HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 人工智能论文

人工智能论文

时间:2023-03-24 15:40:40

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

人工智能论文

第1篇

1人工智能技术

以上论证说明:人工智能技术可以在人类隐性智慧定义的工作框架内模拟人类显性智慧(人类智能)生成知识,创建主客双赢的策略解决各种复杂问题。而这是现今其他各类技术做不到的。不过,由于在人工智能系统工作的基本过程中,(1)中客观存在各种不确定性,人类给定的知识未必能够理想地体现客观规律,也未必能够完全满足求解问题的需要,(2)中人类预设的求解目标也不见得完全合理,(3)中人工智能系统各个环节必然存在各种不理想性。因此,人工智能系统对人类显性智慧能力的模拟不可能完全到位,人工智能系统提供的问题解答也有可能不如人类自己求出的解答。换言之,人工智能系统所模拟的人类显性智慧能力,原则上不可能超过人类自己的显性智慧能力。如果说人工智能系统确实也有超人的地方,那主要是它的工作速度、工作精度、持久能力等因素,而不可能是显性智慧中的智慧品质。至于一些人所宣传的机器超越人类甚至机器淘汰人类的说法,是没有根据的。无论是人工智能系统,还是其他各种机器系统,它们共同的问题之一是:机器没有生命,没有目的,不可能自主发现应当解决的实际问题,不可能自主形成机器的智慧,尤其不可能无中生有地形成超越人类和淘汰人类的荒唐愿望,因此更不可能产生淘汰人类或灭绝人类的行为。

2人工智能与信息技术的关系

图2的人工智能系统模型表明,完整的人工智能技术系统必须具有如下环节:信息获取(感知)、信息传递(通信)、信息处理(计算)、知识生成(认知)、策略创建(决策)、策略执行(控制)以及反馈学习优化等基本技术系统,这正像“人”这个智能系统必须具有感觉器官(信息获取)、传输神经系统(信息传递)、思维器官(信息处理、知识生成、策略创建)以及执行器官(策略执行)。 其中传感(感受信息)、通信(传递信息)、计算(处理信息)、控制(执行信息)等技术属于信息技术。可见,人工智能系统是一个全局整体,其中包含着传感、通信、计算、控制等信息技术环节;这正像人这个智能系统是一个全局整体,其中包含感觉器官、传输神经、丘脑和执行器官这些信息器官。如果把人工智能系统称为完整的人工智能系统,而把其中的知识生成和策略创建称为核心人工智能系统,那么,则有:完整的人工智能系统=核心人工智能系统+信息技术系统其中,核心人工智能系统处于完整人工智能系统的核心,处理知识和智能层次的问题;信息技术系统处于完整人工智能系统的外周,处理信息层次的问题,同时担任核心系统与外部环境之间的两端接口:一端是从环境获取本体论信息(传感),另一端是对环境施加智能行为(控制)。这就表明,信息技术系统提供给人类的服务主要是方便快捷的信息共享,而不可能提供如何认识事物本质的服务(因为这需要知识),更不可能提供如何解决问题的服务(因为这需要智能策略)[2]。

3“新型”信息技术

近十多年来,先后出现了大数据、云计算、物联网、移动互联网以及各种互联网的应用技术。人们把它们称为“新型”信息技术或“新一代”信息技术。深入分析可以发现,这些新型信息技术的核心技术正是核心人工智能系统的知识生成和策略创建技术。不妨以大数据技术为例加以说明。图3表示了大数据技术系统的工作流程。由于有着多种来源、多种背景以及多种格式,大数据通常是病态结构或不良结构的大规模数据集合,其中可能包含垃圾、病毒和黑客攻击程序。因此,如图3所示,大数据技术的第一个环节就是智能分类:把无用的数据识别分类出来加以过滤和抑制,把有用的数据按照某些特征进行分类,再分门别类地送到恰当的云计算(和云存储)系统,进行相应的信息处理,为知识生成(知识挖掘)做好必要的准备。通过知识挖掘生成了足够的知识之后,才可以把这些知识(结合求解目标)转换成为用来解决问题的智能策略。其中,智能分类、知识挖掘和策略创建都是人工智能的基本技术。可见,如果没有这些人工智能技术,大数据就只能是数据,而不可能转换成为有用的知识和可以用来解决问题的智能策略。

由此可知,大数据技术的核心就是人工智能技术,可以把它比较确切地称为面向大数据的智能技术。而把它称为新型信息技术则没有真正抓住大数据技术的要害和本质,模糊了人们对大数据技术和人工智能技术的认识,不利于大数据技术的研究和发展,也不利于人工智能的研究和应用。真正的智能物联网模型不是别的,正是图2所示的模型。如图2所示,只要在综合知识库内设置“对物控制的目标”,那么“外部世界的物”的信息就经由传感器获得,经过通信系统传送到计算系统并在这里进行必要的处理即把信息变成适用的信息,接着由认知系统转换成为知识,然后由决策系统根据控制目标把信息和知识转换成为智能策略,智能策略再经通信系统传到执行系统之后转换成为智能行为反作用于所关注的“物”,使它的状态符合预设的目标。近来人们在密切关注着“互联网+”。其实,“互联网+”可以有两种不同的理解。一种理解是当前人们所关注的互联网推广,这里的“+”就相当于信息化的“化”,就是互联网的各种应用。另一种更有意义的理解则把“互联网+”理解为互联网升级,就是把以计算机为终端的现有互联网升级为以人工智能系统为终端的智能互联网。这就是2015年全国两会期间全国政协委员的“中国大脑”提案。应当认为,互联网推广,即把互联网应用到各行各业是完全必要的,这是信息化建设的正常要求。但是,从信息化建设的发展大势来看,互联网升级即把当前常规互联网升级为智能互联网则更为必要,这将为中国信息化建设注入更为强大的新活力,是转变经济发展方式的需要,是国民经济产业升级的需要。综上所述,大数据技术、云计算技术、智能物联网技术,其实都是人工智能技术的相关具体应用。可以这么说,如果没有人工智能技术,单凭信息技术很难有效地应对大数据和物联网以及未来更多更复杂的技术挑战。

4结束语

我们认为人工智能技术不会排斥信息技术,因为信息技术是人工智能技术系统的有机组成部分。强调人工智能技术的作用实际上也就强调了信息技术的作用,强调了信息技术的升级。从现在开始的未来20年,中国和世界经济发展都进入深水区,面临越来越复杂的严峻挑战。发展和应用人工智能技术(而不是停留在一般信息技术的水平)是实现科技创新和应对这些挑战的有效途径。因此,需要像中兴通讯这样的创新型企业和国家各级决策层次大力宣传人工智能技术,积极推动人工智能技术的发展和应用,使中国的现代化建设走上健康发展的轨道。

作者:钟义信单位:北京邮电大学

第2篇

1产品特征不同

机械电子产品虽然结构相对简单化,没有掺杂过多的运动元件或者部件,但是它的内部结构是非常复杂的,若想要产品的性能得到提高,就必须将传统落后的笨探究机械电子工程与人工智能的关系姚磊河北农业大学机电工程学院河北保定071000重机械面貌彻底抛弃,缩小物理体积。由于机械电子工程所涉及和利用到的内容非常广泛,所以电子机械工程是一种具有极强综合性的学科。机械电子工程的基础是传统机械工程,同时充分利用计算机的辅助作用,来强化机械电子工程的核心力量。这使得机械电子工程与其他学科相比较而言更能体现出科学性,并且能够保证满足系统配置方面的设计需求。机械电子工程充分利用到专业设计模板来完善机械电子设备,发挥设计应用中的模板作用,这样有利于保证机械电子工程设计能够顺利进行。机械电子工程产品在设计结构方面较为简单,并且元件利用数量也是相对较少的。所以在这种情况下,要通过持续提升产品性能,强化机械电子产品质量,优化机械电子产品的结构,来满足消费者的更多需求。

2人工智能的定义及特点

何为人工智能,人工智能是一门综合了计算机科学、信息论、控制论、神经生理学、语言学、心理学、哲学等多门学科的交叉性学科,是21世纪最伟大的三大学科之一。人工智能的发展其实经历了一段非常漫长的历程,人工智能在计算机开始发展的初期就已经被应用到了各个方面,只是它在起初所发挥的作用相对而言是非常小的,并没有得到足够的重视或者引起足够的注意。但是随着时代的进步,人工智能已经摆脱了过去相对弱小的形象,发生了翻天覆地的变化,得到了很大的改善。人工智能发生的这些转变正是人类对计算机的应用和熟悉程度的转变。信息时代的趋势已经使人工智能技术得到了很大的强化,在社会中的地位也越来越重要。机械电子工程的发展需要依靠人工智能的力量和支撑,相信随着人们对人工智能更加深入的研究,人工智能模仿人类思维的能力定会越来越强大。只有对人工智能不断创新和改善,才能在计算机语言理解和应用方面得到更大的进步,才能更加符合机械电子工程的发展需求。

3机械电子工程与人工智能的关系

机械电子工程在应用上不稳定主要表现在系统输入输出的问题,即利用数学方程来建立模型,并且依靠人工智能来完成对传统知识学习的更新,这种解析数学的相关方式在机械电子工程中的应用是非常广泛的。传统机械工程方式的应用是非常简单的,但是随着时代的发展和科学技术的进步,新时期出现的机械电子工程系统在处理各种问题时是相对复杂的,会通过配置多种系统对信息类型来进行区分。但是人工智能在机械电子工程领域还存在着一些不确定的因素,在计算机电子工程中,人工智能信息处理的方式主要采用的是解析数学措施,其应用方式主要是利用网络神经系统对网络系统进行合理安排,将神经系统迷你成人脑的结构,根据相关数字所传达出来的信号,对已经搜集到的资源进行参数分析。其实,人工智能在机械电子工程中的应用是有差异的,这种差异性也是人工智能的一种特点,没有办法对网络系统进行有效的描述,同时在建设系统资料库的过程中进行严密数学分析,在分析过程中若是出现错误会直接影响到网络系统的建设,甚至导致网络系统的崩溃。创新工程方式,加强人工智能信息的服务建设是保证机械电子工程能够顺利开展和进行的关键。随着时代的发展和人民日益增长的需求,生活方式的单一性早已不能满足社会的发展需求速度。不断完善的综合性人工智能系统必将会使生产模式发生转变。利用模型推理系统和神经网络系统的优势来补充综合性人工智能,逐步完善机械电子工程的发展,网络系统得到完善的必然结果就是模型推理系统。同时,模型推理系统也是二者功能性融合的重要体现。人工智能通过网络信息资源进行完整性表达,完善机械电子和人工智能的密切关系。

4结束语

科学技术水平之所以得到提升,其内部原因就在于学科之间的大融合,相信机械电子工程与人工智能技术的完美结合必定会促进社会的进步,改变人们现有的生活方式。自动化是机械电子工程和人工智能技术结合下的重要产物,也会是重要的发展趋势。

作者:姚磊 单位:河北农业大学机电工程学院

第3篇

一、银行反欺诈发展趋势

国内外银行在传统反欺诈管理中主要依赖专家经验,通过人工方式制定检测规则,当申请或交易信息与反欺诈规则匹配后即执行相应的业务策略。这种管理模式得出的反欺诈规则存在一定的局限性,不能枚举所有业务场景,无法对各类欺诈行为进行全面覆盖。与此对应,欺诈者会针对性的对已有规则进行回避,导致专家规则处于被动调整的位置,无法跟上欺诈手段的更新换代[1, 2]。另外,当专家规则积累达到一定数量后误报率通常会比较高,能够影响到实际风险决策制定和实际业务开展。

机器学习是一种重要的金融科技创新手段,近年来在国内外金融机构和金融科技企业中被尝试应用到风险防范、反欺诈等领域。例如花旗银行、美国银行、汇丰银行等机构广泛应用逻辑回归、神经网络等技术以提升欺诈识别能力;京东金融与ZestFinance组建的合资公司以数据挖掘建模为核心竞争力,在反欺诈领域深入应用机器学习技术以发挥大数据价值。机器学习是一种研究机器获取新知识和新技能,并识别现有知识的方法[3];通常针对大规模数据集进行全方位综合考量,挖掘深层次业务场景特征进而建立监督、无监督等类型的学习模型,在大量应用中模型的准确性、稳定性也得到了充分验证[4]。

为此,我们针对信用卡申请审批这一典型业务场景,应用机器学习技术进行欺诈风险管理并设计数据产品对异常客户进行监控预警。区别于将机器学习技术应用到单一反欺诈规则制定的典型做法,我们尝试从整体视角对欺诈风险进行评估,实现精准量化预测并以此作为应对欺诈风险的强有力手段。建模思路及方法具有一定的可迁移性,可以被广泛应用到银行风险防范、反欺诈等业务领域。

二、“会思考”的风控模型

在应用大数据支持业务发展转型的过程中,我们提出构建增强智能(Augumented Intelligence)系统[5]的创新思路。一个务实的增强智能系统包括客户画像、数据挖掘模型和决策引擎三个组成部分。数据挖掘模型是智能化的核心,客户画像为建模过程持续提供特征输入,决策引擎将模型输出成果转换为实际业务行动。增强智能系统的一个重要目标是提升传统业务流程的自动化水平,过程中的大数据能力主要体现在三个方面,也就是下图中的三个组成部分:更好的客户认知、更智能化的算法、更快速的决策支持。

图1:增强智能系统组成模块

数据挖掘模型发挥动力引擎作用,吸收学术界和产业界先进机器学习知识成果并应用于银行实践。客户画像重点体现大数据背景下的客户多维度刻画,在静态信息和交易行为信息之外可以补充社交网络维度特征信息。伴随大数据的持续采集、生产和交换,客户画像能够进一步补充情绪属性、价值观属性乃至道德属性等信息,为数据挖掘建模提供源源不断的能源输入。决策引擎能够面对业务场景进行快速响应,通过可视化等手段提供自助式业务分析能力,促进数据价值转化为业务行动。

践行上述思路,我们结合传统风险管控和社交网络分析技术,加工基础维度信息和社交维度信息特征指标组成反欺诈客户画像,并应用随机森林等分布式机器学习算法建立欺诈风险预测模型。不同于传统风控模型以年为单位的更新优化周期,智能化预测模型每天都能够进行“思考”,通过更新网络关系并重新训练模型确定最新的欺诈预测思维模式。模型在研发和使用的过程中灵活运用机器学习和社交网络分析技术,催生新型数据产品的开发与应用从而带动传统业务流程的优化。

三、模型构建与结果分析

以银行信用卡申请反欺诈为应用场景,详细描述社交网络构建、特征处理、算法实现、运行结果分析等阶段过程。

1、结合社交视角构造客户特征信息

社交网络分析是融合多学科理论和方法,为理解各种社交关系的形成、行为特点分析以及信息传播的规律提供的一种可计算的分析方法[6]。社交网络分析方法旨在建立一个网络与真实世界的实体与关系映射,在银行应用中的典型实体包括客户、账户、员工等。社交网络分析通常关注静态和动态两个层面的网络特征,静态特征包括提取网络指标、对网络特征刻画、识别网络群组等;动态特征主要包括描述网络如何随时间推移进行扩散、如何影响其他节点等。

分析信用卡进件审批数据,确定数据中包含四种角色,分别是申请人、申请人亲属、联系人和推广人。在建模实施过程中将申请人角色作为社交网络的关键节点,把申请人、申请人亲属、联系人及推广人这四种角色的移动电话、家庭电话、办公电话的相同作为关系类型。建模过程中构建的社交网络包括780万节点,2.33亿条关系。

在构建完成社交网络后,设计并计算一二阶度、一二阶欺诈数、一二阶欺诈占比、最短路径等网络指标。从网络视角衡量欺诈风险的传播,度反映节点关联好友数量,最短路径反映网络中节点间亲密程度。此外,建模中的客户基础信息包括申请人年龄、手机号、单位电话、电子邮箱、学历、年收入、职位等,针对这些信息需要进行结构化分解、离散化、频度计算等数据预处理操作,共同构建特征以用于后续模型的训练和验证。

图2:反欺诈模型特征构造过程

2、建模方案设计

对进行特征工程化处理的数据进行拆分,设置三组建模数据集,分别是基础信息的数据集(base)、社交信息的数据集(social),以及组合在一起的数据集(combine)。建模过程中采用3折交叉验证的方式完成欺诈风险预测模型建立和训练,并比较多组模型输出的计算结果。

算法选择方面,分别选择逻辑回归(LogisticsRegression, LR),随机森林[7](Random Forests, RF)和深度学习[8](Deep Learning, DL)。逻辑回归是银行风控领域的经典算法,以此作为模型结果的标杆参考。随机森林是一种集成学习算法,利用多棵决策树对样本进行训练并预测;通常单棵树性能表现较弱,但进行组合之后能够提供较好的分类性能,同时算法稳定性较好。深度学习(DL)模型是包含多隐层的多层感知器系统,通过应用综合复杂结构和多重非线性变换构成的多个处理层及对数据进行高层抽象的一系列算法,建立具有数个隐层的多层感知网络并实现各种模式的识别和认知。

模型评价方面,选用AUC、Precision、Recall、Accuracy、F1-measure等指标。其中AUC[9](Area under Curve)是ROC曲线下的面积,介于0和1之间;AUC值表示将两样本正确分类的概率,AUC值越大说明模型分类性能越好。其他指标均是从不同角度衡量模型性能,这里不再详细说明。

3、建模结果分析

如下表所示,前三列数据为应用随机森林(RF)算法在不同数据集上进行的三组模型输出结果。比较结果数据可以发现,通过整合社交属性信息模型各项评价指标较基础信息模型结果均有大幅度提升。不同于基础信息,社交维度重在刻画实体在网络中的关系,其加工指标在建模后呈现出与欺诈风险相关的强特征关系。建模结果中AUC提升7个百分点,F1-measure提升2个百分点,充分验证了建立多维度视角对于提升客户欺诈风险识别能力的有效性。更重要的是,伴随大数据的采集和处理,可以从深度和广度上对客户欺诈风险认知进一步补强,进而持续优化模型的底层数据源。

后面三组数据是在整合数据集上应用三种不同算法,整体表现逻辑回归算法较弱,深度学习居中,随机森林表现最优。结果表明目前模型输入特征与预测目标关联性较好,并且总体特征数量为数十个的量级,还不足以发挥深度学习海量特征无监督优化选择的特性,相比之下随机森林、GBDT[10]等集成学习算法表现更为突出。

表1:欺诈风险预测模型结果比较

四、欺诈监控数据产品

大数据在实际应用中体现出强产品化的特点,通过构建反欺诈数据产品能够快速实现决策引擎的功能;同时原始数据从积累到建模均与该数据产品关联,用户画像建立和持续丰富也与反欺诈业务场景相结合。数据产品通过可视化技术实现自助式分析能力,在数据价值转化为业务行动过程中发挥桥梁作用。

针对信用卡申请反欺诈场景,设计专项数据产品对接相关业务系统。数据产品提供全国进件审批疑似欺诈情况分布图,实时获得所关注区域的欺诈进件分布、欺诈发展趋势、欺诈比重等动态。另外,提供分地区信息概要、进件详情、明细检索和社交网络检索等功能,能够在系统页面查询基础指标统计图(手机和电话特征分布)、不同模型输出的欺诈风险概率值、进件基本信息、进件网络特征、社交指标统计(一度、二度、最短路径)等内容。

图3审批疑似欺诈情况分布图

五、总结与展望

第4篇

AI Index在新旧年份交替之际公布了团队成立以来第一份报告,其中具有代表性的八张图可以帮助我们快速、全面了解AI这一行业高速发展的启发和见解。

1、AI学术研究论文激增9倍以上

自1996年以来,每年发表的计算机科学的学术论文和研究的数量猛增了9倍以上。学术论文和研究通常能产生新的知识产权和专利。整个Scopus数据库中,含有“Artificial Intelligence”这个关键词的计算机科学领域的论文有超过200,000(200237)篇。Scopus数据库中“计算机科学”领域的论文总共有近500万(4868421)篇。

2、AI风险投资激增6倍

自2000年以来,在美国,风险投资者(VC)每年投入AI创业公司的投资额增加了6倍。Crunchbase,VentureSource和Sand Hill Econometrics被用于确定VC每年投给初创公司的资金额,这些初创公司在某些关键领域起着重要作用。上图显示了VC在美国所有融资阶段对AI创业公司年度投资总额。

3、AI创业公司激增14倍

自2000年以来,在美国,有资本支持的AI创业公司数量增加了14倍。Crunchbase,VentureSource和Sand Hill Econometrics也用于这一分析。这个数字包括VentureSource数据库中Crunchbase列表中的任何有VC支持的公司。

4、要求AI技能岗位激增4.5倍

自2013年以来,要求有AI技能的工作岗位增长了4.5倍。在Indeed.com平台上,需要AI技能的工作岗位所占份额的计算方法是通过职业描述中的标题和关键字来确定是否与人工智能相关。AI Index研究还计算了在Indeed.com平台上,要求人工智能技术的工作岗位份额在不同国家的增长情况。尽管加拿大和英国增长迅速,但对于人才招聘市场,Indeed.com的报告显示加拿大和英国分别只占美国AI招聘市场绝对规模的5%和27%。

5、机器学习、深度学习以及NLP成为核心技能

在线求职平台Monster.com上数据显示,机器学习,深度学习和自然语言处理(NLP)是最重要的三项技能。两年前NLP已经被预测会成为应用程序开发人员创建新的AI应用程序最需要的技能。除了创建AI应用程序,最受欢迎的技能还包括机器学习技术,Python,Java,C++,开源开发环境的经验,Spark,MATLAB和Hadoop。根据对Monster.com的分析,在美国,数据科学家,高级数据科学家,人工智能顾问和机器学习主管的薪水中位数为$127000。

6、图像标注错误率巨幅下滑至2.5%以下

自2010年以来,图像标注的错误率从28.5%下降到2.5%以下。大规模视觉识别挑战赛(LSVRC)的对象检测任务的AI拐点发生在2014年。在这项特定任务中,AI已经表现得比人类更准确。这些发现来自于ImageNet网站上LSVRC竞赛排行榜的竞赛数据。

7、机器人进口量激增至25万

从国际上看,机器人的进口量已经从2000年的10万台左右增长到了2015年的25万台左右。数据来源是每年进口到北美以及国际整体的工业机器人的数量。工业机器人由ISO 8373:2012标准定义。国际数据公司(IDC)预测对机器人的消费将在五年内加快,到2021年达到2307亿美元,复合年增长率(CAGR)为22.8%。

第5篇

 

一、网站的构建 

 

1.网站框架设计 

我国高中阶段人工智能教育还处于起步阶段,据调查,全国已开设人工智能课程的中学不超过十所。事实上,对于人工智能这一前沿学科,大部分信息技术教师还缺乏足够的了解,因此对于该课程的开设也一直处于观望状态。考虑到人工智能教育的实际情况以及网站的主要对象,我们以高中信息技术选修课教材《人工智能初步》为基础,按教学内容设置和划分栏目,同时又围绕“学人工智能、教人工智能、用人工智能、机器人专题”四大专题进行内容重组。当然,网站的基本架构并非一成不变,它需要在实际应用中进行检验与修正,最终实现网站的完美架构。依据上述思路建构的网站基本框架如图1所示。 

2.网站的栏目设计 

 

新闻栏目以图文的形式人工智能发展的最新情况,这是激发并维持广大师生关注人工智能的基础,也是师生获取最新信息的窗口。子栏目“中国动态”“欧美动态”等分别介绍了各地区最新的人工智能信息,尤其是机器人产品的新闻。子栏目“会议论坛”,“比赛通知”为师生、参与比赛提供服务。 

论文栏目是作为资源型网站的基础。子栏目“教学研究”主要面向从事人工智能教育的研究者和教师,探讨教学方法、分析教学案例、推荐教材和参考书,为更好的开展人工智能教学提供理论依据。子栏目“学习乐园”主要面向学生,展示活动实录、阐述学习感受,聆听专家意见,为更好的学习人工智能提供事实参考,教师也通过“学习乐园”来了解学生的所思所感所想。子栏目“赛事规则”介绍了各个地区和各级机器人比赛的一些规则,有利于师生更好的进行人工智能的教与学。 

资源、视频、图库、酷站:这四个栏目是资源型网站的核心。尤其是资源模块中的子栏目“电子书刊”“教学课件”“人工智能软件”分别以不同的文件格式向师生提供教与学的资源,使其能快速准确地获取符合需求的资源,免去了在因特网上盲目搜索出现大量冗余信息的麻烦。网站整合了文本、视频、图片等多媒体信息,以丰富多彩的形式呈现资源,增强了网站的吸引力和信息的可阅读性。 

爱问栏目是作为学习型网站的基础,也是本网站的一大特色。“爱问”是采用了模仿“百度知道系统”的程序设计,更注重知识的答疑解惑。我们将此栏目划分为“学人工智能”“教人工智能”“用人工智能”“机器人问题”四个子栏目,师生可根据各自的需要进行提问、回答问题、搜索问题等操作。同时,设立了积分制,激发师生提问和回答问题的热情。 

用户中心栏目是学习型网站的核心。作为一个专题网站,必然要十分强调学习的功能。子栏目“网络书签”的功能可以使学习者记录自己所浏览过的或所感兴趣的网页,便于在下次登陆后继续学习。在子栏目“信息”功能中,学习者可以新闻、论文、资源、爱问等信息,待管理员审核通过后即可在网站中显示出来。另外,教师也可在教学过程中通过此模块要求学生提交作业,便于教师随时随地的批改作业。 

 

二、网站的访问数据分析 

 

人工智能教育专题网站从开设至今将近8个月的时间,已经有超过1万的独立访客访问了本站,我们选取了最近访问的2000位独立访客进行研究。通过对地域、被检索方式、受访页面及回头率的分析,可为网站下一步的改进与完善提供依据,为其他人工智能教育类网站的建设,在网站的用户类型,网站的内容选择与更新,网站的推介宣传等方面提供参考与借鉴。 

 

1.地域分析 

在统计到的访问该网站的地域中,国外共有12个国家访问了本网站。国内除西藏、澳门之外,其他省份、直辖市、特别行政区都有访问过本网站,这为我们今后在高中普及人工智能教育提供了有力的依据。但是,通过图2的数据我们也可看到,各个地区间的访问量差距较大,并且访问量靠前的几个省份基本上是沿海地区,而中部和西部地区的访问量比较少,所以在今后的工作中不仅要加强网站本身的建设和宣传,更要把人工智能教育的理念推广到中部和西部地区,使那里的中小学师生也接触人工智能的知识,激发他们对信息技术美好前景的向往。 

2.被检索方式分析 

搜索引擎是网络上最常用的获取资源的方式。掌握用户使用搜索引擎的情况,有助于了解网站的被检索方式。统计搜索关键字的次数,有助于了解网站被检索访问的原因。在专题网站建设完成后,向“百度”、“Google”等大型搜索引擎系统提交收录网页申请是极其必要的,它有利于提高网站的知名度和访问量。而在网站中增加“人工智能”,“prolog 源程序”等文字内容,将会有利于用户在盲目搜索时能访问到该专题网站。 

3.受访页面分析 

受访页面是指用户访问该专题网站时所停留的页面。通过对受访页面的统计,使我们能够掌握用户相对较为关注网站的哪些内容。表1数据中“学人工智能”占23.82%,“资源下载”占了16.32%,表明用户对人工智能的知识还不是很了解,对人工智能的认识还停留在“学”的层面,远未达到“教”的程度。人工智能教育类网站在建设中,如果能提供大量的人工智能的基础知识以及丰富的可下载资源,将会显著提高网站的受欢迎度以及用户的认可度。 

4.回头率分析 

在网站访问统计中,通常将距离上次访问超过12小时的再次访问记录为一次回头。通过对回头率的统计(表略)看出该专题网站的粘性不是很高,尤其是3次回访以上的用户还不多。通过对部分用户访谈后了解到,网站的更新速度慢,资源较少,内容偏难是其不愿进行多次回访的主要原因。所以,人工智能教育类网站在维护期间要注意内容的时效性、丰富性、通俗性才能保证网站访问的可持续性。 

 

 

三、网站建设的若干思考 

 

目前国内外有关人工智能的专题网站不多,针对人工智能教育的网站更少。在可供借鉴的成熟案例较少、研究又处于刚起步阶段的情况下,有必要对我们的工作进行反思总结。通过上述访问数据的分析,以及在人工智能教育专题网站建设的准备阶段,实施阶段及运行阶段的实践,我们认为在建设人工智能教育类网站时应当注意以下几个问题。 

1. 充分关注用户信息 

访问量是综合类或门户类网站的生命线,应当尽可能地拓宽访问者的类型与层次。但人工智能作为一门新兴学科,其专题网站的学科性特点甚至比普通的专题学习网站还要突出,因此单从访问量上来说,它是无法和门户类网站相比的。所以在建设的初期首先就要考虑的网站的对象问题,也就是要关注哪类人访问了网站。只有准确的掌握了用户的信息才能更好提供用户需要的资源。 

在这里,人工智能教育专题网站是通过以下三种手段来获取用户信息的。 

第一,用户必须注册才能访问网站,注册的内容包括年龄、身份、学历,电子邮件等内容。 

第二,在网站中设立“网站调查”栏目,可以对“你是如何知道本站的”,“你觉得本站建设的如何”等内容教学在线调查。 

第三,通过“中国站长站”等专业的数据收集程序来获取用户基本信息,可收集到用户地域、受访问页面、用户回头率等信息。只有掌握了准确的用户信息,才能更好的为用户提供服务。 

2.与用户携手共建网上资源 

人工智能的子学科门类众多,仅高中教材《人工智能初步》中就有知识及其表达、推理与专家系统、人工智能语言与问题求解等多个主题。而且我国的人工智能研究相对薄弱,很多资料都是外文的。任何一个人要很熟练的掌握人工智能的各个内容是很困难也是不现实的。我们通过一年多的实践也体会到,仅仅依靠课题组成员很难保证网站资源库内容的全面性和针对性。所以在网站最新一次改版中,我们增加了用户的信息功能,使得用户自己可以新闻、添加文章,上传资源,只要经过管理员审核即可在网站中显示。 

另外,在人工智能教学过程中,我们也充分利用学生的优势,要求学生以作业的形式提交文本和视频资源,并将作业的数量和质量作为考察学生学习效果的一个指标。这些举措保证了网站内容更新的时效性和内容的针对性。用户所的就是用户所关注的,用户所关注的就是网站所要收集的。 

3.通过多种形式充分发挥网站作用 

目前,全国高中开设了“人工智能初步”选修课的学校极少,教师手头上可供选择的教材也只有5套。从专题网站上统计的数据来看,虽然网站目前的用户主要是教师,但“学人工智能”页面访问量却远多于“教人工智能”。从这些情况看,单靠几个人工智能教育类的专题网站无法从根本上解决高中人工智能教育现阶段所面临的窘境。所以,在条件允许的情况下,可以通过研修班、会议论坛等形式组织教师进行面对面的交流。 

例如,我们就在2007年5月25日至27日在浙江师范大学举办了全国首届“高中人工智能课程研修班”,来自全国十个省市的70余位信息技术教师及教研员参加了研修班的学习。在研修活动中,教师不仅学习了人工智能的知识,也对人工智能教育的现状及发展过程中遇到的问题做了充分了探讨和交流。本次研修活动结束后,人工智能教育专题网站则成了学员们交换信息、交流体会、共享资源的有效平台。 

 

四、结束语 

 

总之,借助专题网站的平台作用开展各种活动,不仅弥补了人工智能教育网站缺乏面对面交流和互动的缺点,也为把网站资源建设的更具针对性提供了有效帮助。 

 

参考文献: 

[1]张剑平. 关于人工智能教育的思考[J] .电化教育研究.2003,(1). 

[2]曹瑞敏. “中国海”学生专题学习网站应用[J] .中国电化教育.2005,(5). 

第6篇

《新闻周刊》5月24日

几十年来,技术不断地让手机、笔记本电脑、应用程序等整个行业的产品变得

>> 美国医疗保障制度评估 人工智能将统治地球? 人工智能将改变什么 人工智能将重塑商业生态 美国改善双重参保者的医疗保障 人工智能与医疗 美国医疗保障体系改革及其对中国的启示 美国医疗保障制度的嬗变及启示 美国医疗保障体系现代化进程分析 美国医疗保障制度改革与发展的政治维度 人工智能将使人类更强大 人工智能将再造互联网 人工智能将促进制造业升级 人工智能将取代50%的工作 人工智能将重新定义人类 人工智能将改变经济等3则 人工智能将如何威胁人类文明? 人机大战:人工智能将带来什么 美国的养老保障系统 完善我国医疗保障制度 常见问题解答 当前所在位置:中国 > 政治 > 人工智能将大大改善美国医疗保障系统 人工智能将大大改善美国医疗保障系统 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者:未知 如您是作者,请告知我们")

申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 《新闻周刊》5月24日

几十年来,技术不断地让手机、笔记本电脑、应用程序等整个行业的产品变得越来越便宜,而医疗保健却在另一个世界里顽固地徘徊,在这个世界里,科技让一切变得更加昂贵和复杂。现在,许多美国创业公司正在利用人工智能和海量的数据以及自动化的方法,有望在提高医疗效率的同时降低医疗成本。比如有些公司正在试图利用人工智能实现一些医生的工作自动化。IBM的沃森利用机器强大的计算能力来解决问题,目前正在成为世界上最好的诊断专家。它的软件可以吸收所有可用的病人稻荩以及每年发表的成千上万的医学研究论文(远远超出了任何人的阅读能力)。该系统甚至可以跟上新闻的步伐,例如,了解哪些地区会受到某种传染性疾病的影响,这可能有助于诊断最近去过这些地区的人。

第7篇

人工智能在2016年最辉煌的战绩,就是AlphaGo(阿尔法围棋)战胜李世石,又在2017年初化名Master连胜中国选手60局,宣告人工智能在围棋领域无可战胜的地位。2017年元旦刚过,加拿大阿尔伯塔大学了关于扑克 AI 的论文,表示他们的 DeepStack 是世界上第一个在“一对一无限注德州扑克”上击败了职业扑克玩家的电脑程序。等等诸如此类消息开始让一部分人尝试使用人工智能做股市投资,也的确有对冲基金公司实际运作了。

那未来是不是基金经理和交易员就没有用武之地了,大量人工智能的运用将改变股市的交易模式和策略。我觉得,人工智能作为一种投资方法和途径,的确可以投资股市,并且获得一种风险和收益相对可预期的模式。但是人工智能的“股市狗”不可能百战百胜,甚至有可能导致某个公司倾家荡产。

人工智能首先我想起了长期资本(LTCM)的故事。套利之父、债券之王、诺贝尔奖获得者一群精英的梦幻组合,于1994年创立了美国长期资本管理公司,主要活跃于国际债券和外汇市场,利用私人客户的巨额投资和金融机构的大量贷款,专门从事金融市场炒作。它与量子基金、老虎基金、欧米伽基金一起被称为国际四大对冲基金,一度取得骄人业绩。它以“不同市场证券间不合理价差生灭自然性”为基础,制定了“通过电脑精密计算,发现不正常市场价格差,资金杠杆放大,入市图利”的投资策略。最后因为俄罗斯金融风暴、公债违约导致公司几乎濒临破产。有人分析,它的问题出在历史数据统计的模型不能代替未来方向。实际上,我觉得,从更高层面来说,这是一种对社会现象能否进行数理分析的根本哲学问题。

社会现象能否用公式去穷尽各种因子,从而成功推测出未来的方向?简单说,遵循数理逻辑的人认为可以,而认为社会现象中的研究者无法做到数理现象的纯粹观测者来研究,因此无法得到答案。德州扑克非常像股市二级市场,不同位置、不同对手风格、不同筹码量都会导致同样牌面不同的决策。另外,运气成分占很大比重。

所以,在围棋、在德州扑克1对1比赛,人工智能都可以取得优势,因为它不受感情支配,失误可能性很小。但是别忘记,股市就像是千万、亿人在同时投资(玩牌),人工智能很难全部都战胜。

从另外一个角度,如果人工智能和人工智能比赛呢,让AlphaGo和自己下棋,是下出更精彩的棋局,还是极其无聊的结果,肯定胜负分出吧。是Go1胜得多,还是Go2胜得多?同样,股市里面如果充斥着人工智能的“投资大师”,那聪明的人类投资者就耐心等待,先看这些人工智能自己对打的结果如何好了。这个就是经济学一个基本道理――“合成谬误”,对一个人有利的,放诸所有人,就没有利益可图了。所以说,人工智能不可能在股市百战百胜,但是做到比一般要好,这个是大有可能的。其实,股市投资者自己认真坐下研究,一样也能超过平均值。

第8篇

神经网络

想必大家对神经网络这一词并不陌生,神经网络可谓是当今大多数尖端人工智能背后的脑启发AI工具。虽然像深度学习这样的概念是相对较新的,但它们的理论基础早就产生于1943年。

1943年,沃伦·麦卡洛克(Warren S.McCulloch)和沃尔特·皮茨(Walter Pitts)在《数学生物物理学公告》上《神经活动中内在思想的逻辑演算》(A Logical Calculus of the Ideas Immanent in Nervous Activity)。这篇论文对后世影响巨大,它讨论了理想化、简化的人工神经元网络,以及它们如何形成简单的逻辑功能,计算机“神经网络”(以及最后出现的深度学习)受到它的启发,所谓的“模拟大脑”这一说法也来自于它。人工智能概念

人工智能概念

人工智能正式开始于1955年8月31日。1955年8月31日,专家在一份提案中初度提出“AI(人工智能,artificial intelligence)”这一术语,提案建议由10名专家构成小组,花2个月时刻研讨人工智能。这份提案是达特茅斯学院约翰·麦卡锡(John McCarthy)、哈佛大学马文·明斯基(Marvin Minsky)、IBM纳撒尼尔·罗彻斯特(Nathaniel Rochester)和贝尔电话试验室克劳德·香农(Claude Shannon)联合提交的。

1956年7月和8月,评论会正式于达特茅斯学院的庄园里举办,这次会议变成人工智能出生的象征。

“BACKPROP(反向传播)”的到来

反向传播是机器学习历史上最重要的算法,其想法最早产生于1969年,但在20世纪80年代才成为机器学习的主流部分。

969年:阿瑟·布莱森(Arthur Bryson)和何毓琦(Yu-Chi Ho)在论文中描述称,反向传播可以作为多阶段动态系统优化方法使。反向传播允许神经网络在其产生的效果与创建者预期不相匹配时,调整其隐藏的层。简而言之,这意味着创造者可以训练他们的网络使其更好地运行,同时在出现错误时及时对其进行纠正。当完成修正以后,反向传播修改神经网络中的不同连接,以确保在下一次遇到同样的问题时,能够得到正确地进行处理。与电脑交谈

与电脑交谈

你有没有想过亚马逊的Alexa、谷歌助理以及苹果的Siri最早从哪里发展起来的吗?早在上世纪60年代中期,麻省理工学院人工智能实验室的约瑟夫·维森班(Joseph Weizenbaum)开发了ELIZA,这是一个交互程序,它可以根据任何主题进行英文对话。一些人想将人类的感觉赋予计算机程序,对此维森班感到很震惊,因此,他开发程序只是为了证明机器与人的交流很肤浅。奇点

奇点

所谓“奇点”就是机器变得比人类聪明的时刻,但目前还没有到来。弗农·温格(Vernor Vinge)发表了《The Coming Technological Singularity》。Vinge称“即将到来的技术奇点”,就是在未来30年内,人类将有能力创造超人的智能。“不久之后,人类时代将会结束,”他写道。这是一个警告,正如埃隆·马斯克(Elon Musk)这样的人在最近几年里已经反复强调了这一点。自动驾驶汽车来临

自动驾驶

谷歌是世界上第一个开发出自动驾驶汽车的吗?并不是。早在1986年,在恩斯特·迪克曼斯(Ernst Dickmanns)的指导下,慕尼黑联邦国防大学的研究人员用摄像机和智能传感器开发了第一辆无人驾驶汽车,这是一辆奔驰厢式货车,座位上没有人,最高时速55英里。

几年后,卡内基梅隆大学的研究员Dean Pomerleau建造了一辆自动的庞蒂克运输车,从匹兹堡到加州圣地亚哥的海岸,全程2797英里。按照今天的标准,该技术是一种原始的技术,但这证明自动驾驶是可以实现的。“大脑背水一战”

人工智能

1997年是人工智能标志性的一年,IBM的“Deep Blue”计算机在国际象棋比赛中击败了世界象棋冠军格里·卡斯帕罗夫,成为首台打败了国际象棋世界冠军的电脑。毫无疑问,Deep Blue处理信息的速度比卡斯帕罗夫要快,但真正的问题是它是否更有战略意义。

人工智能可能在处理更复杂问题时表现得并不是很好,但这仍然是人工智能领域的一个巨大飞跃。AI在《危险边缘》中获胜

危险边缘

就像Deep Blue与格里·卡斯帕罗夫一样,2011年,IBM超级计算机沃森(Watson)在美国电视智力答题节目《危险边缘(Jeopardy!)》中上演了人机大战,并最终击败两位人类冠军布拉德·鲁特和肯·詹宁斯,赢得了100万美元的奖金,这是人工智能少有的在棋类比赛之外战胜人类。沃森由IBM全球多个研究院和大学共同研发,历经四年研制而成。比赛结束后,肯·詹宁斯打趣道:“我,一个人,欢迎我们新的机器人霸主。”AI也喜欢…猫?

AI喜欢猫

2012年6月,杰夫·迪恩(Jeff Dean)和吴恩达(Andrew Ng)通过从YouTube视频中获取1000万张未象征的图像,来训练16000个计算机处理器的大型神经网络,发现其中一个人工神经元对猫的图像格外灵敏。尽管这些神经网络没有识别出图像的相关信息,但人工智能还是能够通过深度学习算法来检测猫科动物的照片。

事实证明,就像我们一样,即使是非常聪明的AI也喜欢与猫相关的视频。AI打败世界围棋冠军

第9篇

人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。? 

本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。?? 

一、兼顾课程内容的统一性和差异性?? 

人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。? 

知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。? 

同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。? 

这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。 

??二、实施分层次教学?? 

各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。? 

本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。? 

非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。? 

给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。 

??三、案例驱动,寓教于乐?? 

采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。? 

例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。? 

又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。? 

在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。? 

为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。? 

此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。 

??四、结语?? 

以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。? 

人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。 

 

参考文献? 

[1] 

蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.? 

[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.? 

[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.? 

第10篇

【Abstract】In recent years, with the support of highly developed electronic technology, artificial intelligence has developed rapidly, even a lot of artificial intelligence products have been put into use and walk, into people's lives. In this paper, the artificial intelligence is reviewed, and analyzed the present situation of artificial intelligence technology, points out its development problems, and the future of artificial intelligence is prospected.

【关键词】人工智能;发展现状;未来展望

【Keywords】artificial intelligence; current situation of the development; future

【中图分类号】TP18 【文献标志码】A 【文章编号】1673-1069(2017)04-0107-02

1 引言

2016年年初,韩国围棋国手李在石与围棋程序Alpha Go对弈中首战失利,再一次将人工智能拉入了公众的视野,使其成为2016年度话题度最高的科技之一。不可否认,近些年来人工智能发展迅速,很多人工智能产品已经开始进入人们的家中,如扫地机器人、智能保姆等,虽然它们还没有美国大片《终结者》中所描述得那么先进,但从前遥不可及的人工智能概念正在一步步变为现实却是不争的事实。人工智能的现状如何,它又将如何发展,都是学界较为关注的课题。

2 人工智能综述

2.1 人工智能的概念

人工智能即AI,其英文全称为Artificial Intelligence。人工智能的概念要从人工和智能两方面来了解,所谓人工就是指人工智能脱胎于人类的文明,是人类智慧的产物;而智能则是指具有人工智能的计算机或其他子设备可以模拟人类的智能行为和思维方式,人工智能是计算机科学的一个分支,它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。

2.2 人工智能的现实应用

如今的人工智能机器,可以在胜任一些复杂脑力劳动的同时,辅助人类进行记忆和逻辑运算等活动。现阶段学者已经研制出了一些可以模拟人类精神活动的电子机器,经过完善升级,这些电子机器将有希望超越人类的能力,协助人类完成一些执行难度较大的工作。但是目前研制出的自动化系统或者机器人虽然可以代替部分人类劳动,却还没有到达可以实现人类多方面协调和自我学习升级的智能水平,要制造出一款可以完全拥有人类智慧的机器,还需进一步深入研究。还有一些人工智能产物经常应用于各种商业用途,例如单位内部的客户信息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。

3 人工智能发展现状

3.1 智能接口技术研究现状

人工智能接口研究就是为了实现人机交流,为此学者必须从理论和实践两方面努力,解决计算机对文字和语言的理解与翻译、对自我的表达等功能问题。由于智能接口技术的研究和应用,计算机技术的发展获得了极大的推动力,在运行速率和人机交流等方面都有巨大提升。

3.2 数据挖掘技术研究现状

数据挖掘技术主要是对各类模糊的、大量的应用数据、人未知的、潜在已经存在的数据进行整理挖掘进行细致的研究,寻找出对研究有用的数据。目前,数据库、人工智能、数理统计已经成为数据挖掘技术的三大技术支撑,以基础理论、发现算法、可视化技术、知识表示方法、半结构化等作为研究内容,为数据挖掘技术的发展提供理论和技术支持。

3.3 主体系统研究现状

主体系统可以实现机器意图和想法的生成,是一种智能方面更接近人类的自主性实体系统。自主系统可以完成一些相对独立、自主的任务,甚至可以通过调整自我状态,应对环境和特殊情况的变化,进而保证自身规划任务的完成。在多主体系统研究中,主要是从物理和逻辑思维方面对主体进行智能行为的分析研究。

4 人工智能发展中面临的问题

4.1 识别功能的困惑

计算机识别技术研究在近些年取得了大量成果,其产品的实际应用范围较广,但不可否认的是,计算机识别的模式是基于一定的算法和程序设定的,其识别机制完全不同于人类的感官识别,因此,在计算机进行识别,尤其是图形识别时,对各种印刷体、文字、指纹等清晰图形可以快速识别,但对于相似度较高的物体,计算机识别能力相对较弱,识别失败的情况较为普遍。语音识别主要研究各种语音信号的分类。语音识别技术近年来发展很快,但是缺点是识别极易受到干扰,发音不标准的语音较易引发识别错误。

4.2 GPS功能的局限性

GPS是企图实现一种不依赖于领域知识求解人工智能问题的通用方法,但是问题内部的表达形式和领域知识是分不开的,用谓词逻辑进行定理归结或者人工智能通用方法GPS,都可以从分析表达能力上找出其局限性,这样就减少了人工智能的应用范围[1]。

5 人工智能的未来应用展望

人工智能与人生活最息息相关的应用范围就是融入人们的衣食住行和教育等方面,这也是人工智能未来最普遍的应用方向。

5.1 无人驾驶的汽车

奔驰、丰田等很多大型汽车企业都在研究o人驾驶的汽车,像007电影中的那种拥有自主辨别路况、自动驾驶等功能的汽车也许很快就会成为现实。自动驾驶的汽车要搭载的技术并不只人工智能一种,它还需要将自动控制和视觉计算等新型技术集成应用,改变现有汽车的体系结构,赋予其自动识别、分析和控制的能力。因此,自动驾驶汽车需要实现三方面的技术突破:其一,实现利用摄像设备、雷达和激光测距机来获得路况信息;其二,实现利用地图进行自动的车辆导航;其三,根据已有信息数据对车辆的速度和方向进行控制。未来的自动驾驶汽车还可以通过车辆之间的信息互通和互相感应,来协调车速和方向,避免车辆碰撞,实现自动驾驶车辆的安全行进。

5.2 智能化的课堂

当前已经有一些智能化的教学软件,教师们可以在这些软件上把教学课件传送给学生,并进行授课答题,学生还可以与教师弹幕互动,使课堂变得妙趣横生,方便了教师的授课活动。对于学生而言,能够在期末十分便捷地回顾上课的错题,甚至能够在几年后翻阅学习过的课件;对于教师而言,能够精细地知道学生对知识的掌握程度,甚至能够发现最积极和最懈怠的学生。未来的智能课堂将更具有时间延展性,学生不仅可以在课堂学习知识,还可以利用智能电子设备进行课前预习和课后复习,从而使学生可以在更加趣味性的氛围中进行自主学习安排。

5.3 自动化的厨房

今后的厨房将会更加智能化,当你做饭时,设定好你想要的菜谱,准备好所需的食材,烹调设备即可将饭菜制作得恰到好处。它会根据你食材的新鲜程度,为你推荐最适合的菜谱,并计算出其营养参考标准,并为你推荐其他食物,使膳食营养均衡。当你家中某样食材不足时,物流公司便会将时下最新鲜的这一食材送至你家中[2]。

6 结语

人工智能这一概念是在1956年提出的,在当时,人工智能还只是人们头脑中的一种幻想,而在60年后的今天,人工智能的梦想已经逐渐照进现实,它甚至渗透进了工业、医学、服务等多个领域,可以说人工智能正在改变着我们生活的世界。但对于人工智能这个人类创造出来的技术,人们也存在一定的担忧,人工智能将向何方发展?人工智能发展到极致会不会脱离人类的控制?人工智能会不会超越人类的智慧?在诸多问题围绕下,人工智能技术依然在迅猛发展,它的未来如何,让我们拭目以待。

【参考文献】

第11篇

关键词:人工智能;案例教学;应用

1引言

作为计算机科学技术的全新领域即人工智能,其正在迅速成长与成熟、新方法、新理念、新技术并且不断壮大,同样也包含着计算机网络、数学、信息论各类学科的交叉和边缘学科。人工智能包含的主要内容有知识表示和推理机制、问题求解和搜索算法,自然语言理解、专家系统和机器学习等;也作为计算机科学各专业重要的基础课程,国内外各高校都非常重视,都将人工智能作为计算机专业的必修课程。人工智能包含的学科多,知识点杂、理论性强、内容抽象,算法难度高复杂,在此情况下各高校采用传统的“教师讲、学生听”单一教学模式,学生处于被动学习地位;课堂教学与实际操作、理论与现实应用相脱节;加上理论知识强,案例缺乏,容易使学生感觉空洞;学生易产生厌学情绪,也达不到锻炼其分析问题、解决问题的思维能力和实践动手能力。如何让学生高效的学习一直是教师研究的课题,在大数据和网络信息时代的大背景下,“互联网+”已经广泛应用和存在于生活、工作各个方面,其在教育教学中表现出的创新性、互动性尤为突出,并极具优势。

2基于案例的教学研究

此方法开始于上世纪20年代左右,最早是由美国哈佛商学院所提倡的,基于当时特殊的商业管理真是背景和特殊事件,能够有效的发展和培养学生主动性、积极性和应用能力,开展案例教学后,学生实际解决问题能力有了很大的提高。但此教学研究方法知道到上世纪80年代后期,才引起教师的重视。1986年由美国研究小组提出《准备就绪的国家:二十一世纪的教师》书中,强烈推荐此方法在实际教学的重要性,并说明今后在教学过程中将其作为一种重要的教学方法应用于各类课程中去。

3基于人工智能的案例教学研究及应用

3.1案例精选

此方法第一步是案例选取,案例的好坏是决定案例教学效果关键因素。案例的选取需要满足以下要求:(1)符合现在的教学目标,明确学生需要掌握的知识点、重难点等,能够运用所学的理论知识应用到实际中,以此提高学生分析、解决问题的能力;(2)案例要有代表性、趣味性,由于人工智能课程内容多、抽象,需要将枯燥乏味的知识点转化为趣味生动的案例,有利于吸引学生注意力,激发学习兴趣和主动性;例如,讲到“知识表示”这部分内容中引入“机器人搬积木”、“野人修道士渡河”案例;(3)采用互动的形式,此为人工智能的案例教学研究重要特征,同时也是教学目标得以充分展现的必要条件。能够调动大家的积极性,学生和学生之间、学生与教师之间的互动,调动学生的主观能动性。

3.2案例的执行

(1)讲授法。基于教学内容具体知识点设计案例;通过教师讲解,帮助学生理解抽象的理论知识。案例的呈现有两种基本形式:一是“案例—理论”,即先给出教学案例,后讲解理论知识;二是“理论—案例”,即教师先讲解知识,再给出教学案例;案例的呈现方式不同,会直接影响案例的功能,也会影响到学生的学习情绪、学习效果。为了使案例能更好地为教学服务,教师讲解案例之前应从创设案例情境开始,通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。(2)互相讨论法。大学生课余时间充沛,鉴于此,将班级学生分为若干小组,教师将事先准备好的案例分配给各组,学生采用组内互动讨论的形式,设计出此案例的各种解决方法。课堂上,将本小组的解决方法用课件展现给其他小组。讲解完成后,学生开始互相讨论,对比各自的方法,然后由老师进行分析、对比和总结。以此来增强学生对学科知识点、应用能力的掌握。(3)相互辩证法。课后,采用相互辩证的方法,组织大家相互辩论。选择一些综合应用比较强的案例。与简单的案例相比,综合应用案例能更加高效地启发学生全方位地思考和探索问题的解决方法。相互辩证法是一种探索新型的教学形式,学生的自主性强,能够在辩论中充分表达自己的观点,充分运用所学的理论知识来维护自己的观点,还可以促使学生查阅大量资料,拓展知识面。

4结语

通过以上论述,人工智能技术开始应用于教学,与教学现代化有着密切的联系。其发展必将对现代教育起巨大推动作用。在教学,可以基于人工智能技术建立人类推理模型学习工具等诸多的运用,展示出越来越好的实用性。

参考文献:

[1]邹蕾,张先锋.人工智能及其发展应用[J].信息网络安全,2012(02).

[2]陈柯蒙,张宁.人工智能的发展探析[J].新西部(理论版),2012(05).

[3]陈浩磊,邹湘军,陈燕,等.虚拟现实技术的最新发展与展望[J].中国科技论文在线,2011(01).

第12篇

3月9日,韩国九段顶尖中国围棋选手李世石将与谷歌人工智能项目AlphaGo在韩国首尔展开对决,整个比赛将分五轮进行。大战在即,双方都公开表示,深信自己将赢得最终的胜利。

Facebook人工智能组研究员田渊栋博士详细分析了AlphaGo在《自然》杂志上发表的论文,他认为AlphaGo整个系统即使在单机上也已具有了职业水平,与李世石的比赛会相当精彩,很期待最后的结果。不过,《人工智能学家》主编刘锋则撰文表示,谷歌的围棋AI及这场比赛有科学欺诈之嫌。

万众瞩目的人机大战一触即发,人工智能是否能够战胜人类大脑?不论围棋大战谁胜谁负,它都将为问题的答案奠定基础。

人工智能和一种算法

近几年来,人工智能逐渐成为一门显学,以至于很多人误以为这是一个随着互联网发展而出现的新词。事实上,人工智能的历史已超过半个世纪。

不管小说和电影怎样描绘其应用前景,但人工智能并不是悬浮在某处一箱蓝色液体中的合成大脑,它是一个算法—一种告诉计算机执行什么功能的数学方程式。

算法之于21世纪,就像是煤之于19世纪,是现代经济的引擎和燃料。如果没有算法,智能手机无法工作,也不会有Facebook、谷歌、亚马逊。算法可以安排航班,控制飞机,还能帮助医生诊疗疾病。如果所有算法突然停止工作,那无疑是世界末日。

今年1月,谷歌透露已经开发出曾击败围棋欧洲冠军的算法,这种古老的中国棋盘游戏远比国际象棋复杂,这个算法命名为AlphaGo,将在3月中旬与世界冠军一决高下。

最大的挑战

围棋的历史超过2500年。它的着法变化无穷,其变数甚至超过宇宙中原子的移动。国际象棋的所有变化可以计算出来,但围棋不能。更难的是,编程者也不可能写出围棋的评估函数。相反,围棋需要一种类似于“直觉”的东西。

人工智能研究利用游戏来作为微观测试已经有了很长的历史。游戏能够精确地定义并允许研究员来估测自己的成功。去年,谷歌的DeepMind教导机器学习并赢得了所有49个经典Atari计算机游戏。而围棋则一直以来都被人们视为人类能够胜于程序的最后一个经典游戏。围棋之所以如此困难,原因是其结果的无限性,每一局的比赛都非常难以被复制并重现。

“围棋是一种终极游戏,它是游戏的巅峰之作,是最智慧的游戏。”DeepMind创始人哈萨比斯认为围棋是一门艺术,而不是一门科学。“AlphaGo能够以人类的方式学习围棋,并在不断的对局中变得越来越厉害,就像我们人类一样,学会理解,而不是计算。”他对AlphaGo取得最终的胜利深信不疑。

取胜的关键

AlphaGo与之前的机器人所不同的一点在于对于神经网络、分层计算和知识库的应用,即谷歌DeepMind团队用两套神经网络为AlphaGo开发了一个全新的系统,这也是它拥有取胜能力的关键。该领域的领军人物杰弗里·欣顿说:“神经网络让我们减少了要调查的结果数量,但是它们同时也擅长通用化其并未见过的状态。因此,这些神经网络学习规则与战术,它们并不仅仅会记忆,它们还能够理解。”

“传统搜索树会考虑所有可能性,但它用在围棋上行不通。”哈萨比斯说。正因如此,用两套神经网络为AlphaGo开发的全新的系统可以将围棋视为一个包涵所有可能性的树,它能够无限延伸。AlphaGo要做的就是利用两套神经网络来缩小可能性,它会利用策略网络来判断什么行为可能性最高,系统应该考虑怎么走好下一步,AlphaGo会将搜索树的宽度变窄。还有一个就是价值网络,它告诉AlphaGo怎么移动对白子和黑子都更好,这样就可以降低可能性的深度,这一切都给它的获胜增加了砝码。

不过,《人工智能学家》主编刘锋则撰文表示,谷歌的围棋AI及这场比赛有科学欺诈之嫌,主要原因是AlphaGo对其他围棋程序选取了众多测试对象,并进行了495次实验,但对人类测试者,却只选取了一位曾经获得围棋欧洲冠军的棋手,并签署严格的保密协议。他认为,谷歌也没有像Facebook那样把围棋程序放到互联网上,光明磊落地接受大众的考验,作为与谷歌AlphaGo原理相同的facebook围棋程序DarkForest,目前水平相当于业余5段,与职业选手依然有巨大的差距。

从AI到AGI

得益于计算机硬件的长足发展、算法(软件)的改进以及巨额资金投入,进入新世纪之后,人工智能在诸多领域取得重大进步。在硅谷,不管是谷歌还是微软抑或是IBM,都投巨资发展人工智能,并有了一些阶段性的成果,如邮件的自动智能回复等等。

时代周报记者查阅资料发现,科学家预测AI发展至AGI(人工通用智能)是人工智能的发展趋势。大多数AI系统是“狭隘的”,它们只能完成一种特殊的任务。所以,IBM的深蓝电脑可以击败国际象棋冠军卡斯帕罗夫,但在面对画圈打叉这种简单的游戏时连一个三岁小孩都不如。而哈萨比斯从人类的大脑获得灵感,并试图建立第一个“通用学习机器”,即一套灵活、自适应性的算法,它可以像生物系统那样学习,从零开始完成任何任务,除了原始数据之外不需要任何别的帮助,这就是人工通用智能(AGI),其重点是“通用”。

在DeepMind创始人哈萨比斯的未来愿景中,超级智能机器将能够与人类专家协作解决几乎所有问题:癌症、气候变化、能源、基因组学、宏观经济学、金融系统、物理等。哈萨比斯说:“我们想要掌握的学科越来越复杂,即使是最聪明的人,穷其一生也难以掌握其中一个领域。我们将AGI看做一个能够自动将非结构化信息转化为可用知识的过程,那么通过筛选泛滥的数据得出合理的观点就指日可待了,我们正在努力研究的是一种可以解决任何问题的超级解决方案。”

牛津大学人类未来研究院院长、哲学教授尼克·博斯特罗姆认为,如果AGI能够最终完成,它的影响将是无与伦比的。这种超级智能机器的出现也许还需要几十年之久,但它似乎离我们越来越近,我们应该对此充满信心。

发展会失控吗?

人类可能即将创造出一种全新的生命形式,这不仅标志着进化的突破,而且也可能给人类物种的生存构成潜在威胁。人工智能是否已经让我们处在了见证一个新物种诞生的边缘?还要多久机器就会比人类变得更聪明?这已经成为人工智能发展最需要思考的问题。2015年1月,美国麻省理工学院的物理教授马克思·泰格马克组织了首次关于人工智能风险的主要会议,会议核心议题之一就是:要走多久人类才会遭遇机器智能或超人智能。一方面,有观点认为,比如人工智能先锋吴恩达宣称人工智能超越人类智能是几百年后的事情了;而其他人,比如特斯拉CEO马斯克和伯克利的计算机科学教授斯图尔特·罗素认为这一时刻会更快到来。泰格马克说,会议讨论的中值是40年。

全球很多顶级科学家和科技巨头都在关注AI的发展,如斯蒂芬·霍金、比尔·盖茨、伊隆·马斯克、杨·塔里安等。但与哈萨比斯对AI持积极态度不同的是,这些知名科技专家对AI的发展表示很大的担忧。他们的担忧包括AGI武器和“技术奇异点”的幽灵——这将导致“智能爆炸”,届时机器将能够不断地进行自我完善,超越人脑的智力,从而脱离人类的控制。如果这样的超级智能灾难最后发生了,人类将悔恨自己当初为什么没有退出AI开发竞赛。