作者:黄德才; 谷宗昌; 杨雄局部社区相似性度量节点对
摘要:现有算法存在两点不足:1)采取爬坡策略,每次只能合并1个节点,容易陷入局部最优化的陷阱;2)对待合并节点没有考虑到外部连接情况,最终影响局部社区发现的质量.基于此,提出了一种基于节点对的局部社区算法RCD(Relative community detection).首先,通过引入改进Katz系数提出了节点对的概念,进而提出了一种新的待合并节点选择策略;其次,对不同类型节点采取不同的合并策略,从而提出了一种新的节点合并策略;最后,在3个数据集中进行实验,证明了相较于LS算法,RCD算法减少了迭代次数.改善了局部社区发现的质量.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站持有《出版物经营许可证》,主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:蜀ICP备09010985号-13 川公网安备:51092202000203 统一信用码:91510922MACX24HU41
© 版权所有:四川博文网络科技有限责任公司太和分公司
出版物经营许可证:射行审新出发2023字第016号 股权代码:102064