HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 抗震技术论文

抗震技术论文

时间:2023-03-24 15:44:32

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇抗震技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

抗震技术论文

第1篇

【关键词】建筑设计,抗震设计,重要作用

中图分类号:S611文献标识码:A 文章编号:

一.前言

建筑设计中的抗震设计,关乎民生,关乎经济发展,社会稳定,对房屋建筑实施结构设计,主要涉及对建筑高度,承载力,总体结构,各个部件的性能规划等一系列的因素,要求通过对各个构件和整体规划的基础上,既实现满足居民生活生产保障安全的需要,又具有值得欣赏的美学价值。增强房建结构的抗震设计,必须综合考虑地基,房屋的结构体系选择,综合布局等多方面建设因素,是一项及其专业,严谨,复杂的高技术工作。

二.建筑设计和抗震设计的作用和关系分析

建筑设计对建筑抗震起重要的基础作用。建筑的结构设计难以对建筑设计有很大的改动,建筑设计已经初步形成了,建筑结构就必须按照原则服从建筑设计的要求。设计师在建筑方案能够全面的考虑到抗震设计的要求,那么结构设计人员按照建筑方案对结构部件进行科学、合理的布置,保证建筑结构质量与结构刚度均匀分布,结构受力和结构变形共同协调,提高建筑结构抗震性能和抗震承载能力;如果建筑方案没有考虑到抗震的要求,直接给结构抗震设计带来更大的难题,建筑布局设计限制结构抗震布局设计。为了进一步提高结构部件抗震承载能力,就必须增大结构构件的截面面积,这样又会造成很多不必要的浪费。所以,在建筑抗震设计的过程中建筑单位要对建筑体型设计、建筑平面布置设计、屋顶建筑抗震设计等问题加以关注。

三.我建筑抗震设计的现状

在建筑抗震设计领域,虽然我国在近年来有了长足的发展,但是,相比西方发达国家而言,发展缓慢,尤其是在抗震设计上,没有能够正确的处理好建筑设计和抗震设计的关系,虽然引进了一些西方欧美抗震设计理念,但缺乏符合本国实际的理论技术创新。很大方面存在着缺陷,主要表现在以下几个方面。

1.建筑抗震设计中缺乏科学规范的理论指导,缺乏实际经验的积累;我国对地质地震的认识尚不够完善,对地震的成因,预测,防治研究不够深入,地震防治规范不够科学。因此,在进行建筑结构抗震设计时候,缺乏一定的科学依据,或依据的是不完善的理论。因此,难以在建筑结构设计中完美融合防震设计理念。

2.建筑抗震设计中,设计立足于固定参数,而忽视了实际情况,设计完全依据“计算设计”完成。而且将一定的地震或力学参数做出固定的规范,比如,在我国地震设计研究中,把地震的降级系数统一规定为2.81,将小震赋予固定统计意义。而小震多用于结构设计中,结构截面承载能力设计和变形的检验计算,需要依据一定的实际情况而行的。

3.设计中,没有能够深入研究地震对建筑结构破坏的层次和顺序,难以做到重视主体的设计而兼顾细节问题。没有能根据实际情况灵活变通的运用抗震设计准则。

四,我国建筑结构抗震设计标准

1.我国的建筑结构抗震设计要遵循中华人民共和国GB 500112010建筑抗震设计规范。辩证灵活运用其中抗震设计原则,严格执行设计施工标准,借鉴其中经验,结合房建本地实际,科学设计。

2.要坚持实施多级防震措施。传统房建结构多采取的是三级设防措施,即小震不坏、中震可修、大震不倒。但在新的时期,房建结构必须是采取的多级设防模式,保护建筑主体抗震能力,减轻经济损失,使得建筑抗震中更加安全。

3.将概念设计理论和基于性能的设计理论相结合。结合建筑结构设计施工地的具体实际情况,做出科学严谨勘探,掌握第一手资料,综合分析考虑,做出最优势的战略设计组合。

五.建筑设计在建筑抗震设计中的几个主要设计问题

1.建筑体型设计问题

建筑体型包括建筑的平面形状和立体的空问形状的设计。在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则,在平面形状上,矩形、圆形、方形等对抗震来说,都是较好的体型。尽可能少做外凸和内凹的体型,尽量避免不对称的侧翼和过长的侧翼,在体型布置上使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称而引起建筑物在抗震时发生扭转反应。在建筑设计中,为了建筑立面美观和艺术上的创意,复杂的建筑体型是难以避免的,但是,在设计时一定要把建筑艺术、建筑使用功能同结构抗震安全很好地结合起来。

2.建筑平面布置设计问题

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求,同时它与建筑抗震关系很大,因此从概念上要解决的一个核心问题是,建筑平面设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在墙体布置上要均匀对称;在抗震墙(剪力墙)布置上尽量与结构抗震要求相结合;对刚度很大的楼、电梯井简要居中布置,避免偏心扭转地震效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的基础作用。

3.建筑竖向布置设计问题

建筑的竖向布置设计问题在建筑设计中主要反映在建筑物沿高度(沿楼层)建筑结构的质量和刚度分布设计上。在工业和民用建筑中,无论单层和多层都存在此类问题。在建筑设计中,尽可能使建筑物沿竖向的刚度分布比较接近,应特别重视使剪力墙布置比较均匀并使其能沿竖向贯通到建筑底部,不应中断或不到底;尽量避免某一楼层刚度过小;尽量避免产生

4.屋顶建筑抗震设计问题

设计高层和超高层建筑时,屋顶建筑抗震设计也是整个设计的一个重要环节。近几十年来,从多数高层建筑抗震设计评定结果看,屋顶建筑设计还存在一些问题,例如:屋顶设计较高或者设计过重。屋顶设计较高或者设计过重,无形当中加大了屋顶建筑变形,而且地震作用也加大了,尤其对自身和屋顶之下的建筑物的抗震作用都不利。有时屋顶建筑的重心和屋顶之下的中心不在同一直线上,如果屋顶的抗侧力墙和屋顶之下的抗侧力强出现间断,在地震发生时,带来的地震扭转作用也会更严重,对抗震更不利。所以,进行屋顶建筑设计过程中时,应该最大限度的降低屋顶建筑的高度。选用强度较高、轻质、刚度均匀的材料,使得地震作用传递不受阻碍;屋顶重心和屋顶之下的建筑中心在同一直线上;如果屋顶建筑非常高,屋顶建筑就必须具有较强的抗震性,让屋顶建筑地震作用和突变降低到最小,尽量避免发生扭转效应。

六.结束语

建筑行业关系到我国的经济发展和社会稳定,关系到国民的生命财产安全,加强建筑抗震设计,设计,提高抗震能力,是促进社会和谐稳定的客观要求。因此实施科学合理的设计方法,科学处理建筑设计和抗震设计的关系。建筑设计是整个建筑抗震设计的重要环节,二者存在着密切的联系,共同为提高建筑整体抗震性能提供了强大的支撑。在进行建筑的抗震设计时候,必须要将建筑的建筑设计和结构设计综合协调起来,实现二者的配合,共同为建筑整体的抗震设计发挥出更强大的作用。

参考文献:

[1] 蒋山 浅谈建筑设计在建筑抗震设计中的作用 [期刊论文] 《中国房地产业》 -2011年10期

[2] 陆伟权 浅析建筑设计在建筑抗震中的作用 [期刊论文] 《城市建设理论研究(电子版)》 -2012年14期

[3] 曾锐 重视建筑设计在建筑抗震设计中的作用 [会议论文] 2003 - 中国铁道学会铁路房建管理会议

[4] 程宇 建筑设计在建筑抗震设计中的分析 [期刊论文] 《城市建设理论研究(电子版)》 -2011年36期

[5] 李建平 建筑设计在建筑抗震设计中的作用 [期刊论文] 《安徽建筑》 -2004年5期

[6] 宫玲君 论抗震设计在建筑设计中的意义与策略 [期刊论文] 《科技风》 -2009年16期

第2篇

【关键词】部分框支剪力墙;结构设计;抗震策略

Abstract: paper first part of the frame supported shear wall structure made ​​a brief overview, and then analyzes some of the shear wall structure supported frame design points. In the right part of the frame supported shear wall design, it should reduce the conversion, make overall planning. Meanwhile, in the design of the time to pay attention to maintaining the stability of the overall structure of a large space, as far as possible in the design calculations to be accurate and comprehensive section. Finally, the paper recommends seismic design of high-rise buildings should be performance-based seismic design, and gives the right part of the frame supported shear wall structure seismic design requirements and strategies.

Key words: section frame supported shear wall; structural design; seismic Policy

中图分类号:TU398+.2 文章标识码:A

0 引言

随着我国经济及社会的快速发展,我国城市化率越来越高,城市有限的空间及土地资源已经很难满足人们的需求,因此为了争取更大的建筑空间,高层建筑越来越多。同时,为了更为有效地利用地面的空间,部分框支剪力墙结构设计越来越多地应用在现代建筑的结构设计中。基于此论文对部分框支剪力墙结构设计与抗震策略进行了较为系统的研究。

1、部分框支剪力墙结构概述

部分框支剪力墙结构是现代高层建筑中常用的一种结构,具有底部大的特点,因此也被称为底部大空间剪力墙结构。从这个界定可以看出部分框支剪力墙结构通常在高层或多层剪力墙结构的底部,这种结构的设计一般是根据实际需要,为增加底部空间的使用功能而设置的[1]。所以上层建筑的部分剪力墙不能沿用到底层,不然的话会影响底层空间的使用效率,甚至有些底层的建筑空间在设计之处就已经规划好用途。所以在建筑的设计过程中就要设计一个结构转换层,通过结构转换层来减少建筑底层的压力[2]。而转换层下面的一层,即建筑的底层则称为框支层,框支层中的贯穿上下层的墙则是剪力墙。同时,界定建筑的部分框支剪力墙结构的时候,不仅要看其抗侧刚度,还要整个结构的特点,看是不是形成了薄弱层,抗侧刚度是不是发生了突变等情况。不能仅仅依据建筑的竖向构件有没有贯通落地。

2、部分框支剪力墙结构的设计要点分析

通过上面的分析可以看出,部分框支剪力墙结构的界定是有一定的规范的,并不是所有的贯穿转换层与底层的墙面都属于部分框支剪力墙结构,还要观察整个建筑本身的特点。所以在进行部分框支剪力墙结构的设计的时候要注意以下几个要点。

(1)在对部分框支剪力墙进行设计的时候,应该减少转换,尽可能采用上下主体竖向布置的方式,以保证主体间的连续贯通。特别是在设计框架—核心筒结构时,要尽量保证核心筒可以上下贯通,这样可以保证设计的安全性及可靠性。

(2)在设计时要注重统筹规划,不要将各部分独立开来,各构件间的关系及布置要主次分明,传力直接,这样便于施工,同时减少识图错误的概率。而在转换层上下主体的竖向结构设计时,要尽量减小水平方向传力的影响,避免多级复杂的转换,这样可以有效地保证水平转换结构的传力比较直接。

(3)在设计的时候要加强转换层下部主体结构的刚度,弱化转换层上部主体结构的刚度,这样就可以有效地保证下部的大空间整体结构的稳定性,转换层上下主体结构之间的刚度及变形度也会比较接近。

(4)在部分框支剪力墙结构设计的计算阶段,最为重要的一点就是要全面而且要确保准确,如果计算及计算结果出了问题,将会严重影响整栋建筑的质量。而且要特别注意将转换结构作为整体结构的一个重要的组成,并采用正确的计算模型进行计算。

3、部分框支剪力墙结构的抗震设计

我国地域广阔,横跨环太平洋地震带与欧亚地震带,所以地震活动比较频繁,而且强度比较大,同时地震常发地区分布广,可以说我国是一个震灾严重的国家[3],所以建筑防震性能的设计非常重要。

3.1 部分框支剪力墙结构抗震设计概述

部分框支剪力墙结构的抗震设计主要是为应对地震发生而进行的一种设计,这种设计是在地震发生的假设前提下进行的。我国高层建筑的城市几乎都在抗震设防范围之内,因此部分框支剪力墙结构的抗震设计是部分框支剪力墙结构设计的一项极为重要的内容。一般来说地面运动主要有三种运用描述方式,即强度、频谱和持时。而地震的强度是由振幅来表示,振幅对建筑的破环程度跟很多因素有关,比如说时间、速度、加速度,还有建筑本身的特性。所以在进行抗震设计的时候要综合考虑多方面的因素。

3.2 部分框支剪力墙结构的抗震设计要求分析

我国为了更好地预防地震灾害,对建筑的抗震设计做了一系列的规定。上世纪80年代的抗震设防目标是“小震不坏、中震可修、大震不倒” [4],但随着我国经济及技术的发展,我国在2010年对建筑的抗震设防目标进行了修改,并给定了具体的抗震设计方法,表3-1是常规的设计方法与抗震设计方法的对比表(表3-1)。通过两种抗震设计的防震目标、实施方法及实践运用方面的对比可以发现,我国明显加大了地震灾害的预防力度。基于性能的抗震设计虽然运用还不够广泛,但是对新技术、新材料的适应性比较好,而且也满足社会发展的趋势,未来的运用潜力比较大。同时,基于性能的抗震设计可以增加结构概念设计的内容,比如刚度尽量对称,框支转换梁上墙体尽量居中布置,从初设阶段将一些对结构不利的东西规避掉。综上所述,对于现代高层建筑的抗震设计应采用基于性能的抗震设计方案。

表 3-1 常规设计方法与性能设计方法的对比分析表

3.2 部分框支剪力墙结构的抗震设计策略分析

通过上面的分析,论文对部分框支剪力墙结构的抗震设计应该采用基于性能的抗震设计方案。因为部分框支剪力墙结构基本上都是高层建筑,采用的基本上都是框架—剪力墙结构,这种结构本身就具有良好的抗震性。导致抗震灾害形成的原因大都是由于建筑物的造型与建筑的抗震性能不协调导致的。所以在设计的过程中要特别关注这两部分的设计。

(1)建筑体型的抗震设计策略分析

对于建筑体型的设计主要关系到的是建筑的布局及体量等方面的设计,这也是建筑设计的一个重要的部分。很多设计师在设计的时候由于太过于关注建筑的造型及建筑本身的使用价值,很容易忽视建筑体型与建筑抗震性能之间的关系。所以在设计的过程中,设计者应该科学地设计建筑的空间体量,包括建筑的高度、比例,建筑的对称性,还要关注建筑的转角的设计,同时建筑周边的抗力,建筑整体的均衡性等方面都要进行综合的考虑。

(2)建筑立面的抗震设计策略分析

建筑立面通常来说都是由大量的建筑部件组成的,所以建筑立面的设计要关注的主要是立面材料的选择,部件之间的比例的设计,还有其尺寸大小的控制等方面。而从抗震的角度来说,建筑的设计则要关注以下几个要点。首先,在设计的时候,不能孤立地进行孤立面的设计,而应该将正立面、侧立面及背立面各个立体面之间协调起来,是他们之间得到统一,从而形成一个完整的整体。同时,要注意立面的空间效果和立面各部件之间的均衡性和规则性。

4、结语

通过论文的分析可以看出,随着城市化进程的进一步推进,部分框支剪力墙结构越来越多地应用在现代建筑的结构设计中,建筑防震性能的设计十分重要。而且在设计的过程中要减少建筑部件间的转换,采用合理的布置方式,以保证建筑的安全性。同时,要注重设计的统筹规划,将建筑的各部件之间有机地联系起来,以实现建筑的整体性和统一性。在分框支剪力墙结构的抗震设计要采用抗震设计方法,并对建筑物的造型及立面的进行抗震设计。最后,希望论文的研究为相关工作者及研究人员提供一定的借鉴与参考价值。

【参考文献】

[1] 京浩.建筑抗震鉴定与加固[M].中国水利水电出版社,2010.

[2] 敬书,潘宝玉.现行抗震加固方法及发展趋势[J].工程抗震与加固改造,2011.

第3篇

[关键词] 埋地管道; 破坏类型; 震害破坏机理

中图分类号:TU 457 文献标识码:A

0 引言

随着我国对地下空间的开发力度的加大,地下结构工程的数量迅速增加,作为生命线工程的埋地管道在输送水、油、气、煤以及在通信交通和排水等方面得到了越来越广泛的应用,堪称现代工业和城镇生活的大动脉,其破坏可导致城市乃至区域社会经济功能的瘫痪[1] [2],如1971 年美国圣费尔南多地震,使加里福尼亚州圣费尔南多山谷的地下输气管道和给排水管道遭受重大破坏,给排水和天然气管道有2400处遭到破坏,震中附近有25.6km管道破坏 [3] [6];1976年中国唐山地震,7.8级地震使全市给水系统瘫痪,抢修了一个多月才基本恢复供水,秦京输油管线有4处破坏,流失原油1万余吨,造成了资源的严重浪费,且污染了大片农田、河流,次生灾害严重[4];2008年“5.12”汶川地震使震区供水管网受到严重破坏,供气系统设施也出现不同程度的破坏,据不完全统计,供水系统共有677个水厂受损,11万处管线破坏,受损长度高达1.38万km;排水管网管道受损长度约3300km, 供气系统设施受损5.1万处,供气系统设施受损5.1万处,供气管道受损长度达到992km[5]。这些震害经验表明,现代城市对生命线工程系统具有高度的依赖性,其抗震问题也引发了各国学者的关注,地下工程结构的抗震安全和抗震设计已经成为工程界普遍关心的问题。

笔者通过对大量埋地管道震害的分析研究, 总结了埋地管道的地震反应特征和破坏类型,并对其破坏机理进行分析,以期为埋地管道的抗震设计提供科学的依据和有益的参考。

1 埋地管道的振动反应特征

根据国内外学者对原型观测(震害调查和现场试验)资料的研究分析以及近年来的研究成果,总结了埋地管道在地震波作用下反应特征的一般规律,其是进行埋地管道地震反应分析的依据[6]- [12]。

(1)破坏荷载:理论分析和实际震害均表明,埋地管道的破坏主要由地震行波的传播、场地失效(断层相对运动、土体液化等因素)引起,受地震波传播影响而引起的土体变位造成的震害较轻,但影响面广,是埋地管道破坏的最基本形式;场地失效所造成的管道破坏都相当严重,且难以避免,选址时应尽量避免此类地段。

(2)地面位移:对埋地管道地震破坏的研究发现,埋地管道振动中的主要应变与地震加速度大小的联系不很明显,而对周围岩土体应变十分敏感,周围岩土体应变越大管道破坏越严重。埋地管道的自振频率远大于土体的振动频率,管道受到周围土的阻尼影响很大,管道运动产生的惯性力,对结构自身的反应仅有非常小的影响,管道的反应性态主要取决于沿线土体的位移特征,而对土体的运动位移特征几乎无影响。

(3)地震波传播方向及频谱特性:埋地管道的振动形态受地震波传播方向的影响很大,地震波的入射方向发生不大的变化,管道各点的变形和应力可发生较大变化。埋地管道走向与地震作用方向吻合时,管道动应变最大,损坏最大;当地震作用方向垂直于管轴方向入射时,管道动应变最小。埋地管道的动应变不仅和地面应变的峰值有关,还与地震动的频率含量有关,尤其是对低频含量十分敏感。低频含量愈丰富的地震波,激起的管道动应变越大。

(4)场地条件:埋地管道的破坏程度基本随地震烈度的增大而加重,埋地管道从一种类型土壤过渡到另一类型土壤的过渡区震害较严重;软土中的管线较硬土中的管线震害严重,同一地震烈度下,复杂地基和软弱地基比基岩地基中的管道震害严重得多。

(5)管土间相互作用:现场震害资料证明,地震时埋地管道受周围土体的约束与周围岩土体一起运动,受管道本身的刚度的影响,管道的变形比未敷设管道的土体变形小,只要管土界面的剪应力未达到临界剪应力,管道就随同周围岩土体一起运动。当管土界面的剪切应力达到临界剪应力或管土间的极限摩擦力时,管土之间将发生滑移。

(6)管道变形:震害资料及理论分析均表明,直埋管道的轴向应变远较弯曲应变凸显,以轴向应变为主,而弯管、大直径管道则需要考虑弯曲变形。

(7)管道的材质及构造:埋地管道的材质、口径、壁厚、接口型式均有不同程度的影响。埋地管道的破坏大多是由于管道强度不足以抵抗周围土体传来的振动变形而引起的;震害资料表明:柔性接口的震害率明显低于刚性接口,这是由于柔性接口具有较好的延性,可以吸收较多的变形;管道横截面的刚度与管径和壁厚有关,小口径管道在土中的约束程度比大口径的约束作用大。日本、美国以及我国海城,唐山两次强震中的震害均表明,管道的破坏随管径增大而减小,这说明管道刚度的影响不可忽视,但是各国学者对管径的影响看法不一。

(8)管道埋深:埋地管道一般总是埋在地表下有限的深度处,1923年东京地震调查资料显示,埋深的增加破坏增加,而埋深增加到2.4m后管道的破坏率减小。浅埋管道破坏较轻是由于作用在管道上的土压力和纵向摩擦力较小,土体对管道的约束作用小,传递到管道上的地震作用就小,埋深增加约束作用增大,破坏率高;埋深增加到2.4m管道事故率降低可以解释为随深度的增加地震作用下土体的位移下降的幅度大于约束作用增大的幅度。然而在许多情况下埋地管道破坏与其埋深之间并不存在固定的关系。造成完全不同的结论是因为管道的破坏不仅取决于土移的大小,而且还取决于管道在土体中的约束程度,因而较难确定管道埋深多大时震害较轻。

2 埋地管道破坏的主要类型

地震作用下埋地管道的破坏类型主要有三种[22]- [24]:

(1)接口破坏:连续式钢管焊缝连接处的开裂,法兰螺栓松动;承插式管道接口填料松动、剪裂、插头拔出和承插口破裂等;

(2)管体破坏:管体出现纵向或斜向裂缝;地面大变形造成的管体折断,锈蚀严重钢管和铸铁管管体发生的折断等;

(3)连接破坏:管道的三通弯头、闸阀及其与其它构筑物联接处,易受应变集中,运动相位不一致而发生破坏。

三种形式的破坏中管体破坏一般是由于地面断裂、滑坡等严重地面大变形或由于管体本身缺陷和腐蚀严重而引起的破坏;接头和连接破坏是地震作用下最为普遍的破坏见图。

3 埋地管道破坏的机理分析

埋地管道的地震破坏主要由构造性地运动-断层错动、地震场地失效-土壤液化、地震波传播效应引起,下面简要分析埋地管道的破坏机理。

(1)断层滑移作用[13]- [14]

在一次强破坏性地震中,断层位错越大,震害越严重。断层滑移的主要作用是使管道产生平错运动,也可能伴随有较小的垂直移动。断层滑移区土体发生相对较大的错动滑移,埋地管道受周围土体的约束,随着土体的变形而变形,当管道与活动断层相交时,地震中产生的地表断裂运动使管道产生纵向和横向变形,纵向变形会使管道产生拉伸或缩短,管道受拉伸超过极限时就会发生破坏,管道受压缩时则会由于薄壳失稳而造成屈曲破坏;横向变形则会使管道产生折断等剪切破坏,管道发生的剪切位移、拉伸或缩短的程度取决于断层的类型、管道和断层的方位、断层错动的大小和断层平面的倾角等因素,大量的震害调查认为,具有高强度和韧性的钢管(油、气管道)一般能抗拒强烈地震的地面运动,却不能抵御断层作用和地面破坏所产生的永久地面变形。

(2)土壤液化[15]- [16]

地下水位以下的饱和松砂和粉土在地震作用下,土颗粒之间因振动而密实,但由于颗粒之间的空隙水来不及排出,使土颗粒处于悬浮状态,即由固态转化为液态,土在液化及液化后的反应极为复杂, 其中牵涉到从固相到液相及从液相到固相的转变、土骨架与水相互作用的问题、大位移与大变形以及非连续介质等。液化往往造成管道上浮或下沉,目前研究液化砂土中管的动力特性,主要集中在管道在液化和不液化的边界区域和管的上浮力,对由液化引起的大的永久性位移却没有进行足够的研究。

(3)地震波传播效应[17]- [20]

地震引发地面振动或摇晃,振动以一定速度的波的形式在地面传播,既然运动是波,不同部位的管道的位移是不同步的,引发不同类别的应变。纵波沿管道方向的传播使得土体受压或受拉,管道被周围土体夹裹着作波动变形,则土体的这种张拉和压缩力将作用于管道产生轴向应变,横波沿管道方向传播使得土体垂直管道方向发生横向变形,管道受土体约束影响而随土体一起运动,促使管道产生弯曲应变。轴向应变可能是受压或受拉,且会同时出现在一次地震中,受拉时管道接头处产生拉拔力;受压时管道产生挤压或屈曲;弯曲变形则使连接开裂、破损,剪切引起折断。

除此之外,埋地管道的变形还受周围土体的地质条件的影响。震害资料和理论研究均表明非均匀场地对埋地管道的动力特性有较大的影响,管道在穿过非均匀场地时,土体出现明显的竖向和横向位移,使管道由于变形不同而破坏。土体类型变化以及其它因素如地震波类型、地形地貌条件、断层等共同作用对管道破坏的影响很大,结合起来考虑其破坏机理十分重要。一般来说,前二种作用对埋地管道的破坏是灾难性的,均属于难以抗拒因素,实际工程中多采用避开这类地段铺设管道的措施或专门研究特殊的抗震措施。而地震波传播效应则是埋地管道破坏的最普遍原因,最早引起了人们的关注,是埋地管道抗震研究的主要对象,其在理论和试验上的研究也较深入。

4 结语

埋地管道的抗震,是生命线地震工程的重要组成部分。只有认清埋地管道在地震波作用下反应特征的一般规律、破坏机理,并将其作为埋地管道地震反应分析的依据,才能建立适合实际工程的埋地管道地震灾害防御技术,提高埋地管道的抗震能力,完善地震灾害应急预案和工程技术措施,从地震防御

到抗震理论分析,做到有的放矢,才能尽可能的减轻

埋地管道的破坏,埋地管道和地铁、隧道、共同沟、地下管廊同属于地下线形结构,其震害分析在理论上应对后者震害原因分析有一定的借鉴价值。

[参考文献]

[1] 赵成刚. 生命线地震工程[M]. 北京地震出版社.1994.

[2] 孙绍平, 韩阳. 生命线地震工程研究述评[J]. 土木工程学报.2003, 36(5): 97-104.

[3] 尹立峰, 王坚, 高杰. 地下管道的震害特征与研究概述[J]. 高原地震. 2004,16(2): 27-37.

[4] 刘恢先主编, 唐山大地震震害(第三册)[M]. 北京: 地震出版社, 1986.

[5] 同济大学土木工程防灾国家重点实验室.汶川地震震害[M]. 第一版.同济大学出版社,2008.

[6] 格赫曼 A C, 扎伊涅特季诺夫 X X. 管道的抗震设计与监护[M]. 刘昆, 张宗理, 译.北京: 地震出版社,1992.

[7] 侯忠良.埋地管道抗震[M]. .北京:学术书刊出版社,1990.

[8] 胡晓娜. 埋地管线的地震响应分析[D]. 北京交通大学硕士论文. 2007.

[9] Wang, L .R.L., Cheng, K.M. Seismic response behavior of buried pipelines[J]. J of Pressure Vessel Technology , 1979 , 101(1).

[10] O’Rourke, T.D., Lane, P.A., Liquefaction hazards and their effects on buried pipelines[J]. Cornell Univ., Technical Report, NCEER-89-007.1989.

[11] Owens, F.C., Seismic analysis of buried Pipelines, Optimizing Post-Earthquake Lifeline System Reliability[J]. TCLEE, ASCE. 1999, No.16, 130-139.

[12] 侯本伟. 埋地管道系统抗震评估方法研究[D]. 北京工业大学硕士论文, 2010.

[13] 王秀英. 地下结构震害类型及机理研究[J]. 中国安全科学学报,2003,13(11): 55-58.

[14] 金浏. 断层引起的地面大变形下埋地管线非线性反应分析[D]. 南京工业大学硕士论文,2009.

[15] 甘文水, 侯忠良. 液化土中埋设管线的上浮反应[J]. 特种结构, 1989, 6(3): 3-7.

[16] 林均岐, 李祚华, 胡明. 场地土液化引起的地下管道上浮反应研究[J]. 地震工程与工程振动,2004, 24(3): 120-123.

[17] 谢旭, 何玉敖. 埋设管线穿过不同介质时的地震反应研究[J] 宁波大学学报(理工版). 1988, (12): 117-129.

[18] 甘水文, 侯忠良. 地震行波作用下三维埋设管线反应分析[J]. 工业建筑. 1992, (7): 17-21,43.

第4篇

【关键词】高层建筑;梁式转换层;施工

1 梁式转换层结构形式

高层建筑结构下部受力比上部大,按常理来说,在高层建筑结构的设计中就要考虑下部的刚度要大于上部结构;采用的措施就是下部增加墙体、增加柱网,而上部逐渐减少墙柱的密度。显然,这在高层建筑设计中是不现实的,因为高层建筑的使用功能对空间要求却是下部大空间,往上部逐渐减小,因此对高层建筑结构的设计就要考虑反常规设计方法。在《高层建筑混凝土结构技术规程》(JGJ3-2002)中,规范对转换梁的最小高度和宽度作如下规定:框支梁截面的宽度不宜大于框支柱相应方向的截面宽度,不宜小于其上墙体截面厚度的 2 倍,且不易小于400mm;当梁上托柱时,尚不应小于梁宽方向的柱截面宽度。进行抗震设计时,转换梁高不小于其跨度的1/6;非抗震设计时,转换梁高不小于跨度的1/8。从该设计规程中可知,采取这些限制主要是保证转换梁结构的整体刚度,增强结构的可靠性。

1.1 梁式转换层结构形式

实际工程中应用的梁式转换层结构有多种形式,主要原理就是利用下部的转换大梁来支托上部结构。

1.2 梁式转换结构受力机理分析

梁式转换层结构的传力途径为墙—梁—柱(墙)的形式,传力直接,便于分析计算。转换大梁的受力主要受上部剪力墙刚度、剪力墙与转换大梁的相对刚度和转换大梁与下部支撑结构的相对刚度影响。为弄清转换梁结构与上部墙体共同工作的性能,对转换梁承托层数对其内力的影响用有限元程序进行了分析,从分析结果中我们知道,对一般结构转换大梁,上部墙体考虑三层与考虑 4 层、5 层内力的设计控制内力差异不大于 5%,故在分析计算时可只考虑计算 3 层。从计算分析不论转换大梁上部墙体的形式如何,只要墙体有一定长度,转换大梁中的弯矩就会比不考虑上部墙体作用要小,同时转换大梁也会有一段范围出现受拉区。

2 梁式转换层的结构设计

2.1 结构竖向布置

高层建筑的侧向刚度宜下大上小,且应避免刚度突变。然而带转换层的高层建筑结构显然有悖于此,因此对转换层结构的侧向刚度作了专门规定。对该工程而言,属于“高位转换”。转换层上下等效侧向刚度比宜接近于 1,不应大于 1.3。在设计过程中,应把握的原则归纳起来,就是要强化下部,弱化上部。可以采用的方法有以下几种:1)与建筑专业协商,使尽可能多的剪力墙落地,必要时甚至可在底部增设部分剪力墙(不伸上去)。除核心筒部分剪力墙在底部必须设置外,还与建筑专业协商后,让两侧各有一片剪力墙落地。这些无疑都大大增强了底部刚度。

2)加大底部剪力墙厚度。转换层以下剪力墙中,核心筒部分的厚度取为 600mm,其余部分的厚度取为 400mm。

3)底部剪力墙尽量不开洞或开小洞,以免刚度削弱太大。

4)提高底部柱、墙混凝土强度等级,采用 C50 混凝土。

5)适当减少转换层上部剪力墙数目,控制剪力墙厚度,并可在某些较长剪力墙中部开结构洞,以弱化上部刚度。弱化上部刚度不仅对控制刚度比有利,还可减轻建筑物重量,减小框支梁承受的荷载;增大结构自振周期,减小地震作用力。工程综合采用上述几种方法后,转换层上下刚度比在 X 方向为 0.725,在 Y 方向为 0.813,满足规范要求,效果良好。虽然上下部刚度比满足要求,但毕竟工程仍属于竖向不规则结构,转换层及其下各层为结构薄弱层,因而应将该两层的地震剪力乘以 1.15 的增大系数。

2.2 结构平面布局

工程底部为框架—剪力墙结构,体型简单、规则;上部为纯剪力墙结构。在剪力墙平面布置上,东西向完全对称,南北向质量中心与刚度中心偏差不超过 2m,结构偏心率较小。除核心筒外,其余剪力墙布置分散、均匀;且尽量沿周边布置,以增强抗扭效果。查阅计算结果,扭转为主的第一自振周期与平动为主的第一自振周期之比为0.85,各层最大水平位移与层间位移比值不大于 1.3,均满足平面布置及控制扭转的要求。可见工程平面布局规则合理,抗扭效果良好。

3 梁式转换层结构的设计与构造

由框支主梁承托转换次梁及次梁上的剪刀墙,其传力途径多次转换,受力复杂。框支主梁除承受其上部剪力墙的作用外,还需要承受梁传给的剪力,扭矩和弯矩,框支主梁易受剪破坏。对于有抗震设防要求的建筑,为了改善结构的受力性能,提高其抗震能力,在进行结构平面布置时,可以将一部分剪力墙落地,并贯通至基础,做成落地剪力墙与框支墙协同工作的受力体系。

3.1 转换梁的设计与构造要求

转换梁的截面尺寸一般宜由剪压比计算确定,以避免脆性破坏和具有合适的含箍率。转换梁不宜开洞,若需要开洞,洞口宜位于梁中和轴附近。洞口上、下弦杆必须采取加强措施,箍筋要加密,以增强其抗剪能力。上、下弦杆箍筋计算时宜将剪力设计值乘放大系数1.2。当洞口内力较大时,可采用型钢构件来加强。

转换梁的混凝土强度等级不应低于C30。转换梁上、下主筋的最小配筋率非抗震设计时为0.3%,转换梁中主筋不宜有接头,转换梁上部主筋至少应有50%沿梁全长贯通,下部主筋应全部贯通伸入柱内。

3.2 框支柱的设计与构造要求

框支柱截面尺寸一般系由其轴压比计算确定。地震作用下框支柱内力需调整。抗震设计时,框支柱的柱顶弯矩应乘以放大系数,并按放大后的弯矩设计值进行配筋;剪力调整——框支柱承受的地震剪力标准值应按下列规定采用:框支柱的数目不多于10根时,当框支层为1~2层时,每层每根柱承受的剪力应至少取基底剪力的2%;当框支层。为3层及3层以上时,各层每根柱所受的剪力应至少取基底剪力的3%;框支柱的数目多于10根时,当框支层为1~2层时,每层每根柱承受的剪力之和应取基底剪力的20%;当框支层为3层及3层以上时,每层框支柱承受剪力之和应取基底剪力的30%;框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁的剪力、弯矩,框支柱轴力可不调整。

框支柱全部纵向钢筋配筋率,抗震等级一级时不小于1.2%,二级时不小于1.0%,三级时不小于0.9%,四级及非抗震设计时不小于0.8%。纵向钢筋间距抗震设计时不大于200mm,且不小于80mm,全部纵向钢筋配筋率不宜大于4%。

3.3 转换梁的截面设计方法

目前国内结构设计工作普遍采用的转换梁截面设计方法。主要有:应力截面设计方法。对转换梁进行有限元分析得到的结果是应力及其分布规律,为能直接应用转换梁有限元法分析后的应力大小及其分布规律进行截面的配筋计算,假定不考虑混凝土的抗拉作用,所有拉力由钢筋承担钢筋达到其屈服强度设计值。受压区混凝土的强度达到轴心抗压强度设计值。

4 结语

通过高层建筑转换层结构设计的工程实践,体会如下:根据建筑平面及功能要求合理选择转换层形式,正确选择建筑抗震类别是转换层设计的关键点,结合结构布置,正确选择各分部的抗震等级,构件设计应注重抗震延性设计的概念,对主要构件进行加强是设计的重点。

参考文献:

[1]期刊论文.带转换层的高层建筑结构设计-沿海企业与科技 11/1(11)

第5篇

【关键词】房屋抗震;影响因素;措施

引言

房屋的抗震性能最大程度上取决于房屋的抗震设防标准,抗震设防标准越高,房屋的抗震性能就越强。目前,已有数百位专家在研究讨论新的房屋抗震设防标准,以期修改沿用多年的房屋建造抗震标准,增强新建房屋的抗震能力。北京地区近日已率先将农房抗震要求提高到了能抵御8级地震的高标准。据测算,抗震设防标准每提高一级,建筑成本将随之提高8%-10%。 房屋的选址是房屋抗震性能的外部主要条件,初步总结四川地震的经验和教训可以发现,遭遇同等强度地震的不同位置的房屋,其抗震性能有所不同。位于地质断层附近的房屋比其他房屋更易被震塌。我国是一个地震多发国家,发生过破坏性地震的城市占全国城市总数的10%以上。因此,各地今后在房屋建筑设计与施工之前,必须充分重视房屋的选址应远离地质断层,防患于未然。 房屋结构设计与施工质量、房屋装修是决定房屋抗震性能中受人为影响最大的两个因素。在房屋结构设计中,一般而言,剪力墙结构的抗震性能优于框架结构,框架结构优于砖混结构。在施工质量中,建筑物必须严格根据抗震设计规范施工。 居住者在房屋装修时不得随意更改房屋结构,尤其是不可随意更改房屋承重墙等一些关键部位,更改结构时应得到专业人士的指导或相关许可,任何擅自改动都有可能降低房屋抗震性能,造成致命隐患。

1 建筑物的重要性决定了其不同程度上的抗震性能

不同结构型式是不同建筑物功能需求和性价比所决定的,不能单单片面的说地震来临时,哪种结构型式就一定好哪种结构型式就一定不好;因为按目前的抗震设防标准,它们有一个共同的设防目标:小震不坏 、中震可修 、大震不倒。

国家按建筑物发生灾害时对人民生命财产可能造成损失的程度,按建筑物分为甲乙丙丁四类。主要的、重要的水电站、医院、电力、通讯等生命救援保障和人员密集建筑被定为甲类或乙类,一般的住宅、办公等均定义为乙类,设防的目标也不同:丙类建筑在设计时按设防目标进行;甲乙类建筑设计时至少要提高1度,请注意,这里均指是烈度而不是震级,这也很好理解,好的地基要比差的地基抗震性能好,处在地震活动带的建筑自然发生地震的几率大,抗震性能也很难保证。

2 建筑物得抗震性能首先取决于建筑物的抗震设防标准

国家根据地震发生的可能性和震害的严重性确定各地区基本设防烈度,这是各地区抗震设计的基本参数,主要代表地面加速度的大小。设防烈度一般分6~9度,上海地区设防烈度主要为7度,崇明、金山为6度。对具体建筑物,需要结合建筑使用功能的重要性确定建筑的抗震设防标准,即确定设计烈度和抗震等级。对一般建筑,设计烈度就是本地区设防烈度。设计烈度愈高,抗震能力愈强,但建筑物造价也愈高。

2.1 房屋结构的抗震性能与合理的抗震设计密切相关。

抗震设计就是要选择合适的结构形式,确定合理的抗震措施,保证结构的抗震性能,确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。所谓中震,指设防烈度,小震比中震小约1.55度,而大震则比中震增加约1度。合理的抗震设计主要基于先进的抗震理念、系统的分析计算和恰当的抗震措施。既要注意控制抗震指标如轴压比、相对变形等,又要采取合适的抗震构造措施。

目前高层住宅主要采用现浇剪力墙结构、框架-核心筒或框架-剪力墙结构,具有较好的强度和变形能力,抗震性能相对较好。因此,无论板式住宅还是点式住宅,只要设计合理,都可满足抗震要求。多层住宅大部分采用砖混结构,目前多采用现浇楼板,并采取设构造柱和圈梁等抗震措施,或者采用框架结构,大大增强了抗震能力。部分建筑外形怪异,平立面不规则,传力体系复杂甚至需要多次结构转换,这既增加了建筑物造价,也影响了建筑物的抗震性能。

2.2 房屋抗震性能还与施工质量等其他因素有关。因此加强施工质量监督,规范既有建筑的使用管理是十分必要的。

3 建筑物抵抗地震的能力不确定性

为了搞好抗震结构的施工,首先要了解地震力对建筑物可能引起的破坏作用。因为地震时不确定性和复杂性,我们很难用“数值设计”来有效控制结构的抗震性能,因此不能完全依赖于计算。根据目前对地震规律的认识,抗震设计的指导思想是:房屋在使用期间,对不同强度的地震应具有不同的抵抗能力,一般小震发生的可能性较大,因此,要求做到结构不损坏,这在技术上,经济上是可以做到的。近几年台湾发生三次地震,福建沿海受其余震波影响,没有造成建筑物严重损坏。如果要求结构遭受大震时不损坏,这在经济上是不合理的,因此可以允许结构破坏。但是在任何情况下,不应导致建筑物倒塌,概括起来说,抗震设防的一般目标就是要做到“小震不坏,大震不倒”。从另一方面看,一个地区的基本地震烈度也是难以准确估计的,要根据当地的地址,地形和历史地震情况等确定,因此房屋抗震能力很难确定。那就要在结构强度上和构造上下功夫,才能做到建筑物裂而不倒。这种危中脱险的工作主要依赖于良好的结构设计和施工质量。

4 施工质量和房屋抗震性能的关系

在强烈地震的作用下,要使建筑物裂而不倒,关键在施工过程的控制,以保证结构本身具有足够的强度和各部件间有可靠的连接。对混合结构来说,一是砌体强度,也就是砖块本身和砂浆标号。二是内外砖墙的咬槎以及构造柱,圈梁和墙体的连接构造。对钢筋混凝土结构来说一是混凝土和钢筋本身的强度。二是节点间的连接构造,两者都和施工的质量密切相关,强度和构造连接的施工质量好,建筑就能抵抗地震,否则建筑物就要遭到严重破坏,以致倒塌,人民生命财产遭到严重损失。

5 目前影响建筑物抗震的施工质量问题

对于砖混结构的建筑物,在材料选用、施工质量上应当引起足够重视。砌体强度不足,砂浆不饱满,砂浆标号低,砌筑前砖块不湿润,冬季施工不浇水都会降低砂浆的粘结力和砌体的抗剪强度;加之砌体结构通常采用单块的材料和砂浆砌筑,抗拉压力低,且主要以手工操作,容易丧失承载能力。圈梁和构造柱的配筋不合理:圈梁和构造柱依靠其中的钢筋将建筑上下各层,各片墙体连在一起,哪里连接不好,哪里就容易出问题。我们在施工现场经常发现钢筋搭接长度不够,钢筋接头该错开的不错开,该弯钩的不弯钩,钢筋位置偏差大等等,都会直接影响到结构整体连接。 构造柱与墙体拉接筋放置不准确,构造柱混凝土振捣不密实,都直接影响构造柱的抗震能力,关系到砖混结构建筑物能否满足抗震要求。

对于混凝土结构的建筑物,当前钢筋混凝土结构的施工存在问题比较多,对结构的抗震性能极为不利。首先混凝土强度问题,混凝土水泥用量,水灰比和含砂率控制不严,对混凝土湿润养护不重视,振捣不密实,柱头施工缝遗留木屑、焊渣等造成柱的断层,这些都是削弱结构支撑竖向荷载能力的重要因素,严重影响房屋抗震能力。

6 总结

前面谈到影响房屋抗震的施工质量问题,这些都不是很难做到,只要我们在施工过程中认真负责,引起重视,发现问题及时整改,严格按照施工规程操作,控制好每一个分项、分部工程,绝不片面追求施工速度不顾工程质量,对人民的生命财产要有高度负责的态度。只有这样,才能使建筑物的抗震安全性能得到进一步保证,人民生命财产免遭损失。

参考文献:

[1]杨佑发;邹银生 底部框剪砌体、房屋空间弹塑性地震反应分析 [期刊论文] -振动与冲击2003(01) .

[2]杨佑发 底部框剪砌体房屋抗震及隔震性能研究 [学位论文] 1998 .

[3]杨佑发;魏建东 结构动力分析的非线性拟动力方程法 [期刊论文] -世界地震工程2002(02) .

[4]郭子雄 RC低矮抗震墙的变形性能及恢复力模型研究 1998(01) .

第6篇

一、思想方面

本人热爱党的教育事业,始终将教书育人作为自己追求的目标,遵守学校的各项规章制度,积极参与学校和学院组织的各项活动,关爱集体,以身作则,在抗震救灾活动中尽自己力量积极奉献爱心。

二、教学工作

认真履行教师职责,精心备课,注重教学方法的改进,严谨认真,注意与学生的交流与互动。

1. 本年度主讲三门课程,辅讲两门课程。主讲课程为“互换性与技术测量”、“机械制造装备设计”、“金属切削机床”;辅讲课程为:“质量管理与可靠性”,作为工业工程专业负责人,负责组织“工业工程导论”的教学,并主讲该课程2次。

2. 指导本科毕业设计10人,指导专业课程设计1次。所指导的毕业设计有1人获得校级优秀毕业论文,该论文被学院答辩委员会推荐至每个专业优选2篇的学校论文集。全年完成工作量约560学时。

3. 指导研究生3人,其中1人7月份毕业,其毕业论文获得校级优秀硕士毕业论文。

4. 作为成果首位完成人,其“工科大学生创新能力培养研究与实践”获得校级教学成果二等奖;在教学团队支持下,认真整理近三年的课程建设成果,通过了“机械制造及自动化基础课程群”的验收工作;2009年被评为校级优秀教师。

三、科研工作

1.积极参与科研工作,主持省级科研项目2项,企业委托项目1项,到账经费17万元。

(1)成功申报山东省科技攻关项目1项,总经费12万元,2009年到帐经费6万元;

(2)积极准备2009年省级科技攻关项目的验收工作;

(3)主持企业委托项目1项,2009年到账经费11万元。

2.发表b类科研论文2篇。

3.申报专利1项。

4.积极参与指导学生的科技创新设计大赛,获得山东省科技创新大赛二、三等奖2项(第2位)。

四、机制系管理及其他工作

第7篇

【关键词】安全性鉴定;抗震性;鉴定;加固措施

0.概况

某中学校舍抗震设防烈度为7度,地震加速度为0.1g,建筑场地为Ⅲ类,属于C类建筑物。该宿舍楼长约45.9m,宽16.9m,高13.65m,建筑面积为3207.75m2,地上4层,砖混结构、钢筋混凝土条形基础,现浇式钢筋混凝土楼盖和屋盖。该建筑物建于2004年。该宿舍楼为纵横墙承重结构,抗震横墙最大间距3.9m;纵横墙布置对称、沿平面内对齐,沿竖向上下连续、同轴线窗间墙宽度均匀;房屋立面无高差、无错层;房屋尽端无楼梯间;无独立砖柱支承;墙体在平面内闭合;无削弱墙体;外墙四角,隔开间横墙与外纵墙交接处,楼梯间四角有构造柱,较大洞口处局部无构造柱;楼梯段上下端对应墙体处无构造柱;屋盖及楼盖处沿内外墙均有圈梁,楼盖、屋盖处圈梁最大间距10.5m;承重外墙尽端至门窗洞口边的最小距离1.0m,不符合承重外墙尽端至门窗洞口边的最小距离1.20m要求。该宿舍楼标准层平面见图1。

1.现场检测情况

经过对现场检测观察,未发现明显缺陷。

砌筑砂浆强度检测:抽检每层砌筑砂浆强度,换算值为1.06~

3.13MPa,均不满足设计强度值M5的要求。

黏土砖强度检测:抽检每层黏土砖强度,均满足设计强度值MU10的要求。

混凝土强度检测:抽检每层混凝土强度,换算值为22.5~

29.1MPa,均满足设计强度值C20的要求。

2.鉴定结论

2.1采用中国建筑科学研究院开发的“PKPM”结构设计软件对该建筑物上部结构承载力进行复核验算。验算结果显示,该建筑物一层、二层、三层部分墙体抗震验算不满足规范要求;一层部分墙体受压承载力不满足规范要求;混凝土梁承载力满足规范要求;基础承载力满足规范要求。

2.2所检砂浆强度不满足《建筑抗震鉴定标准》(GB 50023-2009)要求,黏土砖强度、混凝土强度满足该标准要求;

2.3该工程的安全性等级为Bsu(安全性略低于标准要求,尚不显著影响整体承载);

2.4适修性评估等级为Br(稍难修,改造后的功能尚可恢复或接近恢复功能,适修性尚好,宜予修复或改造)。

3.加固措施

由于该建筑物一层、二层、三层部分墙体抗震承载力不满足规范要求,一层部分墙体受压承载力不满足规范要求,本工程采用双面钢筋网水泥砂浆面层进行加固,采用M10水泥砂浆,单面面层厚度为40mm。采用φ6@300点焊钢筋网,“S”形拉结筋φ6@900,施工时,先剔除水平砖缝30mm深,再进行抹面。

本工程抗震构造措施不足处:洞口宽度大于2000mm时,洞口两侧加暗柱进行加固;楼梯间梯梁下无构造柱,采用梯梁下设暗柱做法进行加固;门厅阳角处大梁支承长度不满足500mm处,增设顺梁方向250mm长的构造柱进行加固;承重外墙尽端至门窗洞口边的最小距离1.0m,不符合承重外墙尽端至门窗洞口边的最小距离1.20m要求,在外墙阳角处加“L”或倒“L”形构造柱进行加固;新增圈梁通过植筋与原有圈梁连接。

3.1墙肢轴心受压加固验算

取一层⑤轴与A轴交接处窗间墙体,受压墙肢宽度b为1500mm,受压墙肢厚度h′为370mm,墙体单侧水泥砂浆厚度40mm,加固后受压墙肢厚度h为450mm,墙体两侧受压钢筋面积As′为340mm2,砌体抗压强度设计值f为1.34MPa,水泥砂浆面层轴心抗压强度设计值fc为3.5MPa,墙肢轴力设计值568.5kN(墙肢轴心受压计算见图2)。根据《砌体结构设计规范》(GB 50003-2001)中式8.2.3得,

ρ=A′s/bh=0.05%β=γβH0/h=6.08

ηs=0.9

查表8.2.3得,φcom=0.93φcom(fA+fcAc+ηsf′yA′s)=1118kN>568.5kN,满足规范要求。

3.2墙肢抗震加固验算

采用钢筋网水泥砂浆面层双面加固,面层厚度为40mm,面层砂浆强度为M10,钢筋网直径为6,网格尺寸为300mm×300mm。原墙体厚度tw0为240mm(内墙)、370mm(外墙),原墙体的抗震抗剪强度设计值fvE为0.12MPa。由《建筑抗震加固技术规程》(JGJ116-2009)中表5.3.2-1得,面层加固基准增强系数η0:一层:1.65,代入公式:

ηpij=240tw0η0+0.075tw0240-1/fvE

经计算,原墙厚为240mm时,ηPij=1.65;原墙厚为370mm时,ηPij=1.28。

首先,验算一层墙体,370mm厚墙体中最不利墙段的抗力与效应之比为0.88,墙体加固后的抗震验算结果为:ηPij×原墙段抗震验算结果,即0.88×1.28=1.12>1,满足规范要求。

其次,验算一层墙体,240mm厚墙体中最不利墙段的抗力与效应之比为0.88,墙体加固后的抗震验算结果为:ηPij×原墙段抗震验算结果,即0.88×1.61=1.41>1,满足规范要求。

由此可得,二层、三层墙体均满足规范要求!

4.结论

4.1从设计方面,对中小学校建筑的抗震设防应充分重视,选型要合理,严格按照设计规范执行。

4.2从施工方面,严格按照设计图纸施工,加强施工管理,保证工程质量是关键。

参考文献:

[1]曹玉生,李奉阁.竖向配筋砖砌体抗震性能试验研究及有限元分析[J].工程抗震.2001,(02).

[2]唐家祥.建筑隔震与消能减震设计[J].建筑科学.2002,18(01).

第8篇

论文摘要:本文简要介绍了高层、超高层建筑的结构体系,通过对国内已建和在建的高层建筑钢结构国产化问题的调研,分析了在钢材、设计、施工和监理等方面国产化所面临的主要问题,为高层建筑钢结构的发展提出了一些建议。

高层钢结构建筑在国外已有110多年的历史,1883年最早一幢钢结构高层建筑在美国芝加哥拔地而起,到了二次世界大战后由于地价的上涨和人口的迅速增长,以及对高层及超高层建筑的结构体系的研究日趋完善、计算技术的发展和施工技术水平的不断提高,使高层和超高层建筑迅猛发展。钢筋混凝土结构在超高层建筑中由于自重大,柱子所占的建筑面积比率越来越大,在超高层建筑中采用钢筋混凝土结构受到质疑;同时高强度钢材应运而生,在超高层建筑中采用部分钢结构或全钢结构的理论研究与设计建造可说是同步前进。

超高层建筑的发展体现了发达国家的建筑科技水平、材料工业水平和综合技术水平,也是建设部门财力雄厚的象征。

一、我国的高层与超高层钢结构建筑的发展

我国的高层与超高层钢结构建筑自改革开放以来已有20年的历史,并在设计和施工中积累了不少经验,已有我国自行编制的《高层民用建筑钢结构技术规程》JGJ 99-98。

1、钢材的国产化

国内钢铁企业根据我国高层建筑钢结构设计标准的要求,制订我国第一部高层建筑钢结构的钢材标准《高层建筑结构用钢板》( YB4104-2000),比目前仍在实施的《低合金高强度结构钢》(GB/T 1591-94) 又前进了一步,其性能指标优于国外同类产品。

2、钢结构设计国产化

截止2003年3月,我国已建和在建的高层建筑钢结构有60 余幢,按其结构类型划分,钢框架-RC核心筒占4314%,SRC框架-RC核心筒占1617%,二者合计6011%;钢框架-支撑体系占1813%;巨型框架占813%;纯钢框架占617%,筒体和钢管混凝土结构各占313%。统计表明,目前我国高层建筑钢结构以混合结构为主。

鉴于我国对混合结构尚未进行系统的研究,所以《建筑抗震设计规范》(GB50011-2001)暂不列入这种结构类型是合理的。

国家标准《高层民用建筑钢结构技术规程》(JGJ99-98)和《建筑抗震设计规范》(GB50011-2001)等有关高层建筑最大高度和最大高宽比的规定,在一般情况下,应遵守规范的规定,否则应进行专项论证或试验研究。建设部第111号令《超限高层建筑工程抗震设防管理规定》和建质[2003]46号文《超限高层建筑工程抗震设防专项审查技术要点》,对加强高层建筑钢结构设计质量控制意义重大,具有可操作性。

钢结构设计分两个阶段,即设计图阶段和施工详图阶段。现在有的设计院完全采取国外设计模式,无构件图、节点图和钢材表等,对工程招投标和施工详图设计带来不便。因此,建议有关部门对此做出具体规定。关于节点设计问题,国内应多做一些理论和试验研究工作,比如柱梁刚性节点塑性铰外移和防止焊接节点的层状撕裂等。由于钢结构的阻尼比较低,在研发各种耗能支撑和节点的减震消能体系方面,国际上研究和应用较多,国内应加快进行此方面的研究。

二、高层及超高层结构体系

对于高层及超高层建筑的划分,建筑设计规范、建筑抗震设计规范、建筑防火设计规范没有一个统一规定,一般认为建筑总高度超过24m为高层建筑,建筑总高度超过60m为超高层建筑。

对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架—剪力墙结构体系、框—筒结构体系、筒中筒结构体系、束筒结构体系。

三、钢结构制作与安装

1、钢柱的安装

钢柱是高层、超高层建筑决定层高和建筑总高度的主要竖向构件,在加工制造中必须满足现行规范的验收标准。

100m高的超高层钢柱一般分为8~12节构件,钢柱在翻样下料制作过程中应考虑焊缝的收缩变形和竖向荷载作用下引起的压缩变形,所以钢柱的翻样下料长度不等于设计长度,即使只有几毫米也不能忽略不计。而且上下两节钢柱截面完全相等时也不允许互换,要求对每节钢柱应编号予以区别,正确安装就位。

矩形或方形钢柱内的加劲板的焊接应按现行规范要求采用熔嘴电渣焊,不允许采用其他如在箱板上开孔、槽塞焊等形式。

钢柱标高的控制一般有二种方式:

(1)按相对标高制作安装。钢柱的长度误差不得超过3mm,不考虑焊缝收缩变形和竖向荷载引起的压缩变形,建筑物的总高度只要达到各节柱子制作允许偏差总和及钢柱压缩变形总和就算合格,这种制作安装一般在12层以下,层高控制不十分严格的建筑物。

(2)按设计标高制作安装。一般在12层以上,精度要求较高的层高,应按土建的标高安装第一节钢柱底面标高,每节钢柱的累加尺寸总和应符合设计要求的总尺寸。每一节柱子的接头产生的收缩变形和竖向荷载作用下引起的压缩变形应加到每节钢柱加工长度中去。

2、框架梁的制作与安装

高层、超高层框架梁一般采用H型钢,框架梁与钢柱宜采用刚性连接,钢柱为贯通型,在框架梁的上下翼缘处在钢柱内设置横向加劲肋。

框架梁应按设计编号正确就位。

为保证框架梁与钢柱连接处的节点域有较好的延性以及连接可靠性和楼层层高的精确性,在工厂制造时,在框架梁所在位置设置悬臂梁(短牛腿),悬臂梁上下翼缘与钢柱的连接采用剖口熔透焊缝,腹板采用贴角焊缝。框架梁与钢柱的悬臂梁(短牛腿)连接,上下翼缘的连接采用衬板(兼引弧板)全熔透焊缝,腹板采用高强螺栓连接。

由于钢筋混凝土施工允许偏差远远大于钢结构的精度要求,当框架梁与钢筋混凝土剪力墙或钢筋混凝土筒壁连接时,腹板的连接板可开椭圆孔,椭圆孔的长向尺寸不得大于2d0(d0为螺栓孔径),并应保证孔边距的要求。

框架梁的翻样下料长度同样不等于设计长度,需考虑焊接收缩变形。焊接收缩变形可用经验公式计算再按实际加工之后校核,确定其翻样下料的精确长度。

框架梁上下翼缘的连接可采用高强螺栓连接或焊接连接,目前大部分采用带衬板的全熔透焊接连接。施工时先焊下翼缘再焊上翼缘,先一端点焊定位,再焊另一端。

第9篇

论文关键词:灾后重建 建筑专业教育 体系构建

论文摘要:本文论述了汶川大地震后在灾区重建的过程中,我们应该注意和改进的建筑规范与建筑管理问题,及由这一问题所引发的的中国高校建筑专业教育体系的改革。

一、 汶川大地震的启示

汶川地震造成四川、甘肃、陕西等省数千亿的财产损失,同样也引发了我们对建筑等相关行业深刻的思考和反省!

1.都江偃二王庙的主体古建筑没有倒塌,而近年为这配套而修建的仿古建筑和现代建筑却倒塌了!

2, 农村有圈梁的房子没有倒塌,凡是没有圈梁的房子都倒了,还压死了很多人。

3.住在有规划审批制度监控下的房子倒得少,没有经过安全审批的农民房全塌了。

4. 经过新农村建设改造的房子没有倒,农民自建的房子全倒了。

以往我们对城镇规划设计、建筑设计、建筑施工、监理、材料设备供应等方面在抗震方面的认识及其重要性存在着或多或少的不足,尤其是对村镇建筑的规划和管理没有引起足够的重视。

建筑从业人员的职业道德和操守的不良也可见一斑。相关的惩罚机制不够健全、惩罚的力度不够。

二、灾后重建应该注意什么?

地震中的人员伤亡和财产损失不是地震本身造成的,而是地震造成的房屋倒塌和山体滑坡等造成的。因此我们在重建家园时,一要考虑环境问题,二要遵守国家建筑规范,三决不能偷工减料,四要要求施工单位绝对保证施工的安全,五国家相关部门要严格执行质量监督程序,建立农村房屋建设管理体制。

应该组织全国优秀的规划设计师来帮助灾区规划选址。以保证建筑物不要建在断裂带上,如果在山区重建,不能建在容易出现滑坡、泥石流或者山体崩塌的地方。

专家认为建筑地段包括:危险地段;抗震不利地段;抗震有利地段。其中抗震有利地段是指所选建设地址比较开阔,地基坚固,土石比较坚固,能够尽量避开断层和滑坡的规划地段。如果一定选择抗震不利地段规划建筑物,则必须采取相关的工程措施。容易出现滑坡的地段,坚决不要建设,必须另外选址。

1.由于我国农村建筑的现状是建房没有人管,没有任何人和任何机构管这里的安全,这是我国建筑管理体制的一个空白点,因此建立我国农村安全审批管理体系非常重要和紧迫。灾区安全审批管理体系的第一道防线是规划选址,第二道防线是建筑物的平面设计,第三道防线是建筑结构。在重建及以后的建设管理中这个安全审批管理体系可以为农民提供房屋建设方案,有专人指导建筑物的选址,提供平面设计和结构设计图纸,审查基础勘测资料和对工程进行监理,并为农民把握建材质量关!

2.完善国家建筑规范:汶川地震的发生引起人们对建筑质量、建筑物抗震性能以及建筑设计、建筑施工监理的重视;

按照此次房屋倒塌的情况,我们不难看出一些规律:

1)抗震顺序:钢结构的房屋好于钢混结构的房屋,钢混结构的房屋好于框架结构的房屋,框架结构的房屋好于现浇楼板砖混结构的房屋,砖混结构的房屋好于预制板房屋。

2)学校房屋倒塌的很多,一是施工质量不保证,二是学校房屋设计的抗震裂度不够。

3)民房大多是预制板房屋,而且规划建设地点不好,房子所用钢筋也不达标。

因此我国的建筑设计强制规范和规划规范、施工规范、验收规范、监理规范、建筑材料验收规范等需要完善如:公共建筑物(如学校)的设计要加强抗震裂度,民房的建设要纳入建设管理体系,强调建筑安全保障,实行建筑质量终身负责制,严格法规,加大违规惩治力度。

3.我国其他地区的存量房屋,尤其是农民房的加固也必须提到日程上来。新农村建设的力度也需要进一步加强。其他地区的增量房屋的管理参照汶川灾区。

三、中国高校建筑工程专业教育体系的重新构建

汶川地震造成四川、甘肃、陕西等省数千亿的财产损失,同样也引发了我们对与建筑行业相关的教育体系的深刻的思考。

1.加强抗震安全教育;严格设计、施工、监理都应从对建筑从业者及在校建筑和相关专业的学生加强教育入手,我们现有的教育模式、教学方法都存在着或多或少的漏洞。改进建筑职业技术人才的培养模式对建筑职业技术的教育有着积极而深远的影响。

2.向有关部门提出建议,要求按照抗震的标准修改国家的强制性建筑规范,在课程教育上让每个学生都知道建筑规范变更、加强抗震设防标准的重要意义,理解并熟练运用;

3.改革目标

将安全意识贯穿每个专业、每门课程;

4.创新之处

把建筑规范、管理规定作为课程或实训内容纳入教育计划

将抗灾预防知识及灾后应急措施和灾后问题处理知识纳入教育计划

在设计方面将人员疏散(逃生)方面的系统知识纳入教育计划

将执业道德、执业操守及相关的法律知识纳入教育计划

第10篇

英文名称:Journal of Building Structures

主管单位:中国科学技术协会

主办单位:中国建筑学会

出版周期:月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:1000-6869

国内刊号:11-1931/TU

邮发代号:2-190

发行范围:国内外统一发行

创刊时间:1980

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

联系方式

第11篇

课题来源、选题依据和背景情况、课题研究目的、工程应用价值

题目:格构式钢管混凝土柱的耐火性能分析

课题来源:

研究人从事炼钢厂房,连铸厂房以及与钢铁行业相关的工艺平台,管道支架等的结构设计。在设计过程中经常遇见采用格构式钢管混凝土柱的工程;而一方面行业内对钢结构组合结构有防火要求,另一方面钢铁厂相比其他工业厂房更容易发生火灾,因此本研究拟以格构式钢管混凝土柱升温与降温受火性能研究为方向,考察破坏形态及其受火极限状态。

选题依据和背景情况:

钢管混凝土作为一种新型的组合结构,是在钢管内部填加混凝土材料而构成一种新型的构件。钢管混凝土一般简写为 CFST(concrete filled steel tubular),其横截面的布置各有不同,按照形状可以分为圆钢管、矩形钢管、和多边形钢管混凝土。 钢管混凝土构件中的两种组成材料在外荷载作用下发生相互作用,其中最主要的作用为钢管内部核心的混凝土受到来自外围钢管的套箍作用,而处于三向应力状态,使混凝土的强度、塑性等力学性能得到了提高。同时,混凝土的存在,又可避免或延缓钢管容易发生局部屈曲的特性,从而能够发挥钢材的材料强度。钢管混凝土构件具有比钢管和混凝土简单叠加后更高的抗压能力以及良好的塑性、韧性和抗震性能。 此外,钢管混凝土还有延性好,抗压强度高,比钢结构具有更好的抗火性能和更好的抗震性能。在施工中,外套钢管可起到模板的作用,便于直接浇筑混凝土,加快施工进度。综上所述,钢管混凝土构件中钢管和混凝土取长补短,使钢管混凝土构件具有强度高、耐疲劳、抗冲击、延性好、抗震、抗火和便于施工等良好性能

二、文献综述

参考文献:

1. 钟善桐. 钢管混凝土结构[M]. 清华大学出版社有限公司, 2019.

2. 蔡绍怀. 现代钢管混凝土结构[M]. 人民交通出版社, 2019.

3. 欧智菁, 陈宝春. 钢管混凝土格构柱偏心受压面内极限承载力分析[J]. 建筑结构学报, 2019, 27(4): 80-83.

4. 廖彦波. 钢管混凝土格构柱轴压性能的试验研究与分析[D]. 清华大学, 2019.

5. 蒋丽忠, 周旺保, 伍震宇, 等. 四肢钢管混凝土格构柱极限承载力的试验研究与理论分析[J]. 土木工程学报, 2019 (9): 55-62.

6. 陈宝春, 欧智菁. 钢管混凝土格构柱极限承载力计算方法研究[J]. 土木工程学报, 2019, 41(1): 55-63.

7. 周文亮. 钢管混凝土格构式柱受力性能研究[D]. 西安科技大学, 2019.

8. Engesser F. Die knickfestigkeitgeraderstbe[M]. W. Ernst &Sohn, 1891.

9. Duan L, Reno M, Uang C. Effect of compound buckling on compression strength of built-up members[J]. Engineering Journal, 2019, 39(1): 30-37.

10. Razdolsky A G. Euler critical force calculation for laced columns[J]. Journal of engineering mechanics, 2019, 131(10): 997-1003.

11. Razdolsky A G. Flexural buckling of laced column with crosswise lattice[J]. Proceedings of the ICE-Engineering and Computational Mechanics, 2019, 161(2): 69-76.

12. Razdolsky A G. Flexural buckling of laced column with serpentine lattice[J]. The IES Journal Part A: Civil & Structural Engineering, 2019, 3(1): 38-49.

13. Kawano A, Matsui C. Cyclic local buckling and fracture of concrete filled tubular members[C]//Proceedings of an Engineering Foundation Conference on Composite Construction in Steel and Concrete IV, ASCE. 2019, 28.

14. Kawano A, Sakino K. Seismic resistance of CFT trusses[J]. Engineering structures, 2019, 25(5): 607-619.

15. Kawano A, Sakino K, Kuma K, et al. Seismic resistant system of multi-story frames using concrete-filled tubular trusses[J]. Int Society of Offshore and Polar Engineers. Cupertino, CA, 2019: 95015-0189.

16. Kawano A, Matsui C. The deformation capacity of trusses with concrete filled tubular chords[C]//Proceedings of an Engineering Foundation Conference on Composite Construction in Steel and Concrete IV, ASCE. 2019, 28.

17. Klingsch W. New developments in fire resistance of hollow section structures[C]//Symposium on hollow structural sections in building construction. 1985.

18. Klingsch W. Optimization of cross sections of steel composite columns[C]//Proc. of the Third International Conference on Steel-Concrete Composite Structures, Special Volume, ASCCS, Fukuoka. 1991: 99-105.

19. Lie T T, Cowan H J. Fire and buildings[M]. Applied Science Publishers Limited, 1972.

20. Lie T T, Chabot M. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete[J]. 1992.

21. Lie T T, Stringer D C. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete[J]. Canadian Journal of Civil Engineering, 1994, 21(3): 382-385.

22. Lie T T, Chabot M. Evaluation of the fire resistance of compression members using mathematical models[J]. Fire safety journal, 1993, 20(2): 135-149.

23. Kodur V K R. Performance-based fire resistance design of concrete-filled steel columns[J]. Journal of Constructional Steel Research, 1999, 51(1): 21-36.

24. Wang Y C, Davies J M. An experimental study of the fire performance of non-sway loaded concrete-filled steel tubular column assemblies with extended end plate connections[J]. Journal of Constructional Steel Research, 2019, 59(7): 819-838.

25. Ding J, Wang Y C. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire[J]. Journal of Constructional Steel Research, 2019, 64(10): 1086-1102.

26. Hong S, Varma A H. Analytical modeling of the standard fire behavior of loaded CFT columns[J]. Journal of Constructional Steel Research, 2019, 65(1): 54-69.

27. 钟善桐. 钢管混凝土耐火性能研究的几个问题和方法[J]. 中国钢协钢-混凝土组合结构协会第六次年会论文集 (上册), 1997.

28. 贺军利, 钟善桐. 钢管混凝土柱耐火全过程分析[J]. 中国钢协钢-混凝土组合结构协会第六次年会论文集 (上册), 1997.

29. 钟善桐. 第六章钢管混凝土的防火[J]. 建筑结构, 1999 (7): 55-57.

30. 查晓雄, 钟善桐. Behaviour of concrete filled steel tubular columns under fire[J]. 哈尔滨工业大学学报, 2019, 9(3).

31. 李易, 查晓雄, 王靖涛. 端部约束对钢管混凝土柱抗火性能的影响[J]. 中国钢结构协会钢-混凝土组合结构分会第十次年会论文集, 2019.

32. 徐超, 张耀春. 四面受火方形薄壁钢管混凝土轴心受压短柱抗火性能的分析[J]. 中国钢结构协会钢-混凝土组合结构分会第十次年会论文集, 2019.

33. 王卫华, 陶忠. 钢管混凝土平面框架温度场有限元分析[J]. 工业建筑, 2019, 37(12): 39-43.

34. 王卫华, 陶忠. 钢管混凝土柱-钢筋混凝土梁框架结构温度场试验研究[J]. 工业建筑, 2019 (4): 18-21.

三、研究内容

四、研究基础

1.所需工程技术、研究条件

本科硕士阶段所学习的课程:钢结构基本原理与设计、组合结构设计、结构抗火设计、

有限单元法。

第12篇

关键词:框架结构,钢筋安装,结构构造,规范,平法

 

钢筋工程是房屋建筑工程中一个非常重要的分项工程,其施工的正确性和质量好坏直接影响到建筑物的整体结构承载力和安全性。所以,钢筋在下料加工和安装过程中要严格遵循《混凝土结构施工图平面整体表示方法制图规则和构造详图》(03G101-1,下简称《平法》)和《混凝土结构工程施工质量验收规范》(GB50204-2002)的有关规定 ,并要以结构设计文件和以往钢筋工程的下料加工、安装施工经验,编制切实可行的钢筋工程施工方案和技术交底。如果在框架结构工程中验收规范、施工图集以及设计规范不熟悉,结构设计总说明不够明确;设计人员没有针对工程的具体特点进行技术交底;钢筋安装就会出现一些偏差。论文参考网。下面结合本人在工程实践中发现的比较突出、容易忽视的几个问题来加以分析。

1 、钢筋连接接头

框架梁、柱纵筋连接方法在《高层建筑混凝土结构技术规程》(JGJ3-2002)6.5.3条第四、五、六款均有规定,其连接质量控制在《混凝土结构工程施工质量验收规范》(GB50204-2002)中5.4条也有具体要求,目前,梁、柱主筋采用绑扎搭接方法已很少,焊接连接、机械连接用得最多,隐蔽验收时发现的主要问题有:

1.1、接头位置不对。接头位置要设在受力较小处。

1.1.1、施工人员应掌握一定的力学知识,应当知道梁跨中正弯矩较大,支座附近负弯矩、剪力较大,柱端在水平力作用下弯矩较大,接头应尽量避开这些位置。

1.1.2、事先要算好钢筋下料长度,梁上部纵筋接头尽量靠近跨中,下部纵筋(若要焊接)尽量远离跨中(建议设在梁箍筋加密区外且离支座Ln/3的范围内)。柱筋接头尽量远离柱端,所有焊接接头均应避开梁、柱箍筋加密区,确实无法避开时,宜采用机械连接。

1.2、接头位置留得合适,但钢筋在下料时还要做到节约钢筋为目的。例如计算框架柱的基础插筋的下料长度可以根据《平法》第36页中机械连接构造要求进行下料,接头应在≥Hn/3和Hn/3+35d(非连接区)的位置,根据以往的经验和现场钢筋的长度(定尺9000mm),尽可能在满足接头位置范围内把钢筋的下料长度按1500mm、3000mm、4500mm进行加工;这样就不会在钢筋加工时产生一些钢筋废料,造成钢筋浪费。

2、框架梁柱的纵筋

《平法》中对框架梁、框架柱、框支梁均有详细的配筋构造详图,可参照选用,这里须注意以下几个方面:

2.1、顶层端节点处是较容易出现问题的部位,应正确选择连接的构造详图,一种是柱纵筋伸入梁内(详见《平法》37页A~C构造图),另一种是梁纵筋伸入柱内(详见《平法》37页D、E构造图),前一种方式柱纵筋伸入梁内与梁上部纵筋搭接长度≥1.5LaE,且至少要保证有65%As1(As1—柱外侧纵筋总面积)的柱纵筋伸入梁内,梁宽范围以外的柱纵筋可以伸入现浇板内。论文参考网。当柱外侧纵筋配筋率>1.2%时,还应分两次截断,两个断点相距20d,当采用后一种方式时,梁纵筋伸入柱内竖直段长度≥1.7LaE,当梁上部纵筋配筋率>1.2%时,也应分两次截断,断点相距20d,究竟采用哪一种方式,视柱施工缝留设位置而定,通常柱施工缝留在梁底或梁底下100mm,多采用第一种方式,当采用第二种方式时,必须把柱的施工缝留在1.7LaE或1.7LaE +20d以下。

2.2、抗震屋面框架梁还应该注意当柱纵筋直径≥25时,在柱宽范围的柱箍筋内侧设置间距>150,但不少于3Φ10的角部附加筋。

2.3、框支梁进行钢筋安装(详见《平法》67页),而不能按一般框架梁来处理。《建筑抗震设计规范》(GB50011-2001)(下简称《抗规》)7.5.4条第4款规定:“……支座上部的纵向钢筋在柱内的锚固长度应符合钢筋混凝土框支梁的有关要求”。论文参考网。这一条是强制性条文,必须严格执行。这种情况下,柱施工缝必须留在外排纵筋的 LaE以下。

3、箍筋加密区

框架梁、框支梁箍筋加密范围可依据《平法》构造详图按不同抗震等级选用,一般无多大问题,但框架柱箍筋加密范围常存在较大问题,须注意以下几个方面:

3.1、底层柱, 《抗规》新增一条:底层柱根加密区≥Hn/3,Hn为柱净高,柱根是指地下室顶面,无地下室时,应为基础顶面(柱基基顶)起算,实际施工时柱根加密区常没达到这一要求。《平法》第40页对上述要求有详图描述。

3.2、框支柱、角柱,框支剪力墙结构中所有柱子箍筋都应沿全高加密,但是并非对所有角柱都要沿全高加密箍筋,只有抗震等级为一、二级时才需加密,结构设计总说明中往往只说明结构抗震等级,施工人员一般并不了解设计规范有相应要求。

3.3、特殊部位的柱,一般发生在楼梯间位置和填充墙部位,由于楼梯平台梁支承在框架柱上,往往使相邻两框架柱变为短柱(Hn/h<4),填充墙设置也会使相邻柱形成短柱,这些部位的柱应沿全高加密箍筋。

4、梁侧面纵向构造筋或抗扭纵筋

梁侧向构造纵筋、抗扭纵筋在《平法》表示的施工图中,侧向构造纵筋符号是G,抗扭纵筋符号是N,两者作用不完全相同,构造措施不一样,须引起注意。

4.1、侧向构造纵筋主要是为防止梁侧面产生收缩裂缝而构造设置。《混凝土结构设计规范》(下简称《混规》)(GB50010-2002)第10.2.16条的规定,钢筋用量增加较多,但须注意只有当hw≥450mm 时,才需设置,每侧钢筋面积≥0.1%bhw。其间距≤200mm,hw强调的是梁腹板高度,并非梁截面高度h,严格来讲,《平法》中hw的标注仅是一种近似处理,与规范规定并不相符,《混规》中,对矩形截面hw=ho(ho为有效高度), 对T形截面 hw=ho-t (t为翼缘厚) 。另外,侧向构造纵筋伸入支座的锚固长度均≥15d。

4.2、抗扭纵筋是由抗扭计算确定的,目的是抵抗扭矩产生的斜裂缝,这种钢筋伸入支座的锚固长度均≥LaE(La)。

5、悬臂梁纵筋

施工中发现的问题有:梁上部第一排纵筋切断和纵筋在端部弯下条件的判断有误,过去设计悬臂梁时,只要满足抵抗负弯矩的要求,除两根角筋通长布置外,悬臂梁施工图中一般将其余第一排纵筋在0.75L处截断。由于施工人员已习惯过去的做法,当梁上部只有一排纵筋时,仍将第一排中间纵筋在0.75L处截断,今后必须改正这一做法。不应截断的纵筋是否需在端部弯下,视L与hb的关系而定,若L>4hb,则在端部弯下,若L<4hb,不必弯下,但此时必须通长设置,如梁上部纵筋有二排时,第二排纵筋可以在0.75L处截断 (参见《平法》66页详图)。

6、结束语

通过以上几个问题的分析,说明框架结构钢筋安装必须要满足现行规范和标准图集的各项技术标准要求,并按照建筑工程设计文件及钢筋工程施工方案和技术交底要求施工,注重质量,增强施工人员的质量意识,加强施工人员技能技巧培训教育。只有这样,保证钢筋安装的正确性和提高安装的质量。