作者:柯晗; 付晓薇; 李曦球壳结构还原程度深度学习检测
摘要:为优化固体氧化物燃料电池(SOFC)制备工艺提供数据支持和理论依据,提出一种基于光学显微镜微观图像的球壳检测方法。在SOFC阳极微观图像上如果出现球壳结构,表明氧化镍(NiO)未完全还原,该现象严重影响电池的电化学性能、稳定性和使用寿命。为此,利用深度学习方法对SOFC光学显微镜图像进行球壳结构检测,分析阳极NiO的还原程度,通过预选框尺度、网络结构及参数的优化来提高检测性能。为充分利用有限的数据训练网络模型,对训练数据进行扩增。实验结果表明,该检测方法可准确有效地检测与识别形状复杂的SOFC阳极球壳结构,具有检测速度快,球壳结构定位精度较高等优点。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社