作者:陆晓果; 王同科; 梁社芳; 陆苗最大似然分类样本数量样本均值样本标准差分类精度
摘要:【目的】遥感影像监督分类能够快速获取土地利用和地表覆盖的信息,分类样本的选取对分类精度具有决定性的作用。以最大似然分类方法为例,研究样本数量、均值和标准差对分类精度的影响。【方法】基于地表覆盖产品GlobeLand30分层随机选取不同数量的训练样本,采用最大似然法对研究区域的Landsat8遥感影像进行分类。通过谷歌地球高分影像选取一定数量的检验样本,对影像分类结果进行精度评价,并研究样本数量、均值和标准差对分类结果的影响。【结果】不同数量的训练样本得到的分类精度不同,分类精度随着样本数量的增加先增加后下降,然后渐趋于稳定;在样本质量特征方面,当训练样本的均值和标准差越接近检验样本的均值和标准差时,分类结果的精度越高,反之则分类精度较低。【结论】在最大似然分类过程中,训练样本数量的选取存在临界值,当达到临界值时即可获得较高分类精度,随后即使增加样本的数量也无法显著提高分类结果的精度。在样本质量方面,要尽量选取能够反映地物真实特征的训练样本进行分类。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站持有《出版物经营许可证》,主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:蜀ICP备09010985号-13 川公网安备:51092202000203 统一信用码:91510922MACX24HU41
© 版权所有:四川博文网络科技有限责任公司太和分公司
出版物经营许可证:射行审新出发2023字第016号 股权代码:102064