HI,欢迎来到学术之家股权代码  102064
0

基于混合模重构的kNN回归

作者:龚永红 宗鸣 朱永华 程德波线性回归稀疏编码噪声样本

摘要:对于线性回归中kNN(k-Nearest Neighbor)算法的k值固定问题和训练样本中的噪声问题,提出一种新的基于重构的稀疏编码方法。该方法用训练样本重构每一个测试样本,重构过程中,l1-范数被用来确保每个测试样本被不同数目的训练样本来预测,以此解决kNN算法固定k值问题;l2,1-范数导致的整行稀疏被用来去除噪声样本,以避免数据集上的噪声对重构产生不利影响。实验在UCI数据集上显示:新的改进算法比原来的kNN算法在线性回归中具有更好的预测效果。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机应用与软件

《计算机应用与软件》(CN:31-1260/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《计算机应用与软件》主要面向从事计算机应用和软件技术开发的科研人员、工程技术人员、各大专院校师生等。致力于创办以创新、准确、实用为特色,突出综述性、科学性、实用性,及时报道国内外计算机技术在科研、教学、应用方面的研究成果和发展动态的综合性技术期刊,为国内计算机同行提供学术交流的平台。

杂志详情