作者:顾江鹏; 袁和金hog卷积神经网络人脸识别特征提取
摘要:为了获取更加全面的整体与局部人脸特征,得到更高的人脸识别率,提出一种基于方向梯度直方图(HOG)特征与卷积神经网络的人脸识别新方法。该方法首先提取人脸图像的HOG特征,然后将HOG特征图像作为卷积网络的输入数据进行训练,改进网络结构,在全连接层之后采用Softmax loss和center loss两个损失函数进行监督,最后在训练得到的网络模型上对人脸图像进行识别操作。实验结果表明,该方法在ORL人脸集上的识别率达到97.5%,相比于其它人脸识别算法具有一定优越性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站持有《出版物经营许可证》,主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:蜀ICP备09010985号-13 川公网安备:51092202000203 统一信用码:91510922MACX24HU41
© 版权所有:四川博文网络科技有限责任公司太和分公司
出版物经营许可证:射行审新出发2023字第016号 股权代码:102064