极地运用,并且自身迅速地发展[2]。
3.1 集成设计之软件设计
在PLC 控制系统的设计上,首先要设计出电源回路(见图1)。选用80 至240VAC 的电源作为PLC 的供电装置。由于适用于PLC 的电源较多,其对电源的适应范围较广,因此在安装电源时要加装电源净化元件,以此来达到抗干扰的目的。抗干扰元件选择1:1 的隔离变压器、电源滤波器等装置。按照控制要求将工艺流程图转化成梯形图,这就是软件设计的主要任务,也是PLC应用最关键的问题,并且软件设计的具体表现就是程序的编写。在控制工程的应用中,优秀的软件设计方便工程技术人员对系统进行日常的维护以及系统调试。生产过程控制复杂程度不同,模块化程序以及基本程序的结构分类也不同。
3.2 集成设计之硬件设计
3.2.1 硬件设计之PLC自动化控制系统的输出电路设计
在对于输出电路进行设计的时候,做好相关的电路设计准备工作,就需要按照基本的生产工艺要求进行,通过晶体管将输出电路所需要的各式频器的调速和控制以及指示灯输出,需要晶体管作为支撑的,最主要的就是频率过高的PLC控制系统。通过继电器输出,说明其有着过低的频率,不仅设计简单还可以提升系统的负载能力。
3.2.2 硬件设计之PLC自动化控制系统的输出电路设计分析
对于PLC自动化控制系统的输入电源而言,AC85-240V就是通常情况下供电电源的电压,有着比较多的应用和比较广的适用范围。在电源上面安装必要的电源净化原件,更好地减少外界环境对电源的干扰,隔离变压器和电源滤波器就是最主要的。我们所引入的双层隔离技术,就是在隔离变压器的使用过程中引入的,可以通过屏蔽层减少高低频脉冲的干扰。
4 结语
PLC作为一种电子操作系统,专门在工业环境下进行,使用时可以在没有任何保护措施的情况之下。当有着电磁干扰以及过分恶劣的工作环境的时候,就会有整个系统或者设备失灵的现象发生。所以将PLC自动化控制系统进行进一步的优化设计就成为了必要选择。PLC自动化控制系统的优化设计以及集成设计,是一个非常系统化的工程,为了实现最优化的设计,就需要在反复的设计和实践过程中对其进行不断地优化和总结,优化其集成设计。
【参考文献】
关键词:PLC,起重机,控制系统,HMI,智能化
1.引言
桥式起重机是生产企业广泛应用的生产工具之一,传统的电气控制系统接线复杂,故障率高,难以维护。本文结合生产实际的,介绍一种采用SIMENS S7-200型PLC控制的起重机电控系统,其控制线路简单,安全可靠,智能化程度较高,能够有效地提高生产效率。
2 总体设计方案
一个完整的基于PLC控制的桥式起重机电气系统,主要由六大模块组成[1],分别为:1)配电保护模块2)主起升机构模块3)副起升机构模块4)大车运行机构模块5)小车运行机构模块6)PLC 控制模块。通过联动台上的主令控制器、按钮等手动控制装置,把信号传递给PLC的输入模块,CPU内的程序对这些信号进行处理,再由输出模块输出控制信号控制中间继电器、指示灯、报警器、显示装置等。中间继电器带动大的接触器,进一步控制起重机各机构电机的启动、停止及运行。免费论文。各种保护信号如限位开关、过流继电器、门开关、超载限制器等也将信号反馈到PLC的输入模块,起到安全保护的作用。免费论文。系统总图见图1。
2.1 控制系统安全保护
(1)安全门开关联锁保护:在门开关没关的情况下,总接触器不能吸合,在总接触器吸合的情况下,打开门开关,总接触器断开。
(2)超载保护:当起重量达到额定起重量的95%时,开始报警,达到额定起重量的105%,报警并输出停止信号,此时,起升机构只能下降,不能上升。
(3)断相、相序保护:通过断相相序保护器来实现。
(4)各机构限位保护:包括主副起升、下降限位;大车左行、右行限位;小车前行、后行限位,到达限位时,切断对应方向电源,此时,该机构只能向相反方面运行。
(5)设置急停开关,在出现紧急事故的情况下,切断总电源。急停开关一般为红色蘑菇头非自复位型。
(6)设置零位保护,各机构控制器只有在零位的情况下,总接触器才能吸合,防止在停电后,主令没回零的情况,各机构自行运行,带来危险。
(7)设置热继电器,当电机通过的电流超过
电动机的额定电流,电机温度过热时,其相应的热继电器工作,断开主回路,起到保护电机的作用。
(8)设置电铃或报警装置,在出现故障时,可进行报警。在起重机动作之前应该报警,必须在响铃后方可操作大车运行机构。
2.2输入输出信号设计
通过用户对桥机控制档位及安全的要求,需要以下控制信号:
主副钩起升、下降信号、2档、3档、4档,小车和大车的前、后、左、右方向信号及2档、3档、4档;主副起升限位、大小车限位;热继电器信号、超载信号、变频器故障信号;安全门开关,启动、停止、急停、照明、电铃、变频器复位信号;初步确定所有的手动输入信号和反馈信号总共48个,对应的输出有31个。
3 PLC的内部逻辑运算原理与梯形图的绘制
3.1 PLC的扫描执行原理
可编程控制器与计算机一样,通过执行用户程序来实现控制任务。
PLC采用扫描工作方式,通过“采集输入量、执行程序、输出控制量”的循环扫描方式实现程序的运行[2],如图2所示。扫描就是从第1条指令开始,在无间断或跳转指令的情况之下,按照程序存储的地址号按顺序逐条执行指令,直到最后一条指令,然后再从头开始扫描,如此循环。
3.2 梯形图的绘制
PLC内部梯形图主要包括4大部分:安全保护部分、功能控制部分、故障输出部分和各控制机构。设计过程中,充分考虑到控制系统的安全问题,多处均设置逻辑互锁,并且在保证正确的前提下,尽量让梯形图简单明了,便于分析与修改。
4系统硬件选型与设计
4.1 PLC的选型
根据初步确定的I/O信号进行选择,包括输入输出信号的数量、性质、参数和特性要求,PLC选用SIMENSS7-200CN系列。CPU为 226CN,此CPU集成24输入/16输出共40个数字量I/O点,最大扩展至248路数字量I/O点或35路模拟量I/O点;26K字节程序和数据存空间;6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出;有2个RS485通讯编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力;具有极高的可靠性,极丰富的指令集,具有众多功能指令,可以实现数据传送、比较、四则运算等操作。其中,功能指令CMP可以进行数据比较,MOV指令可以进行数据传送,SEGL指令可将数据寄存器存储的故障参数在数码管显示出来,SRMR指令可产生闪烁控制信号,用以输出声光报警信号。它的CPU模块、扩展模块的高度和深度相同,宽度不同。它们之间用扁平通讯线连接,紧密拼装后组成1个长方体,适合在机电一体化中使用。内置的24V DC电源,可做输入回路的电源和传感器的电源。扩展模块采用2个16入16出扩展模块。PLC外部接线图如图3所示。
4.2故障显示的选型与安装
在配置比较高的桥机中,可以设置1个随时监视系统工作情况的装置,以便操作人员能及时地了解起重机机的运行状态(各机构的限位情况及主要部件的工作状态),发现系统存在的安全隐患,并能及时地做出正确处置[3]。免费论文。在本设计中,选用的装置为TP170A文本显示器。
TP170A人机界面,是1种先进的触摸式人机界面,可以与各类PLC(或带通讯口的智能控制器)配合使用,以文本或图形的形式监控、修改PLC内部寄存器或继电器的数值及状态,从而使操作人员能够自如的控制起重机。通过编辑软件WinCC flexible在计算机上操作画面,自由输入汉字以及PLC地址,使用串口通讯下载画面。可以有1000个故障消息,每个消息长度为70个字符;250个过程画面,每个画面的变量/域有20/20,图形的对象可以是位图,图标,背景图画,并且还有柱形统计表;用户专用权限多达32个;接口有三个可供自由先择:RS232、RS422、RS485;传送组态有串行、MPI、PROFIBUS DP[4]。
图3 PLC外部接线图
5 结论
在现有的用PLC控制替代传统继电器控制系统的设计上,改进和完善电气控制系统和安全保护电路,不仅使起重机控制线路简化,安全性能更好,而且PLC能检测各个不正常工作现象并送往文本显示器进行显示,便于故障的发现与排除,大大提高了工作效率,因而在现在的市场有很好的发展前景。
参考 文 献
[1] 张质文, 起重机设计手册,北京,中国铁道出版社 2001.
[2] 张万忠,可编程控制器入门与应用,北京:中国电力出版社 2005.
[3] 陈伯时,电力拖动自动控制系统,北京,机械工业出版社,1991.
[4] 西门子(中国)自动化驱动集团,深入浅出西门子S7-200 PLC,北京,北京航空航天大学出版社.
关键词:直流开关 软开关技术 发展研究
中图分类号:TM564 文献标识码:A 文章编号:1007-9416(2014)02-0095-01
对于各种电器而言,电源是如同心脏一般的存在,近年来,国家重视电力电子技术的开发与应用,直流开关电源在航空航天、通讯和计算机等高科技领域得到了大量的使用。这也要求相关领域必须研制出小型高效的开关电源取代原本笨重低效的旧式装置。在精益求精的电源领域中,实现电源的高频化,软开关技术的研究十分关键。
1 软开关研究技术的重要意义
电源技术的发展,多种新型电路拓扑、新型器件和控制策略的应用,使得高频开关得到了广泛的应用。但是电源装置采用硬开关方式会存在以下问题:
1.1 开关损耗多
到目前为止,开关电源普遍应用PWM技术,也就是脉宽调制技术。它要在大电流、高电压下通电和断电,所以开关管并不是这种变换电路中的理性器件,因为开关管的导通和切断都需要时间产生电流升降和电压升降,会产生消耗。
1.2 电压、电流尖峰大
当感性关断时,电路中的相应元件会感应到尖峰电压。开关的频率越高,感应电压的尖峰值越高,可能造成器件的不安全击穿;当容性开通时,开关器件的结电容中储存的能量会以电流的形式耗散到开关器件内。开关的频率越高,容性开通的电流值越大,会造成器件的热损毁。对器件的安全性危害极大。
1.3 电磁干扰重
频率越高,电路中的di,dt和du,dt的比值就越大,导致了电磁干扰加重,影响了周围电子设备和整流器的正常工作。然而,采用软开关技术就不同了,它可以有效的解决上诉所有问题。所以,有效的利用软开关技术,是电源设计师的关键任务,也是电源设备制造商们提高效率,降低成本的首要选择。
2 软开关技术的应用原理
自改革开放以来,由于传统变换器硬开关的应用弊端,软开关技术得到了广泛的应用,软开关技术一般有零电压开关和零电流开关两种,主要应用谐振原理,使得电流在开关器件中按正弦规律或者余弦规律变化。为了减少损耗,在电流自然过零的时候,关断器件。
3 软开关技术的分类
3.1 谐振变换器
谐振变换器的实质是负载谐振变换器,最早被提出来是在上世纪七十年代。在标准脉宽调制变换器上附加谐振网络就会得到谐振变换器。根据谐振元件的不同谐振方式,可以将谐振变换器分为串联谐振和并联谐振两大类变换器。根据谐振电路和负载的连接方式的不同,又可以将谐振变换器分成串联和并联负载谐振变换器两种。它的工作原理就是通过负载的谐振与谐振网络,调整经过开关元件的电压或电流,成为正弦波形,使开关元件在电流过零开通,在电压过零时关断,从而实现软开关的过程。谐振变换器与负载的关联很大,对负载变化特别的敏感应采用频率调制方法,它的EMI很小,可以在中频感应场广泛使用。这种软开关技术适用于开关速度比较慢的器件,多应用在全桥或半桥变换器。
3.2 准谐振变换器和多谐振变换器
上世纪八十年代初期,李泽元教授在美国的UPEC和众多研究人员一起研究提出了谐振开关。最为准谐振变换器中的关键部分,它是在PWM的开关上添加了一些谐振元件。按照开关管与谐振电容和谐振电感的不同结合方式,可以将谐振开关分为零电压和零电流开关,这两种开关都有两种电路方式,即L型和M型,又各有全波和半波两种模式。
谐振开关虽然实现了软开关,降低了开关的损耗,但是在这种方式中的开关器件压应力过大。只有采用变频控制才能在开关器件波动的工作频率下保持输出电压的恒定。但是变频控制方法过于复杂,不能实现最优设计,因此,这种谐振方法多数适用于小功率低电压的场合。
3.3 零开关PWM变换器
零开关PWM变换器是在准谐振软开关中加入辅助开关管,控制谐振过程,实现PWM的控制,主要有零电压PWM和零电流PWM两种变换器。它在利用谐振换相后继续采用PWM,既保留了硬开关脉宽调制技术的低稳态应力和低稳态损耗的优点又克服了三大缺陷。
3.4 零转换PWM变换器
零转换PWM转换器的谐振网络是和主开关并联的。主要有ZVT-PWM变换器和ZCP-PWM变换器两种。零转换PWM转换器既能够解决谐振技术和PWM技术缺点,又能够综合二者的优点,是因为零转换PWM转换器在开关转换结束后立刻就变成了正常的工作方式,因此,这种转换器广泛应用于中、大功率的场合。它能实现频率恒定的控制,能够减少电路损耗,不会增加主要开关管的电流和电压的应力。
3.5 无源无损缓冲电路
无源无损缓冲电路指的就是不附加有源器件,只采用二极管和电感来组成的无损缓冲电路。一般包括三种功能回路:关断缓冲回路、开通缓冲回路和反馈回路,严格意义上来说,这种电路只能满足开关过程的软化,但是因其开关损耗很低,电路拓扑很简单成本低,体积小。
4 结语
为了在降低循环能量的同时,建立软开关条件,使得软开关PWM技术得到了很多种发展。当今的开关转化技术大多数都应用的谐振原理,由于电路的串联或并联谐振网络会产生谐振损耗,还会使电路产生固有的影响,因此,人们提出了软开关技术,结合了谐振零电压技术和无损耗吸收技术的优势,电路实现了零电压开通的同时也实现了零电流关断,保证零电流开通的同时,包含零电压关断四种状态的随意组合。新型的软开关技术已经成为全新的发展趋势。
参考文献
[1]阮新波,严仰光.直流开关电源的软开关技术.科学出版社,2000.
论文摘要:电梯的电气控制设备由制造厂成套供应,电气控制设备的电源进线及控制和配电出线由安装单位配套。电气设计只需为下列用电设备提供电源、选配断路器和配电线路。
1 概述
电梯电气控制设备由制造厂成套供应,电气控制设备的电源进线及控制和配电出线由安装单位配套。电气设计只需为下列用电设备提供电源、选配断路器和配电线路。
电梯主电源;轿厢、机房和滑轮间的照明和通风;轿顶和底坑的电源插座;机房和滑轮间的电源插座;电梯井道的照明;报警装置。
2 配电设计
2.1电梯的负荷分级和供电要求,应与建筑的重要性和对电梯可靠性的要求相一致,并符合国家标准《供配电系统设计规范》的规定。高层建筑和重要公建的电梯为二级,重要的为一级;一般载货电梯、医用电梯为三级,重要的为二级;多层住宅和普通公建的电梯为三级。高层建筑中的消防电梯,应符合国家标准《高层民用建筑设计防火规范》的规定。
2.2电梯的供电,宜从变压器低压出口(或低压配电屏)处分开自成供电系统。
一级负荷电梯的供电电源应有两个电源,供电采用两个电源送至最末一级配电装置处,并自动切换,为一级负荷供电的回路应专用,不应接入其它级别的负荷;
二级负荷电梯的供电电源宜有两个电源(或两个回路),供电可采用两个回路送至最末一级配电装置处,并自动切换。当变电系统低压侧为单母线分段且母联断路器采用自动投入方式时,可采用线路可靠独立出线的单回路供电。亦可由应急母线或区域双电源自动互投配电装置出线的、可靠的单回路供电。
消防电梯的供电,应采用两个电源(或两个回路)送至最末一级配电装置处,并自动切换。
三级负荷电梯的供电,宜采用专用回路供电。
2.3 每台电梯应装设单独的隔离电器和保护装置,并设置在机房内便于操作和维修的地点,应能从机房入口处方便、迅速地接近。如果机房为几台电梯共用,各台电梯的隔离电器应易于识别。隔离电器应具有切断电梯正常使用情况下最大电流的能力但不应切断下列设备的供电:轿厢、机房和滑轮间的照明和通风;轿顶和底坑的电源插座;机房和滑轮间的电源插座;
电梯井道的照明;报警装置。
上述照明、通风装置和插座的电源,可以从电梯的主电源开关前取得,由机房内电源配电箱(柜)供电或单设照明配电箱,或另引照明供电回路并单设照明配电箱。
2.4 主开关选择
电梯电源设备的馈电开关宜采用低压断路器。低压断路器的额定电流应根据持续负荷电流和拖动电动机的起动电流来确定。过电流保护装置的负载-时间特性应设备负载-时间特性曲线相配合。
2.5 照明、通风装置和插座的供电回路,根据设备所在部位和工作特点划分,至少应分为两个供电回路并分别设置隔离电器和保护装置:
轿厢用电设备(照明、通风、插座和报警装置)供电回路和保护断路器(如同机房中有几台电梯驱动主机,每个轿厢均应设置一个),此断路器应设置在相应的主开关旁。
机房、井道和底坑用电设备(照明、通风和插座)供电回路和保护断路器,此断路器应设置在机房内,靠近其入口处。
3 电气照明、通风装置和插座设置及控制
3.1 电梯井道照明
封闭式电梯井道应设置永久性的电气照明,在维护修理期间,即使门全部关上,井道亦能被照亮。井道最高和最低点 0.5米以内,各装设一盏灯,中间最大每间隔7m设一盏灯,照度应不小于50lx,分别在机房和底坑设置一控制开关。
3.2 电梯机房照明和电源插座
机房应设有固定式电气照明,地板表面上照度应不小于 200lx。在机房内靠近入口(或几个入口)的适当高度处设有一个开关,以便进入时能控制机房照明。机房内应设置一个或多个电源插座。
3.3 轿厢照明和电源插座
轿厢应装备永久性的电气照明,控制装置上的照度应不小于 50lx,轿厢地面上的照度宜不小于50lx。如果照明是白炽灯,至少要有两只并联的灯泡。
要有可自动再充电的紧急电源,在正常照明电源被中断的情况下,它能至少供 1W灯泡用电1h。在正常照明电源一旦发生故障情况下,应自动接通照明电源。轿顶应设置一个或多个电源插座。
3.4 底坑插座
底坑距底 0.5m处应设置一个电源插座。插座需有防护措施和有一定的防水能力,宜至少达到 IP21。
4 线路敷设
4.1 线缆选择
选择电梯供电导线时,应按电动机铭牌电流及其相应的工作制确定,导线的连续工作载流量应不小于计算电流,线路较长时,还应校验其电压损失(直流电梯电源电压波动范围应不大于± 3%,交流电梯±5%)。
4.2配线选型
根据不同用途,配线可选用导线、硬电缆和软电缆,应有不同的保护方式和敷设方式.
5 防灾及报警装置
5.1消防电梯和平时兼作普通电梯的消防电梯,在撤离层靠近层门的候梯处增设消防专用开关及优先呼梯开关,供火灾时消防队员使用。
5.2为使乘客在需要时能有效地向轿厢外求援,应在轿厢内装设乘客易于识别和触及的报警装置。该装置应采用警铃,对讲系统,外部电话或类似形式的装置。
5.3超高层建筑和级别高的公建,在防灾控制中心宜设置电梯运行状态指示盘。
5.4消防电梯轿厢内应设消防专用固定电话,根据需要可以设闭路监视摄像机。
6 防雷等电位联结
二类防雷建筑物超过 45m和三类防雷建筑物超过60m的建筑,应采取防雷等电位连接措施,电梯导轨的底端和顶端分别与防雷装置连接(接闪器、引下线、接地装置和其它连接导体等)。
7 电梯机房、井道和轿厢中电器装置的间接接触保护
7.1低压配电系统零线和接地线应始终分开。
7.2整个电梯装置的金属件,应采取等电位联结措施。接地支线应分别接至接地干线接线柱上,不得互相连接后再接地。
在各个底坑和各机房均设置等电位连接端子盒,并与防雷装置连接。端子盒分别单独用接地线接至等电位联结端子板,以便于检查和维护。采用铜芯导体,芯线截面不得小于 6mm2,当兼用作防雷等电位联结时,采用铜芯导体,芯线截面不得小于16mm2。
轿厢接地线如利用电缆芯线时,不得少于两根,采用铜芯导体,每根芯线截面不得小于 2.5mm2。
7.3 电位连接、保护接地及电梯控制计算机工作接地与建筑内其它功能的接地共用接地装置。